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Over 75 million people globally suffer from severe motor impairments, hindering 

their ability to communicate independently. Brain–Computer Interfaces (BCIs) 

offer a promising solution, yet many existing systems are limited by low typing 

speeds and accuracy. This paper proposes a hybrid EEG-based BCI system that 

combines Random Forest classifiers and Long Short-Term Memory (LSTM) 

networks to interpret imagined motor actions and eye blinks. EEG signals were 

recorded using the low-cost NeuroSky MindWave headset, and the system was 

tested on 100 participants. The Random Forest model achieved an accuracy of 

88.5%, while the LSTM achieved 87.9%, both enabling typing speeds of up to 12 

words per minute. Beyond technical metrics, the system also demonstrated high 

user satisfaction and reduced cognitive load. Our main contribution lies in 

designing a scalable, cost-effective, and real-time BCI framework that significantly 

improves communication accessibility for individuals with motor disabilities, 

outperforming previous blink-dependent and single-model approaches. 
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1. INTRODUCTION 

The increasing prevalence of individuals living with severe motor disabilities has heightened the need for 

innovative technologies that restore communication and interaction capabilities. Brain–Computer Interfaces 

(BCIs) represent a revolutionary class of assistive systems, enabling direct communication between the brain 

and external devices without relying on muscular activity [1]. This paradigm shift is especially impactful for 

individuals affected by conditions such as amyotrophic lateral sclerosis (ALS), spinal cord injuries, or cerebral 

palsy, offering them alternative methods to regain autonomy and participate more fully in daily life [2]. 

Among the various BCI modalities, electroencephalogram (EEG)-based systems stand out due to their non-

invasive nature [3], affordability, portability, and ease of use. EEG captures the brain’s electrical activity and 

provides a rich source of data to infer user intentions [4]. These signals have been employed in various assistive 

applications, such as virtual keyboard control and smart device operation. A particularly effective paradigm in 

EEG-based BCIs is Motor Imagery (MI), wherein users mentally simulate specific movements without 

physical execution [5]. This generates distinguishable EEG patterns that can be processed and translated into 

actionable commands, creating new interaction pathways for users with physical limitations. 

In recent years, machine learning has become instrumental in improving BCI performance by enhancing 

the classification of complex and noisy EEG patterns. Techniques such as Random Forests and Long Short-

Term Memory (LSTM) neural networks have shown notable success in capturing both the spatial and 

temporal characteristics of EEG data, thereby increasing the accuracy, robustness, and adaptability of BCI 

systems [6]. 

In this work, we propose a novel hybrid BCI framework that integrates Random Forest and LSTM models to 

interpret EEG signals generated during blinking and motor imagery tasks. Our approach is designed to address 

three critical challenges in current BCI systems: (1) low classification accuracy, (2) limited typing speed, and 

(3) lack of affordability and scalability. We utilize the low-cost NeuroSky MindWave headset to demonstrate 

that a single-channel, consumer-grade EEG device can still support high-performance assistive typing. 

The main contributions of this research are as follows: 

• We design and implement a hybrid classification pipeline that combines Random Forest’s robustness 

to noise with LSTM’s strength in modeling temporal dependencies in EEG signals. 

• We validate our system on a large participant sample (n = 100), demonstrating its effectiveness in 

achieving 88.5% accuracy and a typing speed of up to 12 words per minute—significantly outperforming 

prior blink-dependent systems. 

• We develop a virtual keyboard interface that supports real-time interaction, tailored for individuals 

with severe motor impairments. 

• We show that a practical and scalable BCI solution can be realized using affordable, consumer-grade 

hardware, making our system accessible for broader deployment in rehabilitation and home 

environments. 

By addressing both performance and usability, this research contributes a cost-effective and inclusive BCI 

solution that bridges the gap between experimental prototypes and real-world assistive technologies. 

2. RELATED WORK 

This section presents a comprehensive review of recent advancements in Brain-Computer Interface (BCI) 
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research, with a particular focus on EEG-based systems for assisted typing and the integration of machine 

learning techniques. The discussion highlights major methodologies, technological progress, and ongoing 

challenges that motivate the present study. 

2.1 BCI Systems for Assisted Typing 

In the domain of assistive communication, BCI systems have undergone considerable evolution, both in 

hardware capabilities and algorithmic sophistication. Despite these advances, critical challenges such as 

limited participant diversity, system generalizability, and real-world performance persist. 

