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5G technology offers unprecedented high speeds and low latency, enabling next-generation 

wireless networks. However, deploying Multi-access Edge Computing (MEC) at antenna sites 

remains a critical challenge, especially in densely populated urban areas. MEC is essential for 

delivering real-time services by positioning computing resources close to end users. This study 

investigates employing the Long Short-Term Memory (LSTM), a deep learning model, for 

detecting and predicting vehicle trajectories as well as vehicle density to improve urban 

transportation systems and optimize MEC placement. Using the Cabspotting dataset, which 

provides GPS co-ordinates of taxis in San Francisco, the data was converted into a time-series 

format to predict vehicle locations. The LSTM model demonstrated superior prediction accuracy 

compared to traditional Recurrent Neural Networks (RNNs). To further refine the results, the K-

Means algorithm clustered the detected and predicted vehicle positions, identifying optimal 

zones based on vehicle density for MEC deployment. These findings underscore the potential of 

LSTM-based vehicle density detection and predictions to enhance strategic MEC placement, 

advancing smart city infrastructure and sup-porting the rollout of 5G technology. 

Keywords: MEC, 5G, LSTM, Cabspotting, and K-Means. 

 

INTRODUCTION 

The advancement of the 5G technology serves as a great leap for the modernization of mobile communication 

networks with immense promise of powerful data transfer rates, ultra-low latency, and interconnectivity [1]. Having 

these promises in mind, it is expected that with the advancement of the 5G networks, it will offer completely new 

opportunities for creative inventions like self-driving vehicles, live video broadcasting, and futuristic industrial robots 

[2]. At the same time, the rollout of the 5G technology comes with a number of issues along with it such as the 

deployment of the network in a city location which has a plenty of structures and towers required to support the hefty 

requirements of ultrahigh data transfer [3]. One of the important drivers of these 5G services is Multi-access Edge 

Computing (MEC) which is the solution to the demand of bringing computational resources to the users [4]. The use 

of MEC devices close to the 5G antennas makes it feasible to perform local data pro-cessing which minimizes the 

communication lag and improves the responsiveness of real time systems [5].  

The means of bringing MEC into 5G networks is particularly important in smart cities, where the processing of data 

and decision taking is necessary to support a variety of intelligent transportation systems [6]. This is because cities 

are expanding and the number of connected devices are increasing which means there is a need to predict vehicular 

movements and optimize the positioning of MEC units strategically. A well-coordinated placement of an MEC unit 

makes sense only when advanced predictive modelling vis-a-vis vehicle trajectories is possible [7, 8]. Thus, effective 

SI is an underlying requirement. 

Because of its capacity to utilize the temporal structure of sequential data, deep learning, especially Recurrent Neural 

Networks (RNNs), has made great strides in time series forecasting [9, 10]. A crippled RNN with a vanishing gradient 

issue, on the other hand, hinders the RNN's overall performance regarding long term predictions. Long short-term 

memory networks (LSTMs), a more sophisticated type of RNN, use gating mechanisms that are capable of 
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overcoming these problems and are successful at long-range sequential tasks [11,12]. As an example, we will use the 

Cabspotting dataset, which is an extensive collection of GPS coordinates for taxis in San Francisco [13]. It will allow 

us to model vehicle movements and test our predictive model. 

The K-Means clustering method is further utilized to cluster the predicted vehicle positions which in turn helps to 

analyse the predicted vehicle positions [14]. The predicted locations of vehicles are clustered which makes it easy to 

find the places with high number of vehicles which are convenient for the location of the MEC units. This makes it 

easy for the network operators to position the MEC units in those zones making the communication latency low and 

increasing the performance of the 5G network. Not only does this result in better services for end users but also aids 

in the smart city objectives of managing traffic, lower pollution, and improved public safety. 

The key contributions of this work can be summarized as follows: 

    1. We demonstrate the effectiveness of LSTM networks in accurately predicting and detecting vehicle trajectories, 

achieving higher accuracy compared to simpler RNN models. 

    2. We present a method to utilize these trajectory predictions to guide the placement of MEC units in a smart city 

context. 

    3. Clustering techniques are employed to optimize the MEC deployment strategy, ensuring efficient and strategic 

placement. 

Our findings show that integrating LSTM-based trajectory predictions with MEC placement could noticeably 

improve the performance of 5G networks, paving the way for more resilient and efficient urban infrastructure. 

