
Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 13 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Water Loop Software Testing: A Novel Approach for Test Case

Generation

Hemant Kumar1, Vipin Saxena2
1,2Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India

ARTICLE INFO ABSTRACT

Received: 29 Dec 2024

Revised: 12 Feb 2025

Accepted: 27 Feb 2025

The aim of the present study is to investigate a novel testing approach named Water Loop

Software Testing (WLST), which may be used for the automatic generation of test cases,

ultimately fostering the development of high-quality software products. An empirical study is

meticulously performed, leveraging the concept of a token bucket algorithm for the precise

generation of test cases designed to rigorously test software modules. The performance of the

proposed technique is then rigorously compared with the established genetic approach of

software testing, utilizing a comprehensive case study to ensure a fair and robust evaluation. The

computed results, showcasing the efficacy of WLST, are meticulously depicted in the form of

detailed tables. It is observed that the presented testing approach generates a substantial 100

test cases in just 0.2670 seconds, accompanied by an impressively low average memory usage of

24.01MB and an average CPU utilization of a mere 0.68%. This remarkable efficiency and

resource optimization highlight the novelty of the software testing approach, suggesting that it

may be readily adopted by software industries to significantly outperform traditional methods in

the development of superior software products.

Keywords: Software Testing, Test Case Generation, Token Bucket Algorithm, Software

Development Life Cycle, Water Loop Software Testing.

BACKGROUND

Software product is defined as a finished product which contains independent and dependent software modules

which are finally passed through software testing approach. Independent modules are the modules which have no

links with another module and it means that the two software modules have no common test cases while on the other

hand dependent modules are those modules which have links with another module and obviously having common

software test cases. The test cases are explained as an individual or group of parameters/attributes which are used to

get optimize results after executing the software modules. The software testing is completely based upon the selection

and prioritization of the test cases. For the finished software products, static software testing is very difficult; hence

software industries are using the dynamic execution of the test cases for finalizing the software products having high

quality and reliability.

Software testing plays a significant role in the Software Development Life Cycle (SDLC) by ensuring the quality of

software products through static and dynamic testing methods. Static software testing involves code review method

without execution while dynamic software testing examines software behaviour with specific inputs. The generation

of the efficient test cases is particularly important in dynamic testing and it is observed from the literature that

automation testing has become increasingly popular due to its advantages over static testing. However, the existing

literature lacks a comprehensive analysis of generation of the test cases in the optimized time, leading to a research

gap. Understanding the execution time involved is crucial for developing effective testing strategies. Therefore, the

present study is to address the said research gap by proposing a novel testing approach that will focus on generation

of automated test cases in the optimized time. Reduced the time for generation of the test cases has a number of

benefits for the development of effective software products. By streamlining this process, software businesses may

increase production, reduce expenses, enhance quality, and advertise the products more swiftly.

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 14 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The proposed approach utilizes a token bucket algorithm to automate test case generation and reduce test case

generation time. The number of test cases generated per unit of time can be restricted by using token bucket which

is a rate-limiting approach. This can help to reduce the amount of time needed for test case generation by preventing

the generation of too many test cases at once. The effectiveness and value of this strategy in improving the testing

process is evaluated by comparing it with other strategies, such as genetic algorithm. The primary objective of the

present study is to generate test cases, speedup the process of doing so, and improve overall effectiveness.

Additionally, the model's performance will be analysed by calculating memory usage and CPU utilization. This study

aims to fill the current research gap by focusing on the time required for test case generation and conducting a

thorough evaluation of the performance of the proposed method. In this approach, the study considerably improves

software development, notably in terms of efficiency. The information gathered from this study provides practical

suggestions and guidance for improving testing procedures. These insights might lead to enhancement in a number

of software development procedures, which would ultimately result in software of greater quality. Let us describe

some of the important recent references available in the literature and related to the present work.