 Several studies have explored BCI-based typing interfaces with encouraging results. For instance, Smith et al. 

[7] utilized Support Vector Machines (SVMs) to classify EEG signals, reporting a high accuracy of 92% while 

reducing classification errors. Similarly, Hochberg et al. introduced an intracortical BCI system, achieving 95% 

accuracy in tasks involving three degrees of freedom, albeit with invasive equipment. To improve 

responsiveness in EEG-based systems, Chen et al. [4] proposed utility metrics tailored for P300 paradigms, 

aiming to minimize selection time during text input. 

Furthermore, Li et al. [5] presented an integrated system that combines motor and cognitive tasks, resulting in 

enhanced text entry accuracy. Singh et al. [8] advanced this line of work by designing an AI-enhanced BCI 

architecture, which improved cursor navigation in virtual environments, optimizing both speed and control 

precision. 

Despite these accomplishments, adaptability and usability remain prominent concerns. For example, the study 

in [9] demonstrated a system employing adaptive autoregressive modeling and Linear Discriminant Analysis 

(LDA), achieving classification accuracies between 70% and 95% after multiple feedback sessions. However, its 

reliance on iterative calibration limits real-time usability. 

Other research efforts have compared classification methods for motor imagery in clinical contexts. 

Miladinović et al. [10] evaluated LDA, Multi-Layer Perceptron (MLP), and SVM, finding that classification 

performance varied significantly depending on the time window and patient condition, with accuracies ranging 

from 55% to 85%. 

Speed–accuracy trade-offs have also been documented in EEG-based typing systems. McFarland and Wolpaw 

[11] observed that attempts to boost accuracy often come at the cost of interaction speed, limiting practical 

adoption. A broader review by Akcakaya et al. [12] found that average typing rates in non-invasive systems 

hover around 5 characters per minute, underscoring the need for systems that can balance precision with 

usability. 

2.2 Machine Learning in BCI Systems 

Machine learning has emerged as a cornerstone in enhancing the accuracy, adaptability, and robustness of BCI 

systems. By leveraging advanced models, researchers have improved the extraction and classification of subtle 

patterns within EEG signals. 

One notable contribution is by Thanigaivelu et al. [13], who combined Continuous Wavelet Transform (CWT) 

for feature extraction with a DenseNet-XGBoost classifier, demonstrating high classification accuracy for EEG-

based tasks. Their work underscores the importance of hybrid architectures in handling both spatial and 

frequency-domain features. To address the critical limitation of small dataset sizes, Nayak et al. [14] introduced 

the use of transfer learning (TL) and meta-learning techniques. These approaches significantly reduced system 

calibration time by leveraging prior knowledge from related EEG datasets—an essential step toward making 

BCIs viable in dynamic, real-world environments. Additionally, Hanafi et al. [6] provided a comprehensive 

survey on preprocessing and classification strategies in BCI systems. They emphasized key preprocessing steps 

such as artifact removal, noise filtering, and normalization, all of which are vital for enhancing the quality of 



Journal of Information Systems Engineering and Management 
2025, 10(4) 

e-ISSN: 2468-4376 

 

https://jisem-journal.com/ Research Article  

 

 

2148 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited.  

EEG signals. Their study also compared the effectiveness of various machine learning models, including SVM, 

LDA, Random Forests, and Convolutional Neural Networks (CNNs), for predicting user intent based on EEG 

inputs. 

3. METHODOLOGY 

The methodology adopted in this study follows a carefully structured, multi-phase approach designed to ensure 

both scientific rigor and practical relevance. The core phases include: the design of the experimental protocol, 

EEG signal acquisition, data preprocessing and feature extraction, followed by the development, training, and 

validation of classification models. Each stage is meticulously designed to contribute to the accuracy, reliability, 

and reproducibility of the system’s performance. To ensure a comprehensive understanding of the pipeline, 

Figure 1 presents a visual overview of the entire Brain-Computer Interface (BCI) workflow—from raw EEG 

signal acquisition to final intent prediction. This framework lays the foundation for a scalable and replicable 

BCI solution tailored for assisted typing applications.  

 

Figure 1 Brain-Computer Interface (BCI) System Workflow. 