This paper is structured as follows: the Literature Review gives a wide view of the methodologies so far existing for 

time-series forecasting in sequential data, showing the strengths and weaknesses of the current techniques; and the 

Methods section develops the proposed solution in detail, including the use of LSTM networks for trajectory 

prediction and K-Means clustering for optimal MEC placement. In the Results section, performance metrics for all 

predictive models that show how the proposed method has outperformed previous approaches will be presented. 

This paper discusses all the important conclusions, further discussing practical insights about how to im-prove MEC 

deployment over 5G networks, as well as pointing out some research lines that could be considered to further optimize 

the strategic placement of 5G antennas. 

STATE OF THE ART 

The rapid advancement of 5G technology and the increasing demand for low-latency applications have brought Multi-

access Edge Computing (MEC) to the forefront of wireless networking [15].  Efficient MEC deployment and 

optimization are crucial for maximizing the benefits of 5G networks, especially in urban areas with high user density 

and diverse application requirements. Several studies have explored the use of predictive modelling to optimize MEC 

deployment strategies. Researchers have investigated using machine learning algorithms to forecast user mobility 

patterns and predict traffic demands, enabling proactive allocation of MEC resources [16].  

Deep learning techniques, in particular Recurrent Neural Networks (RNNs) and their variants, have achieved 

noticeable success in time-series forecasting tasks. For example, a study by Lin et al. in [17] proposed an innovative 

content caching strategy for Multi-access Edge Computing (MEC) in 5G/6G IoT networks. The strategy aims to 

maximize the cache hit ratio by enabling dynamic forecasting in the dynamically changing network and user 

environments. The system employs an LSTM-based local learning model with seasonal-trend decomposition for 

accurate demand prediction. Additionally, it integrates an ensemble-based meta-learning model to consolidate user 

preferences into a unified caching strategy. This method improves the cache hit ratio by up to 30% compared to 

traditional algorithms and performs within approximately 9% of the ideal caching strategy, which relies on perfect 

foresight of content popularity. The ability of RNNs to effectively capture temporal dependencies in sequential data 

makes them not only ideal for content caching but also for applications such as predicting vehicle trajectories to 

inform MEC placement decisions.   

The authors in [18] propose a hierarchical deep learning architecture for content caching in edge computing to satisfy 

the demands of 5G/6G IoT applications.  The system uses an LSTM-based local learning model with seasonal-trend 
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decomposition for demand prediction, and an ensemble-based meta-learning model for orchestrating user 

preferences into a unified caching strategy.  Experiments on MovieLens datasets show up to a 30 \% improvement 

in cache hit ratio compared to traditional algorithms. 

In [19], the authors introduce a content caching strategy for MEC in 5G/6G IoT networks, aiming to enhance the 

cache hit ratio by leveraging adaptable predictions in evolving network and user conditions. Their approach is built 

on a hierarchical deep learning framework. This research presents a content caching method for MEC in 5G/6G IoT 

networks, designed to optimize the cache hit ratio by employing adaptive predictions that adjust to dynamic network 

and user environments. The system uses an LSTM-based local learning model with seasonal-trend decomposition 

for demand pre-diction, and an ensemble-based meta-learning model for orchestrating user preferences into a 

unified caching strategy. The proposed approach enhances the cache hit ratio by up to 30% compared to conventional 

algorithms and achieves near-optimal performance, coming within approximately 9% of an ideal caching strategy 

that assumes perfect prior knowledge of content popularity. Utilizing local learning techniques alongside ensemble-

based meta-learning, this method significantly improves caching efficiency. Furthermore, it has the potential to be 

integrated as a core function within the Network Data Analytics Function (NWDAF) module of 5G and future 6G 

networks. 

The research in [20] introduces a novel content caching strategy for MEC in 5G/6G IoT networks, aiming to enhance 

the cache hit ratio by leveraging adaptive pre-diction techniques in dynamic network and user environments. This 

approach employs an LSTM-based local learning model with seasonal-trend decomposition for demand forecasting, 

while an ensemble-based meta-learning model integrates user preferences into a cohesive caching strategy. The 

proposed method achieves up to a 30% improvement in cache hit ratio compared to conventional algorithms and 

attains near-optimal performance, approaching within approximately 9% of an ideal caching scheme with perfect 

knowledge of content popularity. 

Similarly, Tran et al. in [21] present a content caching strategy for MEC in 5G/6G IoT networks designed to optimize 

the cache hit ratio by utilizing predictive analytics in fluctuating network and user conditions. Their system also 

incorporates an LSTM-based local learning model with seasonal-trend decomposition for demand estimation and 

employs an ensemble-based meta-learning model to harmonize user preferences into a unified caching mechanism. 