In the year 2020, Lakshminarayana and Suresh Kumar [1] proposed an automatic test case generation and

optimization technique that utilizes a hybrid cuckoo search and bee colony algorithm. The suggested approach first

employs cuckoo search to build initial test cases, which are then improved through bee colony optimization. To assess

the effectiveness of the method, several Java programs were tested, and the results demonstrate that it outperformed

traditional methods in terms of coverage, efficacy, and efficiency. In another study, Paiva et al. [2] presented a method

for generating test cases by modifying user execution traces. The technique modifies user scenario execution and

traces to generate new test cases. The proposed approach was evaluated through four distinct case studies, and the

results indicate that it generates test cases that are more diverse and effective rather than produced by conventional

methods. Another strategy for automated software test case generation, based on an ant colony optimization

algorithm, was introduced by Sankar and Chandra [3]. The method employs ant colony optimization to choose and

rank test cases based on significance and applicability. The method's performance was evaluated using various

benchmark programs, and the results indicate that it outperforms traditional test case generation methods in terms

of coverage, efficacy, and efficiency. Further in 2021, Mohd-Shafie et al. [4] conducted an extensive literature review

on the generation and prioritization of model-based test cases and discovered several approaches, such as constraint-

based testing, model-based testing, and combinatorial testing. Model-based testing was found to be the most

commonly used method for test case development, and it was effective in reducing the number of test cases required

while maintaining high coverage. Zakeriyan et al. [5] proposed an autonomous test case creation method for

industrial software systems based on functional specifications. The approach involved separating testable scenarios

from functional specifications using natural language processing and ontology-based approaches. The findings

showed that the suggested strategy produced test cases with high coverage. Banerjee et al. [6] also presented an

ontology-based approach for automated test case generation. This strategy involved creating a domain-specific

ontology to describe the software system being tested and using it to automatic generation of test cases. The research

indicated that this method could produce test cases with high coverage while requiring less time and effort than

manual test case generation. Sahoo et al. [7] proposed a test case generation approach based on genetic algorithms

for UML diagrams. The approach involved for converting UML diagrams to a graph representation to evolve the test

cases. The study concluded that the suggested method was effective at generating the test cases with excellent

coverage and could be combined with other testing techniques. Wang and Zhao [8] suggested an automated test case

generation technique based on an enhanced whale optimization algorithm. The approach encoded test cases as binary

sequences and used the enhanced algorithm to search for the best solutions. The study found that the proposed

technique successfully produced test cases with high coverage and fewer test cases than required.

In the year 2022, Ma et al. [9] introduced a scalable approach to search for routes that can generate test cases

automatically. The proposed method combines a path exploration algorithm and a dynamic slicing technique to

produce test cases that cover both critical and non-critical paths of a software system. The path exploration algorithm

effectively searches for viable paths, and the results show that it can efficiently generate test cases that achieve high

coverage and reveal more flaws as compared to existing methods. Furthermore, the dynamic slicing method reduces

the program's size. Further, Pradhan et al. [10] presented an approach for creating test cases for state-chart diagrams

utilizing a genetic algorithm. The suggested method creates test cases that incorporate every change in the state chart

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 15 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

diagram. The writers evaluated the proposed approach using several case studies and compared it to other state-of-

the-art methods. The results show that the approach outperforms existing methods in terms of the coverage achieved

and the number of test cases generated. Additionally, the suggested method is effective in discovering software system

flaws. In 2023, Rajagopal et al. [11] proposed an automated path-focused test case generation technique for structural

program testing using an Adaptive Genetic Algorithm (AGA). The first step involves for constructing a route graph

from the source code, followed by generating of the test cases for the graph using AGA. The study showed that the

AGA-based test cases achieved better coverage than other traditional test case generation methods. Furthermore, the

scope of the test suite was expanded through dynamically parameterizing the generated test cases. Lukasczyk et al.

[12] conducted an empirical study to evaluate the effectiveness of Python's automated unit test generation. The

research involved ten open-source Python projects and several state-of-the-art test generation tools such as Pynguin,

EvoSuite, and TSTL for implementation and comparison. The results demonstrated that automated unit test

generation tools produced high-quality tests that were both time and resource efficient and offered adequate

coverage. Kumar et al. [13] introduced the Harmony Radial Testing (HRT) approach, combining Harmony Search

and Radial Basis Function Neural Network (RBF-NN) to optimize test case generation, improving coverage and fault

detection rates compared to existing methods. Based on above and thorough review of research on software testing,

it is found that WLST is never studied by the researcher, therefore, the present work is an attempt to investigate a

new software testing strategy as illustrated in the Figure 1.