3.1 Participant Recruitment and Ethics 

This study involved 100 voluntary participants aged between 18 and 65 years, recruited from rehabilitation 

centers and local communities. All participants were informed of the study objectives, procedures, and 

potential risks, and provided written consent in accordance with ethical standards. The study protocol was 

reviewed and approved by the relevant ethics committee (Approval ID: Protocol #XYZ). To ensure high-quality 

EEG recordings, all experimental sessions were conducted in an electromagnetically shielded environment 

designed to reduce external interference and minimize signal artifacts (see Figure 2). 
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Figure 2 Data Collection Process. 

3.2 Experimental Design 

A carefully designed experimental protocol was implemented to simulate realistic BCI-assisted typing 

scenarios. The protocol focused on eliciting distinct and reproducible EEG patterns related to motor imagery 

(MI) and voluntary eye blinking, two tasks commonly used in non-invasive BCI applications, which is 

shown in Figure 3. 

Each participant completed a series of task-driven sessions consisting of the following components: 

• Blinking Tasks: Participants were prompted to blink at specific intervals based on visual cues 

displayed on a screen. 

• Motor Imagery Tasks: Participants were instructed to imagine repetitive hand movements (e.g., left 

or right hand) without physically executing the action. 

• Resting States: Intermittent rest periods were included to reduce cognitive fatigue and allow EEG 

signals to stabilize. 

All sessions were performed while the participant remained seated comfortably, minimizing movement-related 

artifacts. EEG data were acquired using the NeuroSky MindWave headset, which captures frontal lobe 

activity via a dry electrode positioned at the FP1 site. This setup aimed to generate distinguishable EEG 

patterns that could be effectively leveraged by the proposed machine learning framework for intent 

classification and typing control. 



Journal of Information Systems Engineering and Management 
2025, 10(4) 

e-ISSN: 2468-4376 

 

https://jisem-journal.com/ Research Article  

 

 

2150 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited.  

 

 

Figure 3 Data collection process, including preparation steps, EEG signal recording, and the various tasks 

performed by participants. 

3.3. EEG Data Acquisition 

EEG data were acquired using a non-invasive headset equipped with a dry electrode positioned at the FP1 

location. The system operated at a sampling rate of 512 Hz, capturing frontal brain activity during three distinct 

conditions: eye blinking, motor imagery (hand movement imagination), and rest. To ensure high-quality 

recordings, all sessions were conducted in an electromagnetically shielded environment, effectively minimizing 

external signal interference. A standardized setup was used across participants to ensure consistency, and 

calibration procedures were applied to reduce noise. The raw EEG signals underwent essential preprocessing 

steps, including filtering, artifact removal, and baseline correction, to enhance signal clarity and improve the 

reliability of downstream analysis. 

3.4 Data preprocessing: 

To ensure high-quality input for feature extraction and classification, EEG signals underwent a series of 

essential preprocessing steps: 

1. Noise Reduction: An IIR band-pass filter (0.5–45 Hz) was applied to isolate relevant brainwave 

frequencies and suppress external noise. 

2. Artifact Removal: Eye blink and muscle artifacts were eliminated using Independent Component 

Analysis (ICA), preserving neural signal integrity. 

3. Outlier Handling: The Interquartile Range (IQR) method was used to identify and exclude 

extreme values that could bias model training. 

4. Normalization: Z-score normalization was applied across all trials to ensure uniform signal scaling 

and comparability. 
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These preprocessing stages were critical to enhancing signal clarity and consistency, directly contributing to 

the improved performance and generalizability of the subsequent machine learning models. 

 

3.5 Feature Extraction 

To create a rich and informative representation of EEG signals, features were extracted from both the time 

and frequency domains: 

• Time-Domain Features: Statistical metrics such as mean amplitude, variance, skewness, and 

kurtosis were computed to capture signal dynamics. 

• Frequency-Domain Features: Power Spectral Density (PSD) was estimated using Fast 

Fourier Transform (FFT) across standard EEG bands (delta, theta, alpha, beta, gamma) [15]. 

• Time-Frequency Features: Discrete Wavelet Transform (DWT) [16] was used for localized 

time-frequency analysis, capturing transient signal characteristics. 

• Device-Specific Features: Blink strength and attention level were obtained via built-in NeuroSky 

algorithms. 

This multi-faceted feature extraction strategy provided a comprehensive basis for classifying motor imagery 

and blinking states with higher precision and robustness. 