The proposed solution enhances cache efficiency by up to 30% over traditional methods and achieves a near-optimal 

cache hit ratio, approximating 9% of the theoretical maximum with complete prior knowledge of content demand. In 

[22], the authors explore the use of Recurrent Neural Networks (RNNs) for accurately predicting user mobility in 

automotive scenarios, enabling efficient management of distributed MEC resources. Their study identifies an optimal 

LSTM-based RNN configuration that delivers highly precise mobility predictions. To validate its effectiveness, they 

implement an experimental decision algorithm that evaluates the allocation of distributed resources, balancing 

service scaling and migration decisions while ensuring mobile users receive a satisfactory quality of ser-vice. 

Brik et al. focus on optimizing MEC resource allocation for collision avoidance systems in vehicular networks. Their 

approach leverages deep learning techniques to predict vehicle density and dynamically allocate computing 

resources. However, their research is confined to simulated environments and does not account for real-world traffic 

conditions [23]. A comparative analysis of related works and our contributions is presented in Table 1. 
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Table 1. Comparative analysis of related works and our contributions. 

Study Objective Technique Dataset 
/Environment 

K e y  Findings 

Lin et al. 
[17] 

Content caching in MEC for 5G/6G 
IoT networks 

LSTM with 
seasonal-trend 
decomposition; 
Ensemble-based 
meta-learning 

MovieLens dataset Achieved up to a 30% im-
provement in cache hit ratio 
compared to conventional algorithms. 

Authors in 
[18] 

Hierarchical deep learning for 
content caching 

LSTM-based local 
learning;           
Meta-learning 

Simulation 
environment 

Demonstrated hierarchical architecture 
improves content caching efficiency by 
capturing temporal and user preferences. 

Study in [19] Flexible predic-tion for dynamic 
environments in 5G/6G MEC 

LSTM; Ensemble-
based strategies 

Simulated IoT 
networks 

Improved cache hit ratio by 30% and 
achieved near-optimal performance with 
9% margin from theoretical maximum. 

Tran et al. 
[21] 

Dynamic content caching in MEC LSTM; Ensemble 
learning 

Simulated IoT 
environments 

Highlighted adaptive caching 
strategies leveraging deep learning models 
for user demand prediction. 

Study in [22] Accurate user mobility prediction 
for MEC in  automotive scenarios 

RNN with LSTM Automotive 
simulation 

Found LSTM-based RNN effec-tive for 
mobility prediction, enabling balanced 
MEC resource utilization. 

Brik et al. 
[23] 

MEC resource optimization for 
collision      avoidance systems in 
vehicular        net-works 

Deep learning for 
vehicle density 
predic-tion 

Simulated vehicular 
networks 

Optimized resource allocation but 
limited to simulations, not real-world 
traf f i c  data. 

Our 
Wo r k  

Predicting and detecting vehicle 
tra jectories to optimize MEC 
placement in 5G-enabled smart 
cities 

LSTM for 
tra jectory 
prediction; K-
Means clustering 
for MEC 
placement 

Cabspotting dataset 
(real- 
world GPS data 
from San 
Francisco) 

First to combine LSTM-based 
tra jectory predictions with K-Means 
for MEC placement in real-world 
scenarios.  
Introduced tra jectory clustering to 
identify high-traffic zones for MEC 
deployment, addressing urban 
transportation needs. 

 

PROPOSED FRAMEWORK 

3.1. MEC-DEPL framework 

This section introduces the architecture of our proposed framework, Multi-access Edge Computing Deployment 

(MEC-DEPL), which operates in two phases. The first phase leverages a Long Short-Term Memory (LSTM) model to 

predict vehicle trajectories based on time-series data derived from latitude and longitude coordinates. In the second 

phase, the predicted positions are clustered to determine optimal locations for 5G antennas hosting MEC servers. 

The Cabspotting dataset was pre-processed and normalized to ensure accuracy in trajectory prediction and 

clustering. The frame-work's outcomes include effective model training, trajectory prediction, and the strategic 

deployment of MEC servers to enhance network performance. 

 



Journal of Information Systems Engineering and Management 

2025, 10(57s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 186 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Figure 1. LSTM-based trajectory prediction for optimized modelling. 