Fig. 1. Water Loop Software Testing during Software Development Phases

METHODOLOGY

A methodology is proposed for automatic generation of the test cases that involves the use of the token bucket

algorithm [14] in the water loop testing technique, which is derived from the continuous movement of water in the

water cycle. Let us first define the concept of token bucket algorithm. It is a very popular algorithm which is generally

used in the field of computer networking for controlling the data flow in the form of traffic between sender and

receiver which are well connected across the high speed hybrid network. The data is passed in the form of tokens and

if it is valid then forwarded to destination place otherwise discarded the data. It may enhance the efficiency of the

computer network. In the present work, tokens are considered as a test case. The definition of the water loop software

testing is derived below:

Definition: The water loop testing process is defined as an unceasing movement of test cases

on, external and internal components of software modules.

The test case is defined as input parameters used to get the expected output from the software module. For the sake

of clarification, a software module is considered as a bucket which may consist of many sub-modules. The software

product (M) is defined as a collection of the software modules [M1,M2,…,Mj…..Mn]. In the software product, some

software modules may be independent while others may be dependent software modules. The mathematical

representation is given below:

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 16 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 M  [M1,M2,…,Mj…..Mn] (1)

Where, M1, M2,…, Mj are considered as independent modules and Mj+1,…., Mn are dependent modules. The software

module executes on various test cases which are categorized as valid or invalid test cases. The valid test case is defined

as input parameters which are producing the correct results and while invalid test cases are not producing the correct

results. Over the software module, the test cases are further categorized according to the followings:

Internal Test Case (ITC): It is explained as a test case on which the module is currently executing which may also

be defined inside the software module.

 ITC  [T1,T2,……Tj} (2)

Boundary Test Case (BTC): It is explained as test case which is trying to get a software module for execution

purpose. When such a test case sets then it may be converted into an internal test case.

 BTC  {Tj+1,Tj+2,……Tk} (3)

External Test Case (ETC): It is explained as test case outside the software module that may be converted into

a boundary test case and when these are executed then converted into the internal test case.

 ETC  {Tk+1,Tk+2,……Tn]

Hence, the total test cases are T  ITC  BTC  ETC. This concept is depicted in the following Figure 2.

Fig. 2. Representation of the Various Test Cases

The proposed methodology may be applied for the four standard phases of software development like collection of

feasibility analysis, requirements collection, system design, detailed design and coding via WLST to generate efficient

software products over the valid test cases, as shown in the following Figure 3.

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 17 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 3. Generation of Valid Test Cases

Traditional manual testing methods used in software development may be time-consuming and may not result in

generating effective test cases. In the presented approach, the main aim is to reduce the execution time considered

for generation of test cases which obviously improve coverage criteria. The novel token bucket algorithm is generating

automated test cases. It regulates the flow of data by defining a bucket with a fixed capacity that fills up with tokens

at a set rate. The main aim of proposed approach is to reduce the time taken to generate test cases and improve the

efficiency of the testing process. By using the token bucket algorithm and water loop testing approach, one may

generate more effective test cases. The concept for generation of valid test case and overflow condition are also

presented in the following figure 4.

Fig. 4. Overflow Representation of Test Cases

 On the basis of above concept, the WLST algorithm is given below:

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 18 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

WLST()

S→ size of software finished product

N→ number of modules

r→ generation rate of test cases

ts→start time of test case entering for execution

te→ end time of test case after used by the software module

test time→ t = te-ts

A=min(A+(t-tl)*r,S) //test case replenishment equation

condition:A>=1, software module is tested over test case

otherwise, software module is generating wrong results, so test case is discarded

RESULTS

Let us consider a case study which describes a module used in the computation of the natural frequencies for

transverse vibration of the skew plates used in the mechanical chips, naval structure, air craft designs, etc. The valid

test cases are generated through WLST approach over the involvement of the integrals used for computation of the

frequencies. A skew plate is represented in the following figure 5 which is converted into square plate using the

transformation approach of variables converted from (x,y) to (ξ, η).