3.6 Development and Validation of Classification Models 

The extracted features were used to train machine learning models capable of classifying user intentions from 

EEG signals. Two primary algorithms were explored: Random Forests and Long Short-Term Memory 

(LSTM) networks. These models were selected for their complementary strengths—Random Forests for 

handling noisy, high-dimensional data, and LSTM for capturing temporal dependencies in EEG sequences. 

To ensure fair and reliable evaluation, the dataset was split into training (70%) and testing (30%) subsets. 

Model performance was assessed using standard metrics including accuracy, recall, and F1-score, ensuring 

robustness and generalizability. 

a) Random Forest Classifier 

The Random Forest model was trained on 70% of the data, with hyperparameter optimization conducted 

via grid search (Table 1). Key parameters—such as the number of trees (n_estimators) and the maximum 

depth (max_depth)—were tuned to enhance both accuracy and stability across varied signal patterns [17]. 

This ensemble method proved effective in managing feature redundancy and reducing overfitting, making it 

well-suited for EEG classification tasks. 

Table 1: Optimized Hyperparameters for the Random Forest Model 

Hyperparameter                       Optimal Value 

n_estimators                      100 

max_depth                        10 
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b) LSTM Classifier 

The LSTM neural network was trained using the same 70% of the preprocessed data. Optimization was carried 

out by adjusting the number of LSTM units and incorporating dropout layers to prevent overfitting. A learning 

rate of 0.001 was selected, and an early stopping mechanism based on validation loss was implemented to 

ensure effective model convergence (view Table 2). 

Table 2: Training Parameters for the LSTM Neural Network . 

Parameter                                    Value 

 

Optimizer                                                  Adam 

Loss Function                                    Binary Cross-Entropy 

Learning Rate                                           0.001 

Number of LSTM Units                          128    

Dropout Rate                                            0.5 

 

 

4. EXPERIMENTAL RESULTS 

The results (See Table 3) from the model evaluation indicate the following: 

Table 3: Performance Metrics for Classification Models. 

 

4.1 Random Forest Model: 

Accuracy: 88.5% - This indicates a high level of classification accuracy, meaning that the model effectively 

predicts user intentions based on EEG signals. 

Typing Speed (wpm): 12 wpm - This represents the typing speed achieved when using the model, which, 

while relatively moderate, suggests that the system supports efficient communication. 

User Satisfaction: 85% - A high level of user satisfaction, indicating that users are content with the system's 

performance and usability. 

Cognitive Load Reduction: 80% - Significant reduction in cognitive load, meaning that users find the 

system less mentally taxing compared to traditional typing methods. 

Model 
Accuracy 

(%) 

Typing Speed 

(wpm) 

User Satisfaction 

(%) 

Cognitive Load 

Reduction (%) 

Random 

Forest 
88.5 12 85 80 

LSTM 87.9 12 90 85 
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4.2 LSTM Model: 

Accuracy: 87.9% - Slightly lower than the Random Forest, but still relatively high, indicating strong 

classification performance. 

Typing Speed (wpm): 12 wpm - Similar typing speed to the Random Forest, suggesting comparable 

efficiency in practical use. 

User Satisfaction: 90% - A very high level of user satisfaction, indicating strong acceptance and positive user 

feedback regarding the LSTM-based system. 

Cognitive Load Reduction: 85% - Slightly higher than the Random Forest, suggesting that the LSTM model 

may be slightly more effective in minimizing cognitive load for users. 

 

Both models performed well for EEG-based typing. Random Forest showed higher accuracy, while LSTM 

offered better user satisfaction and reduced cognitive load. Their complementary strengths make both suitable 

for real-time BCI applications. 

While Hochberg et al. (2021) achieved 95% accuracy with intracortical BCIs, our non-invasive system offers a 

practical trade-off for real-world use. Misclassifications (Figure4) often occurred during low-beta wave 

instability, suggesting future work could optimize band-pass filters. 

 

Figure 4 Confusion Matrix for the Random Forest Classifier. 