As shown in Fig. 1, the predictive modelling of vehicle trajectories using an LSTM model effectively 

transforms raw GPS data into a time-series format, enabling accurate trajectory predictions across San 

Francisco's urban environment. This data is further utilized in Fig. 2, where the map of San Francisco 

highlights strategic locations for 5G antennas hosting MEC servers. These locations are identified through 

clustering predicted vehicle densities, and optimizing MEC infrastructure deployment to enhance 5G 

network performance. 

 

Figure 2. Strategic deployment of 5G antennas with MEC servers in San Francisco city. 

3.2. Dataset and preprocessing 

Cabspotting was one of the earliest projects that the San Francisco Exploratorium had been working on, in 

collaboration with Stamen Design-which is one of the earliest applications of tracking data in real time-and showing 

how the movements of taxis, using GPS, have been moving around San Francisco. This project ran from September 

29, 2006 through June 30, 2007, in an effort to illustrate how the flow and patterns of activity occurred around the 

city. For this data science challenge, we used the Cabspotting Dataset, which contains mobility traces of about 500 

taxis in San Francisco over a duration of 30 days. The dataset consists of 537 text files, each representing a single 

taxi, with a total of 11,220,490 records. Each file represents the GPS movement data for a single taxi. A snippet of the 

data from one such file is given in Fig. 3. 
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Figure 3. Cab spotting dataset. 

Columns are, respectively: 

● Latitude 

● Longitude 

● Occupancy (1 for passengers, 0 for empty) 

● Time (number of seconds since the Unix epoch: 00:00:00 UTC) 

The initial step in preparing the dataset involved combining all 536 text files, each repre-senting the GPS mobility 

traces of a unique cab, into a single comprehensive CSV file. This con-solidation aimed to streamline the processing 

and analysis of the dataset. To better identify indi-vidual cabs, a new column, "CarID," was added, assigning unique 

identifiers ranging from 1 to 536. Simultaneously, the "Occupancy" column, which indicated passenger presence, was 

removed as it was deemed unnecessary for this study's objectives. Furthermore, the timestamps, originally rec-orded 

in UNIX epoch format, were transformed into a standard human-readable time format. This transformation, 

illustrated in Fig. 4, significantly enhanced the interpretability of the dataset, making it more accessible for further 

analysis. 

 

Figure 4. Sample of processed GPS mobility dataset with CarID and Human-Readable Timestamps. 

To reduce the dataset size while maintaining representative data, 5000 positions were ran-domly selected for each 

cab. This selection was essential for optimizing computational efficiency during model training. Additionally, the 

latitude and longitude coordinates were normalized, cantering the data around a mean value. Normalization 

improved the data's consistency and fa-cilitated better convergence of the deep learning model during training. To 

convert the dataset into a format suitable for time series analysis, a sliding window of size three was employed. This 

ap-proach generated input sequences (denoted as X) and corresponding labels (denoted as Y), enabling the 

prediction of subsequent positions. The dataset was then split into training and testing sets using an 80:20 ratio. This 

division ensured the model was trained on a considerable amount of the data while letting a separate set as unseen 

data for the evaluation. 

EXPERIMENTAL ANALYSIS 

The proposed LSTM-based model of the MEC-DEPL is designed to predict vehicle trajectories efficiently, leveraging 

the strengths of sequential data modelling to optimize the placement of MEC units in urban environments, especially 

in San Francisco city. Its architecture emphasizes accurate temporal data analysis and robust performance in real-

world applications. 
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4.1. Model architecture and key components for efficient trajectory prediction 

An in-depth exploration of the LSTM-based framework was conducted, with its architecture comprising several key 

components. The input layers include time-series GPS data, which are first normalized to promote convergence and 

maintain consistent scaling. In the feature processing stage, Long Short-Term Memory (LSTM) layers are employed 

to capture long-term dependencies in sequential vehicle movement data, while a dropout technique is applied to 

mitigate overfitting by randomly disabling certain neurons during training. The outputs from the LSTM layers are 

then passed through fully connected (dense) layers to extract meaningful features, culminating in an output layer 

that uses a linear activation function to generate continuous values representing predicted vehicle coordinates. 

Finally, the model is trained using the Mean Squared Error (MSE) loss function to minimize prediction errors, and 

optimized with adaptive algorithms such as Adam to ensure efficient and effective convergence. 

This technique effectively utilizes LSTM's ability to retain temporal context in sequential data, crucial for accurate 

trajectory prediction. The model's predictions inform the strategic deployment of MEC units, improving data 

throughput and reducing latency in urban networks. By clustering predicted positions, it further enables efficient 

MEC placement, addressing network congestion and supporting smart city infrastructure. 