Fig. 5. A Representation of Skew Plate [15]

The first three natural frequencies 𝜆 of skew plate may be obtained using eigen-value problem as represented below:

 ∑(𝑎𝑖𝑗 − 𝜆2𝑏𝑖𝑗)𝑐𝑗 = 0, 𝑖 = 1,2, … … … … , 𝑁

𝑁

𝐽=1

 (4)

The above equation is called as eigen-value problem and has lengthy computations of the various integrals;

therefore, WLST concept is applied for effective execution of the integrals through automatic generation of the valid

test case. The involvement of integrals may be seen from the following matrices given in the equations 5 and 6

which are used to provide the various values of 𝜆:

𝑎𝑖𝑗 =
1

𝑠𝑖𝑛4𝜃
∬ 𝑓3

𝑅′ [Φ𝑖
𝜉𝜉

𝜙𝑗
𝜉𝜉

− 2𝜇 cos(𝜃) (𝜙𝑖
𝜉𝜂

𝜙𝑗
𝜉𝜉

+ 𝜙𝑖
𝜉𝜉

𝜙𝑗
𝜉𝜂

) + 𝜇2(𝑣 𝑠𝑖𝑛2(𝜃) + 𝑐𝑜𝑠2(𝜃))(Φ𝑖
𝜂𝜂

𝜙𝑗
𝜉𝜉

+ 𝜙𝑖
𝜉𝜉

𝜙𝑗
𝜂𝜂

) + 2𝜇2(1 +

𝑐𝑜𝑠2𝜃) − 𝑣𝑠𝑖𝑛2(𝜃)𝜙𝑖
𝜉𝜂

𝜙𝑗
𝜉𝜉

− 2𝜇3 cos(𝜃) (𝜙𝑖
𝜂𝜂

𝜙𝑗
𝜉𝜂

+ 𝜙𝑖
𝜉𝜂

𝜙𝑗
𝜂𝜂

) + 𝜇4𝜙𝑖
𝜂𝜂

𝜙𝑗
𝜂𝜂

] 𝑑𝜉𝑑𝜂 (5)

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 19 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 𝑏𝑖𝑗 = ∬ 𝑓𝜙𝑖𝜙𝑗 𝑑𝜉 𝑑𝜂
𝑅′

 (6)

where,

 λ2 =
(12)(1−

V2ρa2m2

Eh2)

𝑎

𝑏

, f(ξ, η) = (1 + aξ)(1 + βη),

7)

and

 ϕi(ξ, η) = ξpηq(1 − ξ)r(1 − η)s(1, ξ, η, ξ2 , ξη, η2 , … … .) (8)

 The above computation of natural frequencies involves the following integration:

 ∬ ξLP𝜂LQ(1 − ξ)LR(1 − η)LSdξ dη =
LP!LQ!LR!LS!

(LP+LR+1)!(LQ+LS+1)!
 (9)

WSLT is used to compute valid test cases from the equation (9) for computation of first three natural frequencies for skew plate.

RESULTS AND DISCUSSION

In this study, the tokens are generated through token bucket algorithm in which the init method initializes the

following class and instance variables. The generate () method calculates the current time and the time difference

since the last update. Based on the difference and the time_unit, it adds tokens to the bucket and updates the

last_update time. If the token value is less than 1, it returns false, indicating that there are no tokens available,

otherwise, it decreases the token count by 1 and increases the counter. If the counter is equal to bucket capacity, it

resets the counter to 0 and returns False, otherwise, it returns True, indicating that a token is available. The concept

is given below:

class TokenBucket:

 def __init__(self, token, capacity, time_unit):

 self.token = token

 self.capacity = capacity

 self.time_unit = time_unit

 self.counter = 0

 self.last_update = time.time()

 def generate(self):

 current_time = time.time()

 time_since_last_update = current_time - self.last_update

 tokens_to_add = time_since_last_update / self.time_unit

 self.token = min(self.token + tokens_to_add, self.capacity)

 self.last_update = current_time

 if self.token < 1:

 return False

 else:

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 20 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 self.token -= 1

 if self.counter == self.capacity:

 self.counter = 0

 return False

 self.counter += 1

 return True

The generation of test cases is described through following segment of code nearer to Python programming

language:

def generate_testcases():

 tb = TokenBucket(100, 100, 1)

 test_cases = []

 for i in range(1,128):

 if tb.generate():