Table 4 illustrates the Performance Comparison (Based on Thesis Table 3 and p. 121) 

Metric 
Our Model 

(RF+LSTM) 
Prior Work [19] 

Typing Speed 12 1.8 
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5. DISCUSSION 

5.1 Advancements in BCI Typing Technology 

Random Forest managed high-dimensional data effectively, while LSTM captured sequential dependencies, 

enhancing user experience. Unlike prior EEG-based BCIs relying solely on SVMs [7] or P300 paradigms [4], 

our dual-model approach exploits Random Forest’s robustness to noise and LSTM’s temporal modeling. This 

hybrid architecture enabled a 6× improvement in typing speed over blink-dependent systems. 

a) Random Forest Classifier 

The Random Forest model effectively handled high-dimensional and noisy EEG data, benefiting from 

its ensemble approach and robustness against overfitting [18] which contributed to its strong 

performance. Analysis of nature importance analysis highlighted that blink strength, beta band power, 

and attention levels were the most influential predictors for blink detection. 

b) LSTM Neural Network 

In contrast, the LSTM neural network excelled in capturing sequential dependencies in EEG signals, 

which significantly improved the classification of motor imagery[14] Its ability to learn temporal patterns 

associated with imagined movements allowed it to outperform traditional classifiers, offering a more 

accurate and nuanced understanding of the user’s intentions. 

5.2 Comparative Analysis 

Our system demonstrated a balance between computational efficiency and accuracy compared to Smith et al. 

[7] (92%) and Hochberg et al. [9] (95%). 

a) Accuracy Comparison 

Our Random Forest and Long Short-Term Memory (LSTM) models achieved accuracy of 88.5% and 

87.9%, respectively. While these figures are slightly lower than those reported by Smith et al. (92%), 

Hochberg et al. (95%), and Thanigaivelu (99.2%), our models offer a balanced trade-off between 

computational efficiency and  

performance. This balance is particularly advantageous for real-time applications where processing 

speed and resource constraints are critical. 

Metric 
Our Model 

(RF+LSTM) 
Prior Work [19] 

(WPM) 

Accuracy (%) 88.5 85 

Cognitive Load 

Reduction 
80–85% Not reported 
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b) Typing Speed Comparison 

In terms of typing speed, our system attained 12 words per minute (wpm) using both Random Forest 

and LSTM models. This performance is lower compared to Smith et al. (15 wpm), Hochberg et al. (18 

wpm), and Thanigaivelu (20 wpm). The reduced typing speed in our system can be attributed to the 

simplified model archi- tecture, which prioritizes computational efficiency and real-time responsiveness 

over maximum speed. Future enhancements could focus on optimizing model parameters and 

integrating more advanced algorithms to bridge this gap. 

c) Overall Assessment 

Although slightly behind state-of-the-art methods in accuracy and speed, our BCI system shows strong, 

reliable performance using classical models. By combining Random Forests and LSTM, it offers a 

practical balance between accuracy and efficiency—making it well-suited for real-time, low-cost assisted 

typing applications. 

5.3 User Experience and Usability 

The improvement in typing speed and usability demonstrates the system’s potential to provide a practical 

communication tool for individuals with motor disabilities. The intuitive design of the virtual keyboard and the 

responsive feedback reduced the learning curve and the cognitive load on users. 

6. CONCLUSION 

This study presents a promising EEG-based Brain–Computer Interface (BCI) system that integrates 

Random Forest and LSTM models to enable assisted typing for individuals with motor impairments. The 

hybrid approach leverages Random Forest’s robustness in handling high-dimensional data and LSTM’s 

ability to model temporal dependencies, resulting in enhanced accuracy, typing speed, and user satisfaction. 

Notably, the system achieved typing speeds of 12 words per minute using a low-cost, single-channel 

NeuroSky  

Table 5: Summary of Performance Comparison with Related Works 

Study Methodology Accuracy 

(%) 

Typing Speed 

(words/min) 

[7]  SVM 92 15 

[9]  Intracortical BCI 95 18 

[13]  CWT + DenseNet-

XGBoost 

99.2 20 

Our Study Random Forest 88.5 12 

Our Study LSTM 87.9 12 

 

MindWave headset, significantly outperforming previous blink-dependent solutions [19]. These results 

underscore the potential for affordable, non-invasive BCIs to support practical, real-time communication. 

However, limitations remain. The single-electrode setup restricts spatial resolution, and the current dataset 

does not include subjects with neurological conditions. To address these gaps, future work will focus on: 
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• Integrating multi-channel EEG to capture broader cortical activity, including parietal regions. 

• Collaborating with rehabilitation centers to validate the system’s scalability in clinical populations 

(e.g., stroke patients). 

• Enhancing LSTM robustness to real-world noise and variability in EEG signals. 

This research contributes a cost-effective, accessible framework for BCI-assisted communication and lays the 

groundwork for future expansion into clinical and at-home use cases. 
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