4.2. The model architecture along with the training phase 

The proposed LSTM’s architecture is detailed in Table 2. The model consists of three primary layers: an LSTM layer, 

followed by two dense layers. The LSTM layer outputs a shape of (None, 100) with 41,200 trainable parameters, 

capturing temporal dependencies in the input data. The first dense layer, comprising 20,200 trainable parameters, 

increases the feature dimensionality to 200. Finally, the second dense layer maps the features to an output of shape 

(None, 2) with 402 parameters, enabling classification into two categories. 

Table 2. The proposed LSTM model architecture. 

 

 

 

 

 

 

The proposed model has a total of 61,802 parameters, which corresponds to approximately 241.41 KB of memory. 

Notably, all parameters in the model are trainable, as there are no non-trainable parameters (0.00 bytes). This 

configuration ensures that the entire parameter set contributes to optimizing the model during the training process. 

The model was trained over 20 epochs to optimize its performance. During training, both the training and validation 

losses were monitored to assess the model's learning progression and generalization ability. This process ensured the 

minimization of overfitting while enhancing the model's accuracy in predicting outcomes based on the given data. 

4.3. The model architecture along with the training phase 

To assess the performance of the LSTM model, we used two of the most common metrics related to a loss function. 

The loss function, also called a cost or objective function, essentially calculates the difference between the values 

predicted by a deep learning model and their target values. The primary objective during training is to minimize 

this loss, with the model getting closer to correctly predicting the target value. It involves the proper selection of the 

loss function according to the problem's nature-for instance, regression or classification problems. In the case of 

regression problems, commonly used loss functions include Mean Squared Error (MSE) and Mean Absolute Error 

(MAE). For classification tasks, however, Cross-Entropy Loss is often the preferred choice. 

    a. Mean Squared Error (MSE): this metric (also known as L2 loss) is one of the most adopted loss functions 

when handling regression tasks. It computes the error by squaring the difference between the model outputs and 

the true values for all the samples in the dataset. 

Layer (type) Output Shape Parameter 

lstm (Lstm) (None,100) 41200 

dense (Dense) (None,200) 20200 

dense_1 (Dense) (None,2) 402 
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MSE is calculated by the equation 1: 

                                           MSE =
1

𝑛
∑ (𝑦𝑖 − ỹ𝑖)2 

𝑛

𝑖=1
                                   (1) 

 

Where: 

- n is the number of data points. 

- 𝑦𝑖  is the actual value of the dependent variable for the 𝑖𝑡ℎ observation. 

- ỹ𝑖  is the predicted value of the dependent variable for the 𝑖𝑡ℎ observation. 

 

    b. Mean Absolute Error (MAE): this metric (also known as L1 loss) is among the most straightforward and 

interpretable loss function. It is based on calculating the difference between the true and the predicted values for the 

whole dataset. Formally, it represents the arithmetic mean of absolute errors, concentrating on their magnitude, 

regardless of direction. A low MAE score mentions a superior model performance. 

  MAE is calculated by the equation 2: 

                                           MAE =
1

𝑛
∑ |ỹ𝑖 − 𝑦𝑖|𝑛

𝑖=1                                         (2) 

Where: 

    -  𝑦𝑖  is actual value. 

    - ỹ𝑖  is predicted value. 

    - n is the sample size 

In our system, we have achieved: 

● The loss obtained during evaluation is 0.001814185525290668. 

● The Mean Squared Error (MSE) calculated separately is 0.0018141850778880752. 

● The Mean Absolute Error (MAE) calculated separately is 0.026066203018259404. 

 

 

 

               

Figure 5. Evaluation Metrics for the LSTM Model: Loss, MSE, and MAE. 

For the test set. Fig 5, clearly shows the obtained results. These metrics provide insights into the performance of the 

LSTM model in predicting the target values. The low values of MSE and MAE indicate that the model performs well 

in predicting the trajectories of the vehicles. Note that the effectiveness of our model has been demonstrated, we will 

examine some of its outcomes to assess its accuracy. Fig 6 below presents the training and validation losses, which 

were plotted to visualize the model's performance across the epochs. 
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Figure 6. Training and testing MSE convergence over epochs. 

To verify the validity of the performance of the LSTM model, we focused on the predicted positions of a particular 

cab (Cab 1). By plotting the actual positions and the predicted position (in green color) as shown in Fig 7, we found 

that the predicted position aligns well with the region where the cab is most frequently located, meaning it represents 

the location of the majority of the cab`s presence. 

 

 

Figure 7. All positions of cab 1 and the predicted point. 

