
Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 25 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Discrete Symbiotic Organisms Search Based Data-Intensive

Scientific Workflow Optimization in Cloud Computing

Environment

Kouidri Siham1, Zerrouki Kadda2, Kouidri Chaima3
1GeCoDe Laboratory, Department of Computer Science, University of Saida Dr. Moulay Tahar, Saida 20000, Algeria (e-mail:

skouidri2023@gmail.com)
2GeCoDe Laboratory, Department of Computer Science, University of Saida Dr. Moulay Tahar, Saida 20000, Algeria (e-mail:

zerrouki.kadda.2023@gmail.com)
3Computer Science, University Mustapha Stambouli of Mascara, Mascara, 29000, Algeria

(e-mail : chaima.kouidri@univ-mascara.dz)

ARTICLE INFO ABSTRACT

Received: 29 Dec 2024

Revised: 12 Feb 2025

Accepted: 27 Feb 2025

Introduction

The ability to access and use computer resources has been totally transformed by cloud

computing, which provides networking, processing, and storage capabilities as needed. As cloud-

based applications and services have become more popular, so too have the quantity and

complexity of tasks that require efficient scheduling. Scheduling tasks and locating data in cloud

systems have become crucial concerns for scientific processes that significantly depend on data

placement and tasks computing. With efficient scheduling, the best use of resources is ensured

while overall execution time and communication delays are decreased. As an NP-complete

problem, workflow scheduling is difficult to tackle optimally with conventional techniques and

is computationally expensive. Researchers are progressively tackling these problems by

employing intelligent optimization methods based on natural occurrences.

Objectives

The goal of this work is to improve workflow scheduling performance in cloud systems by

creating an optimization technique inspired by biology. The main goal is to reduce two important

performance indicators: workflow completion time and data transfer time. The suggested

method aims to enhance overall resource utilization, lower execution cost to minimize expenses,

and speed up scientific computations in the cloud by effectively assigning jobs to virtual

machines.

Methods

In order to manage the discrete character of cloud workflow scheduling, this study suggests using

a Discrete Symbiotic Organism Search (DSOS) algorithm, which is a version of the symbiotic

organism search technique. Iteratively evolving task assignments to generate near-optimal

scheduling solutions. The approach is put into practice and tested in the popular simulation

toolkit CloudSim, which is used to model and assess cloud computing infrastructures. To

confirm the DSOS algorithm's efficacy and efficiency in resolving the scheduling issue in

dynamic cloud settings, it is contrasted with a number of well-known scheduling techniques.

Conclusions

Workflow scheduling in cloud computing is a challenging problem that the suggested Discrete

Symbiotic Organism Search algorithm successfully resolves. It improves scientific computation

performance and helps create more responsive cloud services by cutting down on execution time,

execution cost and placing data optimally.

Keywords Cloud Computing, Workflow Scheduling, Discrete Symbiotic Organism Search

(DSOS), CloudSim, Bio-inspired Optimization, Cloudlet Allocation, Data Transfer Time,

Execution Time, Execution Cost.

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 26 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

A dominating paradigm in contemporary computing, cloud computing is transforming how individuals,

organizations, and research institutions access and use computational resources. Shared computing resources,

including servers, storage, apps, and networking infrastructure, are made available online on a pay-per-use basis

through its service-oriented design. This on-demand paradigm is very attractive for a variety of applications, from

enterprise computing to scientific research, because it provides several benefits, such as elastic scalability, cost-

effectiveness, geographical independence, and little infrastructure administration.

Scientific workflow execution is one of the key domains where cloud computing has demonstrated enormous promise.

A scientific workflow, which is frequently employed in data-intensive research fields including genomics, climate

science, astrophysics, and materials engineering, is an organized depiction of a series of data-processing activities

(tasks). Complex task interdependence, extensive data transfers, and varied computational needs are characteristics

of these workflows. A strong infrastructure to control resource allocation and job scheduling is necessary for the

effective execution of these workflows, as are substantial computational resources. Researchers can now access

virtualized, on-demand computing environments, including virtual machines (VMs), dynamic storage systems, and

scalable networks, thanks to cloud computing, which eliminates the need for expensive and rigid physical

infrastructure [1].