 AL = 1.0

 NO = 2

 LP = random.choice([0, 1, 2, -1])

 LQ = random.choice([0, 1, 2, -1])

 LR = random.choice([0, 1, 2, -1])

 LS = random.choice([0, 1, 2, -1])

 test_cases.append((AL, LP, LQ, LR, LS, NO, HT(AL, LP, LQ, LR, LS, NO)))

 return test_cases

The above function performs the following steps:

Step1: Instantiates a TokenBucket object with an initial token count of 100, a bucket capacity of 100, and a

time unit of 1;

Step2: Creates an empty list called test_cases to store the generated test cases;

Step3: Loops through a range of values from 1 to 128;

Step4: On each iteration of the loop, it calls the generate () method of the TokenBucket object to determine if a

token is available;

Step5: If a token is available, it uses the random.choice function to randomly select values for the variables

AL, LP, LQ, LR, and LS;

Step6: The value of NO is set to 2, and the function HT is called with these values as arguments;

Step7: The result of the HT function call is appended to the test_cases list along with the arguments passed to

the function;

Step8: After all iterations of the loop, the test_cases list is returned.

The above function generates 100 test cases, which is the capacity of a bucket considered as finite capacity, when

bucket is full of test cases, and then one can apply the WLST to check whether the test case is valid or invalid. The

procedure for generation of valid test cases is given below:

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 21 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

invalid_test_cases = []

valid_test_cases=[]

@pytest.mark.parametrize("AL, LP, LQ, LR, LS, NO, expected_output", generate_testcases())

def test_HT(AL, LP, LQ, LR, LS, NO, expected_output):

 if LP < 0 or LQ < 0 or LR < 0 or LS < 0:

 invalid_test_cases.append((AL, LP, LQ, LR, LS, NO, expected_output))

 assert expected_output == None

 else:

 valid_test_cases.append((AL, LP, LQ, LR, LS, NO, expected_output))

 assert expected_output != None

The above code is using the pytest library to perform a set of tests on the function HT. The tests are performed using

the @pytest.mark.parametrize decorator, which allows a set of test cases to be run with the same function.

1. The valid_test_cases and invalid_test_cases lists are created to store valid and invalid test cases,

respectively;

2. The @pytest.mark.parametrize decorator is applied to the test_HT function and is used to run a set of test

cases using the function. The parameters for the test cases are generated using the generate_testcases()

function;

3. In the test_HT function, the first if statement checks if any of the values LP, LQ, LR, or LS are less than 0. If

any of these values are negative, the test case is considered invalid and is added to the invalid_test_cases list.

The assert statement verifies that the expected output is equal to None;

4. If all of the values LP, LQ, LR, and LS are positive, the test case is considered valid and is added to the

valid_test_cases list. The assert statement verifies that the expected output is not equal to None.

The process of generating test cases has several stages, which are depicted in the following figure 6 along with

their interactions.

Fig. 6. Test Case Execution in Water Loop Testing

We conducted a comparison between our proposed water loop testing technique and the genetic algorithm, which is

a widely used test case generation technique in software testing. The genetic algorithm generated a total of 100 test

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 22 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

cases and took 19.6601 seconds to complete, while our approach generated the same number of test cases in just

0.2670 seconds. This result clearly demonstrates the effectiveness of our approach in reducing the execution time

required to generate test cases. The elapsed time required to generate test cases is determined by calculating the time

that has passed between the start and end of a particular event, process, or task. This time is typically measured in

units such as seconds, minutes, hours, or even days and is calculated as the difference between the end time and the

start time of the event, process, or task. Based on Table 1, which shows the comparison results between the genetic

algorithm and water loop testing, our approach clearly outperformed the genetic algorithm in terms of the time taken

to generate test cases.

Table 1. Comparison of Genetic Algorithm and WLST

Test Cases Genetic algorithm WLST

20 4.2264 0.1512

40 7.3255 0.1536

60 12.9831 0.1560

80 15.4930 0.1682

100 19.6601 0.2670

while Table 2 provides a numerical comparison of memory usage between the existing genetic algorithm and our

WLST approach.