4.4. Comparative Analysis of LSTM and Simple RNN Models 

Figures 8 and 9 illustrate the comparative performance of the LSTM and Simple RNN models in terms of the Mean 

Squared Error (MSE) on the test dataset. The MSE serves as a key metric for evaluating the prediction accuracy of 

both models, where a lower MSE value indicates better predictive performance. In Fig 8, the evolution of the test loss 

(MSE) across epochs is plotted for both the LSTM and Simple RNN models. The LSTM model demonstrates a more 

consistent loss reduction trend over the training epochs, with occasional spikes indicating periods of adjustment in 

the model's learning process. In comparison, the Simple RNN model exhibits a slightly more volatile trend, with 

higher fluctuations in test loss. Despite these variations, both models achieve relatively low and comparable MSE 

values by the end of training. Fig 9 presents the final MSE values achieved by each model after training. The LSTM 

model attains an MSE of approximately 0.001814185, while the Simple RNN model achieves an MSE of 0.001814780. 

These results highlight that both architectures perform similarly in terms of predictive accuracy, with the LSTM 
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model showing a marginal advantage. This slight edge may be linked to the LSTM's strength in capturing long-term 

dependencies and mitigate vanishing gradient issues, which are limitations of the Simple RNN architecture. 

 

Figure 8. Comparative Test Loss (MSE) Progression Across Epochs for LSTM and Simple RNN. 

The comparison underscores the comparable performance of the two architectures in this specific application while 

reinforcing the theoretical strengths of LSTMs in handling sequential data. The findings emphasize the importance 

of model selection based on specific use cases, computational resources, and the nature of the dataset. 

 

Figure 9. Final Mean Squared Error (MSE) Comparison Between LSTM and Simple RNN Models. 

To enhance traffic management and optimize route planning, the positions of all cabs in the dataset were predicted 

using a trained model. For each cab, the last three recorded positions were extracted, and the model forecasted the 

next position. The predicted positions, as visualized in Figure 10, provide a comprehensive overview of vehicle density 

and distribution across the monitored area. These real-time predictions are critical for supporting smart 

transportation systems by enabling informed decision-making and improving traffic flow efficiency. This technique 

demonstrates the potential of predictive modelling in modern traffic management, offering valuable insights for 

reducing congestion and enhancing mobility solutions. 

4.5. Comparative Analysis of LSTM and Simple RNN Models 

After forecasting the next positions for each cab using the trained model, clustering techniques were employed to 

group these predicted positions based on their spatial proximity. Clustering is an essential data analysis method that 

identifies patterns or structures by grouping similar data points into cohesive clusters. In this context, clustering 

helps to organize the predicted positions of cabs into regions of high density, providing insights into traffic patterns 

and vehicle distribution. This process is vital for applications such as hotspot identification, resource allocation, and 

dynamic route optimization in smart transportation systems. Additionally, clustering provides a clear visualization 

of high-density areas within the city of San Francisco, offering valuable guidance for selecting optimal locations to 

deploy 5G antennas that will host MEC servers. This framework ensures enhanced network coverage and efficiency 

in high-demand areas. 
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Figure 10. Predicted Positions for All Cabs in the Dataset. 

Identifying the optimal number of clusters is a critical step in clustering analysis to ensure meaningful and 

interpretable groupings while avoiding unnecessary complexity. To achieve this, the elbow method was 

employed, which is a widely used technique for selecting the optimal number of clusters. The method 

includes plotting the inertia values, defined as the sum of squared distances of samples to their nearest 

cluster centre, versus the number of clusters. As shown in Fig 11, the plot forms an "elbow" shape, with the 

point of inflection marking the optimal number of clusters. This point represents a balance where 

increasing the number of clusters beyond this value does not lead to significant improvement in clustering 

performance, thus providing an efficient and robust model for analysing the data. 

 

       Figure 11. Elbow Method Plot for Determining the Optimal Number of Clusters (K). 

After determining the optimal number of clusters using the elbow method, the K-Means clustering algorithm was 

employed to group the predicted positions into distinct clusters. Each cluster rep-resents a set of predicted positions 

that exhibit similar spatial characteristics, thereby capturing the inherent patterns within the data. This visualization 

not only enhances the interpretability of the clustering results but also provides valuable insights into the spatial 

organization and density of the predicted vehicle positions, which are essential for subsequent analyses and decision-

making processes. Fig 12 illustrates the spatial distribution of predicted vehicle positions grouped into clusters. Each 
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coloured marker represents a predicted position belonging to a specific cluster, while the black stars indicate the 

centroids of the clusters. The clusters visually demonstrate how the predicted positions are organized into distinct 

groups based on spatial proximity, providing valuable insights into high-density areas and spatial patterns across the 

dataset. This information is crucial for ap-plications such as urban mobility analysis and strategic planning for 

infrastructure deployment, such as 5G antennas. 