Despite the advantages offered by cloud platforms, workflow scheduling remains a core challenge in scientific

computing. Scheduling refers to the process of mapping workflow tasks to available computational resources in a way

that optimizes certain performance metrics, such as minimizing makespan (total execution time), reducing cost,

balancing load across resources, and minimizing data transfer time between tasks. However, due to the inherent

complexity of workflows—such as task precedence constraints, varying resource requirements, data locality issues,

and resource availability dynamics—scheduling becomes a highly combinatorial optimization problem. This problem

is formally classified as NP-hard, which implies that there is no known algorithm capable of solving all instances of

the problem optimally within polynomial time. The difficulty increases further in cloud environments, where factors

like virtualization overhead, dynamic pricing models, and fluctuating resource performance add additional layers of

complexity [2].

For large-scale workflow scheduling, researchers have resorted to heuristic and approximate approaches due to the

computational impracticability of accurate optimization techniques. Due to their capacity to produce excellent,

nearly ideal results in manageable computation durations, meta-heuristic algorithms have become increasingly

popular among them. High-level, problem-independent algorithmic frameworks known as metaheuristics

successfully direct underlying heuristics in their exploration of the solution space. There are several nature-inspired

methods among them, including Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Particle Swarm

Optimization (PSO), and Genetic Algorithms (GA). By simulating social or natural behaviors, these algorithms

iteratively enhance potential solutions.

In this context, we explore the application of a bio-inspired meta-heuristic algorithm, namely the Discrete

Symbiotic Organism Search (DSOS) algorithm, for the problem of scientific workflow scheduling in cloud

environments. Originally designed to mimic symbiotic relationships in nature—such as mutualism,

commensalism, and parasitism—Symbiotic Organism Search (SOS) has proven effective for solving complex

optimization problems. Its discrete adaptation, DSOS, is tailored to address scheduling problems where task

assignments and execution sequences must be expressed in discrete terms. Unlike many traditional algorithms,

DSOS benefits from adaptive learning mechanisms and diversity preservation strategies, which enhance

its global search capability while preventing premature convergence to local optima.

The core objective of this research is to minimize makespan , execution cost and inter-task data transfer

time, two crucial metrics that directly impact the performance and cost-effectiveness of scientific workflows in cloud

settings. The DSOS algorithm is designed to explore the scheduling solution space more intelligently by simulating

different symbiotic interactions and evaluating their impact on workflow performance. By iteratively refining

candidate schedules, DSOS aims to provide high-quality solutions that outperform traditional heuristic and meta-

heuristic techniques.

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 27 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To validate the effectiveness of the proposed DSOS-based scheduling approach, we conduct extensive simulation

experiments using CloudSim, a widely adopted cloud simulation toolkit. CloudSim provides a flexible framework

to model data centers, virtual machines, user workloads, and scheduling policies, allowing for a realistic and

controlled evaluation of algorithm performance. The simulation includes scientific workflows, various VM

configurations, and performance metrics such as average task execution time, execution cost, and data transfer

latency. The DSOS algorithm's results are compared against established scheduling algorithms to demonstrate its

competitiveness and applicability.

The rest of this paper is structured as follows: Section II explains some related works. Section III introduces our

proposed approach. Section IV evaluates the performance of simulation experiments using CloudSim. The conclusion

and future works are presented in Section V.

RELATED WORKS

The increasing requirement for effective processing of large-scale computer activities has led to significant academic

interest in optimizing the scheduling of data-intensive scientific workflows in cloud computing. Numerous fields,

including high-energy physics, astrophysics, climate modeling, and genomics, heavily rely on scientific workflows,

which are made up of interconnected operations with intricate data flows. The scalable and elastic infrastructure of

the cloud offers an appropriate setting for carrying out these processes. However, effective task scheduling is still a

difficult and computationally demanding operation because of the dynamic nature of cloud resources, heterogeneous

virtual machines, and the requirement to maximize several objectives (e.g., execution time, data transmission delay,

and cost execution). The two main categories of current research on workflow scheduling algorithms in cloud systems

are bio-inspired metaheuristic techniques and conventional heuristic-based approaches. Representative works from

both groups are reviewed in the sections that follow, with an emphasis on their mechanisms, advantages, and

disadvantages.