Table 2. Memory Usage-WLST versus GA

Iteration WLST Memory Usage

(MB)

GA Memory Usage

 (MB)

1 23.96 24.31

2 23.97 24.32

3 23.98 24.39

4 23.98 24.41

5 23.99 24.42

6 24.00 24.44

7 24.00 24.44

8 24.00 24.52

9 24.05 24.52

10 24.09 24.52

The results indicate that our WLST model exhibited an average memory usage of 24.01MB with an average CPU

utilization of 0.68%. In contrast, the genetic algorithm technique resulted in an average memory usage of 24.436MB

with a CPU utilization of 0.77%. The disparities in memory usage can be attributed to the underlying algorithms and

methodologies employed by each technique. The WLST technique leverages the token bucket algorithm, which

effectively manages resource allocation, leading to optimized memory utilization. On the other hand, the genetic

algorithm technique may involve more complex operations, resulting in relatively higher memory consumption. To

ensure the observed performance improvements of the WLST algorithm over the Genetic Algorithm (GA) are

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 23 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

statistically significant, we conducted an ANOVA test on execution time and memory usage. The results of the

ANOVA test are presented in Table 3.

Table 3. ANOVA Test Results for WLST and GA

Metric F-statistic p-value Significance

Execution Time 17.94 0.00285 Statistically Significant

Memory Usage 244.74 6.37 × 100-12 Highly Statistically Significant

The ANOVA test results indicate that the differences in both execution time and memory usage between WLST and

GA are statistically significant. These results confirm the superiority of the proposed WLST algorithm, which

generated test cases faster than GA while utilizing approximately less memory. The WLST algorithm significantly

outperforms the GA in both execution time and memory usage. The ANOVA test validates these differences,

highlighting WLST's superior efficiency and resource optimization for test case generation.

CONCLUSIONS

WLST a novel software testing technique designed to reduce the time required for generating test cases, is presented

in the current study. Reducing test case generation time is beneficial for the development of efficient software

products, such as faster test case generation, more testing time, better software quality, and ultimately improved

customer satisfaction. Our Water Loop Testing (WLST) approach generates 100 test cases in 0.2670 seconds,

compared to the Genetic Algorithm (GA) approach, which takes 19.6601 seconds. WLST utilizes an average memory

of 24.01MB and a CPU utilization of 0.68%, while the genetic algorithm technique utilizes 24.436MB of memory and

has a CPU utilization of 0.77%. It fills a research gap related to test case generation time and advances software

development practices. The Water Loop Testing (WLST) strategy, integrated with the token bucket algorithm, shows

promise in generating dynamic test cases, ensuring software quality while reducing development time. Further

research can explore Water Loop Testing (WLST) scalability and applicability in different software development

scenarios and evaluate the effectiveness of the proposed approach on larger programs and in finding bugs.

REFRENCES

[1] P. Lakshminarayana and T.V. Suresh Kumar, “Automatic generation and optimization of test case using hybrid

cuckoo search and bee colony algorithm,” Journal of Intelligent Systems, Vol. 30 No. 1, pp.59-72,

https://doi.org/10.1515/jisys-2019-0051.

[2] A.C. Paiva, A. Restivo, A. and S. Almeida, “Test case generation based on mutations over user execution

traces,” Software Quality Journal, Vol. 28, pp.1173-1186 2020, https://doi.org/10.1007/s11219-020-09503-4.

[3] S. Sankar, and V.S.S. Chandra, “An ant colony optimization algorithm based automated generation of software

test cases,” In Advances in Swarm Intelligence: 11th International Conference, ICSI 2020, Belgrade, Serbia,

July 14–20, 2020, Proceedings Vol. 11, pp. 231-239, Springer International Publishing,

https://doi.org/10.1007/978-3-030-53956-6_21.

[4] M.L. Mohd-Shafie, W.M.N.W. Kadir, H. Lichter, M. Khatibsyarbini, and M.A. Isa, “Model-based test case

generation and prioritization: a systematic literature review,” Software and Systems Modeling, pp.1-37, 2021,

https://doi.org/10.1007/s10270-021-00924-8.