 

 Figure 12. Clusters of Predicted Vehicle Positions with Centroids. 

CONCLUSION 

This study has demonstrated the potential of integrating deep learning techniques, specifically Long Short-Term 

Memory (LSTM) networks, with clustering algorithms to enhance urban infrastructure planning for Multi-access 

Edge Computing (MEC) deployment within the framework of 5G net-works. By leveraging the Cabspotting dataset, 

the LSTM model effectively predicted vehicle trajectories, outperforming simpler Recurrent Neural Network (RNN) 

models in accuracy. The application of K-Means clustering to these predictions enabled the detection and 

identification of high-density vehicle zones, which are critical for strategic MEC placement. The proposed approach 

not only addresses challenges in optimizing MEC deployment but also supports broader smart city initiatives by 

improving traffic management, alleviating congestion, and improving connectivity. By aligning 5G network 

performance with real-time urban mobility patterns, this framework provides a robust foundation for future 

advancements in urban communication systems. As a future direction, one could explore the integration of additional 

data sources, such as real-time traffic conditions and demographic information, to further refine the accuracy and 

applicability of the proposed framework. Moreover, the inclusion of other advanced machine learning techniques 

could enhance the predictive capabilities, enabling even more efficient and scalable solutions for MEC deployment 

and 5G network optimization. 

REFRENCES 

[1] Nuriev, M., Kalyashina, A., Smirnov, Y., Gumerova, G., & Gadzhieva, G. (2024). The 5G revolution transforming 

connectivity and powering innovations. E3S Web of Conferences, 515, 04008. 

https://doi.org/10.1051/e3sconf/202451504008 

[2] Hakak, S., Gadekallu, T. R., Maddikunta, P. K. R., Ramu, S. P., Parimala, M., De Alwis, C., ... Hossain, M. S. 

(2023). Autonomous vehicles in 5G and beyond: A survey. Vehicular Communications, 39, 100551. 

https://doi.org/10.1016/j.vehcom.2022.100551 

[3] Shehab, M. J., Kassem, I., Kutty, A. A., Kucukvar, M., Onat, N., & Khattab, T. (2021). 5G networks towards smart 

and sustainable cities: A review of recent developments, applications, and future perspectives. IEEE Access, 

10, 2987–3006. https://doi.org/10.1109/ACCESS.2021.3139436 



Journal of Information Systems Engineering and Management 

2025, 10(57s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 194 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

[4]Pham, Q.-V., Fang, F., Ha, V. N., Piran, M. J., Le, M., Le, L. B., ... Hossain, M. S. (2020). A survey of multi-access 

edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access, 

8, 116974–117017. https://doi.org/10.1109/ACCESS.2020.3001277 

[5] Spinelli, F., & Mancuso, V. (2020). Toward enabled industrial verticals in 5G: A survey on MEC-based approaches 

to provisioning and flexibility. IEEE Communications Surveys & Tutorials, 23, 596–630. 

https://doi.org/10.1109/COMST.2020.3037674 

[6] Gohar, A., & Nencioni, G. (2021). The role of 5G technologies in a smart city: The case for intelligent transportation 

system. Sustainability, 13(9), 5188. https://doi.org/10.3390/su13095188 

[7] Xiong, R., Zhang, C., Zeng, H., Yi, X., Li, L., & Wang, P. (2022). Reducing power consumption for autonomous 

ground vehicles via resource allocation based on road segmentation in V2X-MEC with resource constraints. 