A. Heuristic-Based Task Scheduling Algorithms

Heuristic-based algorithms are widely used due to their simplicity, low overhead, and fast decision-making

capabilities. Although these algorithms do not guarantee global optimality, they provide efficient and practical

solutions for real-time scheduling in large-scale environments.

1. HEFT (Heterogeneous Earliest Finish Time):

HEFT is one of the most prominent and effective heuristics for heterogeneous computing environments. It schedules

tasks based on their upward rank (a metric considering task priority and estimated execution time) and maps them

to resources to minimize overall makespan. It considers both computation time and communication delay between

tasks, making it suitable for workflows with data dependencies. Despite its effectiveness, HEFT may become less

efficient as workflow complexity and resource heterogeneity increase [7].

2. Min-Min and Max-Min Algorithms:

These heuristics aim to optimize task-resource mappings by selecting tasks based on their minimum execution times.

- Min-Min prioritizes tasks with the smallest completion time, often leading to fast execution of short tasks

but potentially causing delays for longer ones.

- Max-Min selects tasks with the maximum minimum execution time, promoting early execution of longer

tasks to avoid bottlenecks. These algorithms are computationally light but may fail to maintain load balancing under

highly variable workloads [6].

3. First-Come, First-Served (FCFS):

A non-preemptive scheduling strategy, FCFS assigns tasks in the order of their arrival. Although simple and fair in

terms of task order, it may lead to suboptimal performance in scientific workflows, especially when large or long-

running tasks block shorter ones, resulting in high average waiting and turnaround times [4].

4. Shortest Job First (SJF):

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 28 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This algorithm schedules tasks with the shortest execution times first. While it reduces average waiting time and

improves throughput, it requires prior knowledge of task execution time, which is often unavailable or unpredictable

in real-world cloud environments [6].

5. Priority-Based Scheduling:

In this approach, each task is assigned a priority level, and scheduling decisions are made based on these levels. High-

priority tasks are executed first, ensuring that critical operations are not delayed. However, this method risks

starvation of low-priority tasks, especially in systems with frequent high-priority job arrivals [5].

B. Bio-Inspired Metaheuristic Scheduling Algorithms

To overcome the limitations of classical heuristics, researchers have adopted bio-inspired algorithms, which mimic

natural and biological processes to explore complex solution spaces. These population-based, adaptive algorithms

are particularly well-suited for multi-objective, dynamic, and NP-hard problems like workflow scheduling in cloud

computing.

1. Genetic Algorithms (GA):

GA uses operators for mutation, crossover, and selection to mimic the course of natural evolution. When used in

workflow scheduling, GA improves goals like makespan, cost, and load balancing by iteratively evolving a population

of task-resource mappings over generations. Although it is very extendable and adaptable, it can be computationally

demanding and may converge slowly if the parameters are not well tuned [8].

2. Particle Swarm Optimization (PSO):

Inspired by the collective behavior of birds and fish, PSO uses a swarm of particles to search for optimal solutions by

updating positions based on individual and group experiences. In scheduling, particles represent possible task

assignments. PSO is effective in continuous search spaces, but when applied to discrete problems like task scheduling,

it often requires custom encoding and modification to maintain solution feasibility [9].

3. Ant Colony Optimization (ACO):

Based on the pheromone-laying behavior of ants, ACO uses probabilistic models to construct and improve solutions

iteratively. Ants prefer paths with higher pheromone levels, leading to the discovery of efficient task sequences. ACO

is particularly suitable for solving graph-based scheduling problems, such as DAG (Directed Acyclic Graph)

workflows, but suffers from slow convergence and high computational overhead in large-scale scenarios [10].