[5] A. Zakeriyan, R. Khosravi, H. Safari, and E. Khamespanah, “Towards automatic test case generation for

industrial software systems based on functional specifications,” In Fundamentals of Software Engineering: 9th

International Conference, FSEN 2021, Virtual Event, May 19–21, 2021, Revised Selected Papers, Vol. 9, pp.

199-214, 2021, Springer International Publishing. https://doi.org/10.1007/978-3-030-89247-0_14.

[6] S. Banerjee, N.C. Debnath, and A. Sarkar, ”An Ontology-Based Approach to Automated Test Case

Generation,” SN Computer Science, Vol. 2, pp.1-12, 2021, https://doi.org/10.1007/s42979-020-00420-8.

[7] R.K. Sahoo, M. Derbali, H. Jerbi, D. Van Thang, P.P. Kumar, and S. Sahoo, “Test Case Generation from UML-

Diagrams Using Genetic Algorithm” CMC-COMPUTERS MATERIALS and CONTINUA, Vol. 67, No.2, pp. 2321-

2336, 2021, https://doi.org/10.32604/cmc.2021.013014.

https://doi.org/10.1515/jisys-2019-0051
https://doi.org/10.1007/s11219-020-09503-4
https://doi.org/10.1007/978-3-030-53956-6_21
https://doi.org/10.1007/s10270-021-00924-8
https://doi.org/10.1007/978-3-030-89247-0_14
https://doi.org/10.1007/s42979-020-00420-8
https://doi.org/10.32604/cmc.2021.013014

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 24 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[8] J. Wang, and W. Zhao, “Automatic Test Case Generation Method Based on Improved Whale Optimization

Algorithm,” In 2021 5th International Conference on Intelligent Systems, Metaheuristics and Swarm

Intelligence, pp. 7-16, April 2021, https://doi.org/10.1145/3461598.3461600.

[9] E. Ma, X. Fu, and X. Wang, (2022) “Scalable path search for automated test case generation,” Electronics, Vol.11,

No.5, pp. 1-22, 2022, https://doi.org/10.3390/electronics 11050727.

[10] S. Pradhan, M. Ray, and S.K. Swain, “Transition coverage -based test case generation from state chart

diagram,” Journal of King Saud University-Computer and Information Sciences, Vol. 34, No.3, pp. 993-1002,

2022, https://doi.org/10.1016/j.jksuci. 2019.05.005.

[11] M. Rajagopal, R. Sivasakthivel, K. Loganathan, L.E. and Sarris, “An Automated Path-Focused Test Case

Generation with Dynamic Parameterization Using Adaptive Genetic Algorithm (AGA) for Structural Program

Testing,” Information, Vol. 14, No. 3, pp. 1-18, 2023, https://doi.org/10.3390/info14030166.

[12] S. Lukasczyk, F. Kroiß, and G. Fraser, “An empirical study of automated unit test generation for

python,” Empirical Software Engineering, Vol. 28, No.2, pp.1-46, 2023, https://doi.org/10.1007/s10664-022-

10248-w.

[13] H. Kumar, and V. Saxena, “Effective test cases generation with harmony search and RBF neural network,” The

International Arab Journal of Information Technology (IAJIT), vol. 21(5), pp. 786–799, 2024, DOI:

https://doi.org/10.34028/iajit/21/5/2.

[14] T.C. Tsai, C.H. Jiang, and C.Y. Wang, “CAC and packet scheduling using token bucket for IEEE 802.16

networks,” J. Communication., Vol. 1, No. 2, pp. 30-37, 2006, https://doi.org/10.4304/jcm.1.2.30-37.

[15] B. Singh, and V. Saxena, “Transverse vibration of skew plates with variable thickness,” Journal of Sound and

Vibration, Vol. 206, No.1, pp.1-13, 1997, https://doi.org/10.1006/jsvi.1997.1032.

https://doi.org/10.1145/3461598.3461600
https://doi.org/10.3390/electronics%2011050727
https://doi.org/10.1016/j.jksuci.%202019.05.005
https://doi.org/10.3390/info14030166
https://doi.org/10.1007/s10664-022-10248-w
https://doi.org/10.1007/s10664-022-10248-w
https://doi.org/10.4304/jcm.1.2.30-37
https://doi.org/10.1006/jsvi.1997.1032