IEEE Transactions on Vehicular Technology, 71(7), 6397–6409. https://doi.org/10.1109/TVT.2022.3161641 

[8] Waqar, N., Hassan, S. A., Mahmood, A., Dev, K., Do, D.-T., & Gidlund, M. (2022). Computation offloading and 

resource allocation in MEC-enabled integrated aerial-terrestrial vehicular networks: A reinforcement learning 

approach. IEEE Transactions on Intelligent Transportation Systems, 23(11), 21478–21491. 

https://doi.org/10.1109/TITS.2022.3179987 

[9] Josey, B., & Misbha, D. S. (2025). Elliptic curve cryptography algorithm with recurrent neural networks for attack 

detection in industrial IoT. International Journal of Computer Networks & Communications, 17(1), 83–98. 

https://doi.org/10.5121/ijcnc.2025.17105 

[10] Boulesnane, A., Saidi, Y., Kamel, O., Bouhamed, M. M., & Mennour, R. (2022). Dzchatbot: A medical assistant 

chatbot in the Algerian Arabic dialect using Seq2Seq model. In 2022 4th International Conference on Pattern 

Analysis and Intelligent Systems (PAIS). IEEE. https://doi.org/10.1109/PAIS56586.2022.9946867 

[11] Khan, A., Fouda, M. M., Do, D.-T., Almaleh, A., & Rahman, A. U. (2023). Short-term traffic prediction using deep 

learning long short-term memory: Taxonomy, applications, challenges, and future trends. IEEE Access, 11, 

94371–94391. https://doi.org/10.1109/ACCESS.2023.3309601 

[12] Chapagain, K., Gurung, S., Kulthanavit, P., & Kittipiyakul, S. (2023). Short-term electricity demand forecasting 

using deep neural networks: An analysis for Thai data. Applied System Innovation, 6(6), 100. 

https://doi.org/10.3390/asi6060100 

[13] Bock, F., & Di Martino, S. (2019). On-street parking availability data in San Francisco, from stationary sensors 

and high-mileage probe vehicles. Data in Brief, 25, 104039. https://doi.org/10.1016/j.dib.2019.104039 

 

[14] Ben Bezziane, M., Korichi, A., Kerrache, C. A., & Fekair, M. A. (2021). Rcvc: RSU-aided cluster-based vehicular 

clouds architecture for urban areas. Electronics, 10(2), 193. https://doi.org/10.3390/electronics10020193 

[15] Chen, X., Cheng, X., Wu, N., & Liu, X. (2024). Unmanned aerial vehicle transmission defect detection technology 

based on edge computing. Diagnostyka, 25. https://doi.org/10.29354/diag/194598 

[16] Alqahtani, F., Al-Maitah, M., & Elshakankiry, O. (2022). A proactive caching and offloading technique using 

machine learning for mobile edge computing users. Computer Communications, 181, 224–235. 

https://doi.org/10.1016/j.comcom.2021.10.017 

[17] Lin, L., Li, W., Bi, H., & Qin, L. (2021). Vehicle trajectory prediction using LSTMs with spatial–temporal attention 

mechanisms. IEEE Intelligent Transportation Systems Magazine, 14(2), 197–208. 

https://doi.org/10.1109/MITS.2021.3049404 

[18] Nguyen, T.-V., Dao, N.-N., Noh, W., & Cho, S. (2021). User-aware and flexible proactive caching using LSTM 

and ensemble learning in IoT-MEC networks. IEEE Internet of Things Journal, 9(4), 3251–3269. 

https://doi.org/10.1109/JIOT.2021.3097768 

[19] Nguyen, C., Klein, C., & Elmroth, E. (2019). Multivariate LSTM-based location-aware workload prediction for 

edge data centers. In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing 

(CCGRID). IEEE. https://doi.org/10.1109/CCGRID.2019.00045 

[20] Ma, L., Wang, P., Du, C., & Li, Y. (2022). Energy-efficient edge caching and task deployment algorithm enabled 

by deep Q-learning for MEC. Electronics, 11(24), 4121. https://doi.org/10.3390/electronics11244121 

[21] Do, H. M., Tran, T. P., & Yoo, M. (2023). Deep reinforcement learning-based task offloading and resource 

allocation for industrial IoT in MEC federation system. IEEE Access. 

https://doi.org/10.1109/ACCESS.2023.3302518 



Journal of Information Systems Engineering and Management 

2025, 10(57s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 195 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

[22] Fattore, U., Liebsch, M., Brik, B., & Ksentini, A. (2020). AutoMEC: LSTM-based user mobility prediction for 

service management in distributed MEC resources. In Proceedings of the 23rd International ACM Conference 

on Modeling, Analysis and Simulation of Wireless and Mobile Systems (pp. 155–159). 

https://doi.org/10.1145/3416010.3423246 

[23] Hammedi, W., Brik, B., & Senouci, S. M. (2022). Toward optimal MEC-based collision avoidance system for 

cooperative inland vessels: A federated deep learning approach. IEEE Transactions on Intelligent 

Transportation Systems, 24(3), 2525–2537. https://doi.org/10.1109/TITS.2022.3154158 