4. Bee Colony Optimization (BCO):

Modeled after the foraging behavior of honeybees, BCO assigns tasks to food sources (resources) and iteratively

improves solutions based on fitness feedback shared among bees. The algorithm balances exploration and

exploitation effectively and is suitable for parallel task scheduling, but it may require fine-tuning of parameters like

scout bee ratios and neighborhood size [11].

5. Firefly Algorithm:

Inspired by the light-emitting communication of fireflies, this algorithm treats task schedules as fireflies, with their

attractiveness determined by the quality (brightness) of the schedule. Fireflies move towards brighter ones, thus

converging on better solutions. FA is effective for multi-modal optimization, but similar to PSO, it requires discrete

adaptation to be applied to workflow scheduling [12].

Traditional heuristic algorithms like HEFT, Min-Min, and SJF offer fast and low-overhead scheduling, suitable for

small to medium-sized workflows. However, they often lack the flexibility and adaptability required for complex,

large-scale cloud environments with dynamic workloads and multiple objectives.

Bio-inspired metaheuristics, on the other hand, provide a strong foundation for resolving such challenging issues.

They are ideally suited for scheduling scientific workflows because of their capacity to conduct global searches and

manage multi-objective optimization. However, when used for discrete scheduling problems, these approaches could

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 29 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

be more computationally complex and necessitate careful design of encoding systems, fitness functions, and

convergence criteria.

METHODS

In the context of cloud computing, particularly when using simulation environments such as CloudSim, a

scientific workflow refers to a structured sequence of computational tasks—also called cloudlets—that must be

executed in a specific order to achieve a desired scientific or analytical result. These workflows are typically data-

intensive and consist of multiple interdependent tasks that operate on large datasets, commonly encountered

in scientific disciplines such as bioinformatics, climate modeling, and astrophysics.

To model the dependencies and execution logic of such workflows, a Directed Acyclic Graph (DAG) is commonly

used. A DAG provides a formal representation of the workflow's structure, where each node represents a

computational task (cloudlet), and each directed edge indicates a data or execution dependency between two

tasks (see Fig.1).

Let the workflow be represented as a graph G: noting G = (T, E) with:

- 𝑇 ={ 𝑇1 ….𝑇𝑛 } is the finite set of independents tasks (cloudlets) that constitute the scientific workflow. Each

task Ti represents a unit of computation that consumes input data, performs a specified operation, and produces

output data. These tasks may vary in computational complexity and resource requirements.

- E: is the set of its arcs representing the data constraints between tasks

Fig.1. Scientific workflow DAG.

A. SYMBIOTIC ORGANISM SEARCH (SOS) IN NATURE

The Symbiotic Organism Search (SOS) algorithm is a bio-inspired metaheuristic optimization method that takes

its cues from the biological idea of symbiosis. The association between various biological entities in natural

environments is known as symbiosis. This relationship may be neutral to one party, detrimental to the other, or

advantageous to both. The SOS algorithm imitates three main symbiotic relationship types: parasitism,

commensalism, and mutualism. These exchanges are symbolic of cooperation and the development of solutions.

1. Mutualism

Mutualism describes a symbiotic interaction in which both species involved gain benefits from the association. This

cooperative relationship promotes mutual survival, growth, or reproduction and is widely observed in both

microscopic and macroscopic ecosystems.

Humans and some strains of the gut-dwelling Escherichia coli (E. coli) are a common example of mutualism in

biology (see Figure 2). E. Coli thrives in the host's nutrient-rich intestinal environment, but it also produces critical

substances like vitamin K, which is needed to make human blood clotting proteins. This reciprocal interaction and

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 30 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

a situation where both species gain from each other's touch are replicated by the SOS algorithm, which concurrently

increases the fitness of two potential solutions [13].

Fig.2. Mutualism example [13].

2. Commensalism

Commensalism is a symbiotic relationship in which one species benefits, while the other remains unaffected—

neither harmed nor helped. This neutral interaction is common in ecosystems where one organism exploits the

environment or resources altered by another organism without interfering with its biological function.

An ecological example of commensalism can be seen in birds that build nests in trees. The bird benefits from the

shelter and support provided by the tree, while the tree is largely unaffected by the presence of the nest (see

Figure.3.) In SOS, the commensalism phase involves one candidate solution improving its state by interacting with

another, while the latter remains unchanged. This phase promotes exploration of the solution space by allowing

certain solutions to learn from others without reciprocal influence [13].

Fig.3. Commensalism example [13].

3. Parasitism

Parasitism represents a non-mutual symbiotic relationship, where one organism (the parasite) benefits at

the expense of another (the host). This interaction typically causes harm or resource loss to the host, while

enhancing the survival or reproduction of the parasite.

Common examples include ticks feeding on mammals or parasitic fungi attacking plants. In the SOS algorithm, the

parasitism phase mimics this interaction by introducing a parasitic candidate solution that attempts to replace a host

solution in the population. If the parasite exhibits better fitness, it replaces the host; otherwise, it is discarded. This

strategy allows SOS to maintain diversity and inject competitive pressure into the evolutionary process (see Figure4).

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 31 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig.4. Parasitism example

In summary, the Symbiotic Organism Search algorithm emulates the adaptive mechanisms found in nature,

translating ecological interactions into mathematical operators that govern solution evolution, diversification, and

intensification. These biologically inspired mechanisms allow SOS to efficiently explore complex, multi-dimensional

search spaces in various optimization problems.

B. FORMAL DESCRIPTION OF THE DISCRETE SYMBIOTIC ORGANISM SEARCH (DSOS)

ALGORITHM

To address the challenges of solving large-scale and complex optimization problems, such as those found in

data intensive scientific workflow scheduling, we adopt an algorithm inspired by the natural symbiotic

relationships observed in biological ecosystems—namely, the Discrete Symbiotic Organism Search (DSOS)

algorithm. This algorithm extends the original SOS framework to discrete problem domains, such as task

scheduling, where candidate solutions consist of discrete permutations or mappings rather than continuous

variables.

Formally, the DSOS algorithm operates by maintaining a population of candidate solutions, referred to as

organisms (see Fig. 5), within an abstract ecosystem. Each organism represents a potential solution to the target

optimization problem and is evaluated using a fitness function that quantifies its quality with respect to the defined

objective—such as minimizing the makespan, data transfer time, and execution cost in a workflow.

Fig.5. An example of an organism (our adaptation).

Once the initial ecosystem is constructed—consisting of a randomly generated population of candidate solutions—

the search process is immediately initiated. Each candidate solution, referred to as an organism, undergoes iterative

refinement through simulated symbiotic interactions aimed at improving its fitness within the ecosystem.

The evolution of organisms follows biologically inspired strategies, mimicking natural symbiotic relationships

observed in ecological systems. These strategies are divided into three distinct interaction phases:

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 32 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Mutualism Phase – where two organisms collaborate in a way that benefits both, allowing for shared

improvement in their solution structures;

2. Commensalism Phase – where one organism benefits from interaction with another, while the latter

remains unaffected;

3. Parasitism Phase – where one organism (the parasite) attempts to replace another (the host) by

introducing a mutated version that competes for survival.

Each organism in the population participates in these phases, during which a new or modified version of the

organism is generated. The resulting offspring is evaluated using the defined fitness function, and it replaces the

original only if it demonstrates a measurable improvement in quality (i.e., a lower objective function value for

minimization problems).

This adaptive mechanism ensures that the population continually evolves toward more optimal solutions, while

avoiding unnecessary or regressive updates. The process of interaction, evaluation, and selective replacement is

repeated over multiple generations.

The algorithm proceeds in this manner iteratively, applying the symbiotic phases to each organism in succession

during every generation. The optimization loop continues until a termination condition is satisfied, such as:

• Reaching a predefined number of iterations,

• Achieving convergence (no significant improvement in fitness over time),

• Meeting a computational budget or runtime threshold.

By adopting this strategy, the DSOS algorithm efficiently explores the search space, balances diversification and

intensification, and progressively improves the solution quality toward the global optimum.

- Mutualism phase: in this phase, the organism 𝑥𝑗 is randomly selected from the ecosystem to mutually

interact with the organism 𝑥𝑖 with the sole aim of increasing their mutual survival advantage in the ecosystem. The

resulting new solutions 𝑥i′ and 𝑥j′ which is as a consequence of this interaction is calculated based on equations (3)

and (4).

𝑠1(𝑝) ← 𝑥𝑖 + 𝑟1 (𝑥best −
𝑥𝑖 + 𝑥𝑗

2
) (1)

𝑠2(𝑝) ← 𝑥𝑖 + 𝑟2 (𝑥best −
𝑥𝑖+𝑥𝑗

2
) (2)

𝑥𝑖
′(𝑞) ← |𝑠1(𝑝)|𝑚𝑜𝑑 𝑚 (𝟑)

𝑥𝑗
′(𝑞) ← |𝑠2(𝑝)|𝑏 𝑚𝑜𝑑 𝑚 (4)

∀𝜌 ∈ {1,2,3, … , 𝑛} ∀𝑞 ∈ {1,2,3, … , 𝑚}

- Commensalism phase: Similar to the mutualism phase, an organism 𝑥𝑗 is randomly selected from the

ecosystems population and made to interact with the organism 𝑥𝑖. The relationship interaction is such that only one

organism benefits from the interaction. For example, the organism drives benefit from its interaction with 𝑥𝑗 .

𝑠3 ← 𝑟3(𝑥best − 𝑥𝑗) (𝟓)

𝑥𝑖
′(𝑞) ← |𝑠3(𝑝)|𝑏 𝑚𝑜𝑑 𝑚 (𝟔)

∀𝜌 ∈ {1,2,3, … , 𝑛} ∀𝑞 ∈ {1,2,3, … , 𝑚}

Where 𝑟3 is a uniformly generated random number between 0 and 1.

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 33 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We use eq.5 and eq.6 to obtain the modified position of the organism xi in the commensalism phase.

- Parasitism phase: in this phase, an artificial parasite vector denoted by 𝑥𝑝𝑣 created in the problem search

space by mutating the organism 𝑥𝑖 then modifying its randomly selected dimensions using a random number. The

organism 𝑥𝑗 with i ̸= j is selected randomly from the ecosystems population to serve as a host to the 𝑥𝑝𝑣. The evaluation

is carried out such that, if the fitness value of the 𝑥𝑝𝑣 is better than that of the organism 𝑥𝑗, then 𝑥𝑝𝑣 will replace the

position of 𝑥𝑗 in the population, otherwise, if the fitness value of 𝑥𝑗 is better, then 𝑥𝑗 will build an immunity against

𝑥𝑝𝑣 after which 𝑥𝑝𝑣 is removed from the population.

Fig. 6. Flowchart of the symbiotic organism search.

FITNESS FUNCTION

A fitness function is used to evaluate the quality of each solution in the population, and to pick the optimal one,

solutions can be compared to choose which is fitter, in this case it is the minimum of the makespan time and the

execution cost, that is calculated by scheduling the cloudlets to the given VMs, each cloudlet has a processing time,

in addition to the Data transfer time, in case the data are not located in the same virtual machine as the cloudlet.

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 34 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑀𝑖𝑛 𝛽1 ∑ (𝑃𝑇𝑖 + 𝐷𝑇𝑖) + 𝛽2 ∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑖
𝑛
𝑖=1

𝑛
𝑖=1 (7)

Where

𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑃𝑇𝑖: 𝑃𝑇𝑖 =
𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡 𝑙𝑒𝑛𝑔ℎ𝑡𝑖

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑𝑘

𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑇𝑖𝑚𝑒 𝐷𝑇𝑖 : 𝐷𝑇𝑖 =
∑ 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑇𝑖𝑚𝑒𝑗

𝑙
𝑗=1

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝛽1 + 𝛽2 = 1

As indicated in the equation 7 the total value of the objective’s coefficients must be one and each coefficient control

the impact of each objective in the fitness value.

RESULTS

To validate the proposed approach, we have implemented our algorithm in CloudSim [3]. The CloudSim simulation

layer provides support for modeling and simulation of virtualized Cloud-based data center environments including

dedicated management interfaces for virtual machines (VMs), memory, storage, and bandwidth. The fundamental

issues such as provisioning of hosts to VMs, managing application execution, and monitoring dynamic system state

are handled by this layer.

A. Impact of cloudlet number on the respond time

In this simulation, we have designed three Data Centers comprising of 2 diverse Hosts. Each Host is equipped with a

single processor with varying speeds in MIPS ranging from 20,000 to 200,000. The bandwidth of each Host ranges

from 10,000 to 200,000. The size of the generated data is randomly generated between 900 MB and 1,100 MB. The

purpose of this simulation is to investigate the effect of varying the number of Cloudlets on the response time. We

fixed 30 virtual machines, 10 data, 200 organisms, 𝛽1 = 0.7 , 𝛽2 = 0.3, and 1000 iteration.

Fig.7. Fitness Vs Cloudlet’s Number.

To show the effectiveness of DSOS-DISW compared to GA [14] and Space Shared-Random Placement, we

can analyze the relative percentage improvement in fitness for each number of cloudlets.

Table.1 Improvement of DSOS-DISW

Cloudlets DSOS-DISW vs Space Shared (%) DSOS-DISW vs GA (%)

10 44.4% 28.6%

40 44.4% 23.1%

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 35 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

80 45.0% 21.4%

200 23.3% 11.5%

400 26.3% 11.2%

DSOS-DISW proves to be significantly more effective than both comparison strategies. Its ability to maintain

lower fitness across all workload.

B. Impact of the iteration number on the response time

We conducted an experiment fixing 100 cloudlets, 30 virtual machines, 40 data and 200 organisms to observe the

impact of the iteration number on the response time, the results are shown in the figure 8.

Fig.8. Impact of iteration on makespan.

We can say that the makespan decreases rapidly in the first 100–150 iterations, which indicates that the DSOS-

DISW algorithm is effective in quickly improving the schedule or system efficiency during early search. After about

225 iterations, the curve flattens, stabilizing at around 1.0. This suggests convergence or reaching a near-optimal

solution.

C. Impact of Execution Cost

Figure 9 presents the execution cost of the workflow with 100 cloudlets over 200 iterations. The results of the

proposed DSOS-DISW based workflow scheduling approach are compared with those of the GA based workflow

scheduling [14]. As shown in this plot, the DSOS-DISW algorithm achieves lower execution costs compared to the

GA method across both configurations. Notably, the use of 80 VMs results in a significant reduction in overall cost

compared to the 30 VMs scenario, due to improved parallelism and resource availability. However, it is also evident

that increasing the number of VMs leads to a higher baseline cost, as more computational resources are involved.

Nevertheless, the DSOS-DISW based approach consistently demonstrates superior cost efficiency in both cases,

confirming its effectiveness in workflow scheduling.

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 36 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig.9. Impact of execution Cost.

D. Time and cost Vs Iteration

The graphs for Cloudlets execution/transferring data time, and cloudlets execution cost using our DSOS based

algorithm are illustrated in Fig.10.

As can be seen, execution time fluctuates significantly from 3700 to 1500 seconds, and execution cost varies

between 250 and 420 USD per hour, over the span of 2000 iterations. A notable trade-off is observed in the

interval [100, 200], where the cost increases sharply while the execution time decreases. This reflects the

conflicting objectives within the task scheduling strategy: improving one (e.g., execution speed) may worsen the other

(e.g., cost). Further fluctuations continue in later iterations, showing unstable optimization behavior. In the obtained

solution at iteration 1400, the execution time and cost settle at 2200 seconds and 275 USD/hour respectively,

suggesting a suboptimal compromise between the two metrics at the end of the run.

Fig.10. Time and Cost Vs. Iteration.

CONCLUSION

Cloud computing has significantly transformed the IT landscape by offering scalable, flexible, and cost-effective

solutions for data storage and processing. Its adaptability has revolutionized the way individuals and organizations

manage and access computational resources. A key component of cloud computing is task scheduling, which plays a

crucial role in ensuring the efficient utilization of these resources. By intelligently mapping tasks to available virtual

Journal of Information Systems Engineering and Management
2025, 10(57s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 37 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

machines, scheduling algorithms enhance system performance, reduce response times, and minimize data transfer

overhead. Task scheduling is particularly vital in the execution of scientific workflows, where it ensures the efficient

management of task dependencies and resource allocation.

In this study, we propose the use of the Discrete Symbiotic Organisms Search (DSOS) algorithm to optimize cloudlet

scheduling, aiming to minimize execution time and execution cost to minimize expenses while optimizing

performance by selecting the most optimal solution through its three-phase evolutionary process. To evaluate the

effectiveness of this approach, we developed a CloudSim-based simulation environment integrating the DSOS

algorithm. The experimental results demonstrate the superior performance of our proposed method, validating its

effectiveness in improving scheduling efficiency and achieving significant reductions in execution time.

The incorporation of bio-inspired tactics into scheduling systems creates new opportunities for cloud management

intelligence. Extending DSOS to facilitate energy-conscious scheduling, and deployment in hybrid or edge-cloud

systems may be the main focus of future research.

REFRENCES

[1] Stanoevska-Slabeva, K., & Wozniak, T. (2009). Cloud basics–an introduction to cloud computing. In Grid and

cloud computing: a business perspective on technology and applications (pp. 47-61). Berlin, Heidelberg:

Springer Berlin Heidelberg.

[2] Siham, K., Chahinez, C., & Hassane, M. M. (2023, October). DSOS based Scientific Workflow Scheduling

Optimization in Cloud Computing. In 2023 International Conference on Networking, Sensing and Control

(ICNSC) (Vol. 1, pp. 1-5). IEEE.

[3] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). CloudSim: a toolkit for modeling

and simulation of cloud computing environments and evaluation of resource provisioning

algorithms. Software: Practice and experience, 41(1), 23-50.

[4] Wang, Y., Guo, Y., Guo, Z., Liu, W., & Yang, C. (2020). Protecting scientific workflows in clouds with an intrusion

tolerant system. IET Information Security, 14(2), 157-165.

[5] Durillo, J. J., Nae, V., & Prodan, R. (2014). Multi-objective energy-efficient workflow scheduling using list-based

heuristics. Future Generation Computer Systems, 36, 221-236.

[6] Hamayun, M., & Khurshid, H. (2015). An optimized shortest job first scheduling algorithm for CPU scheduling. J.

Appl. Environ. Biol. Sci, 5(12), 42-46.

[7] Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-effective and low-complexity task scheduling for

heterogeneous computing. IEEE transactions on parallel and distributed systems, 13(3), 260-274.

[8] Lu, H., Niu, R., Liu, J., & Zhu, Z. (2013). A chaotic non-dominated sorting genetic algorithm for the multi-

objective automatic test task scheduling problem. Applied Soft Computing, 13(5), 2790-2802.

[9] Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010, April). A particle swarm optimization-based heuristic for

scheduling workflow applications in cloud computing environments. In 2010 24th IEEE international

conference on advanced information networking and applications (pp. 400-407). IEEE.

[10] Lin, M., Xi, J., Bai, W., & Wu, J. (2019). Ant colony algorithm for multi-objective optimization of container-

based microservice scheduling in cloud. IEEE access, 7, 83088-83100.

[11] Yildiz, A. R. (2013). Optimization of cutting parameters in multi-pass turning using artificial bee colony-based

approach. Information Sciences, 220, 399-407.

[12] Navimipour, N. J., & Milani, F. S. (2015). Task scheduling in the cloud computing based on the cuckoo search

algorithm. International Journal of Modeling and Optimization, 5(1), 44.

[13] Abdullahi, M., Ngadi, M. A., Dishing, S. I., Abdulhamid, S. I. M., & Usman, M. J. (2020). A survey of symbiotic

organisms search algorithms and applications. Neural computing and applications, 32(2), 547-566.

[14] Kouidri, S., & Kouidri, C. (2022). Bi-Objective Optimizing for Data-Intensive Scientific Workflow Scheduling in

Cloud Computing. International Journal of Organizational and Collective Intelligence (IJOCI), 12(1), 1-12.

