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The paper presents a deep-learning-based, thermal image-analysis advanced defect detection 

method for high-voltage electrical equipment. Based on the features extracted from the variant 

AlexNet of the convolutional neural network (CNN), the classification model designed with the 

classifier Random Forest (RF) achieved 94.8% accuracy. The photographs used for investigation 

were obtained on an infrared thermal camera at several substations in Chongqing, China. They 

were taken under cold weather conditions. The electrical components' thermal conditions were 

classified into two defective and non-defective types based on the temperature differential. The 

proposed approach supersedes other methods in terms of precision: the precision values are high 

at 93.2% and the recall values at 95.6%. The combination of CNN and RF forms a 

computationally efficient solution for achieving the enhancement of defect detection reliability 

in high-voltage systems. The results outline the potential of this technique in enhancing 

maintenance practices, minimizing equipment failure probabilities, and ensuring safe electrical 

infrastructure usage. The scope of future work will be on optimization techniques along with 

their application within some different environments. 

Keywords: Defect Detection, Deep Learning, Thermal Image Analysis, High Voltage 

Equipment, Random Forest 

INTRODUCTION 

High-voltage electrical transmission and distribution systems require maintenance of voltage very critically in 

transformers, circuit breakers, insulators, and power lines because defects or failures can range from localized to 

massive interruptions, damage equipment, reduce finances, and can even be life-threatening exposure to both 

personnel and the public [1]. With ever-rising energy demands worldwide, high-voltage electrical infrastructure 

maintenance and monitoring are gaining attention [2]. Methods such as manual visual inspection, scheduled 

maintenance checks, and even sensor-based monitoring systems are traditional and widely used but indeed have 

inherent limitations in their capabilities for efficiently detecting very subtle or hidden defects before they turn into 

significant problems [3]. 

Manual checks largely depend on human expertise and visual judgment, which are prone to fatigue, error, and 

inconsistency [4]. Sensor-based monitoring systems would likely miss early-stage defects, particularly where defects 

themselves do not immediately change the operational parameters [5]. Additionally, the process is time-consuming 

and costly, especially when equipment sits in remote or hostile environments [6]. Therefore, the need for more 
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sophisticated, automated, and precise defect-detecting systems also increases with advanced systems to continually 

monitor high-voltage electric equipment and give pre-warnings in case of potential failures [7]. 

The advance of deep learning in combination with image analysis is the breakthrough solution for detecting defects 

within industrial sectors, including high-voltage electrical systems [8]. Deep learning is a subset of machine learning, 

where computers learn from huge data sets and spot complex patterns and representations that not be detected by a 

traditional algorithm or human inspectors [9]. Applying this to defect detection, deep learning models can be trained 

to identify patterns associated with specific types of defects by analyzing such huge and vast amounts of images or 

any other visual information [10]. Deep learning makes it particularly well-suited to tasks such as image-based defect 

detection where very high precision can be given in identifying delicately irregular surfaces or internal structures of 

equipment [11]. 

Image analysis techniques can be fused with deep learning models to process visual data provided by visible light 

cameras, infrared imaging, thermal imaging, X-rays, and many other advanced imaging technologies [12]. Deep 

learning algorithms work effectively to detect a wide range of defects ranging from cracks and corrosion on surface 

edges to overheating inside the insulation material and down to material fatigue [13]. For example, thermal imaging 

analysis can reveal hotspots, which may reflect abnormal heat generation in certain areas and perhaps a fault 

formation on high-voltage equipment [14]. Further by image analysis, deep learning models can classify, locate, and 

even predict probable trends of defects and alert maintenance teams to take corrective measures [15]. 

Integration of deep learning and image analysis in defect detection improves the system's accuracy and reliability 

and introduces the possibility of real-time, automated monitoring systems [16]. Artificially intelligent systems are 

constantly scanning and assessing high-voltage electrical equipment without any human intervention, reducing 

downtime, maintenance costs, and unexpected failures. Such deep learning models could be trained and updated 

over time to suit different types of equipment, patterns of defects, and even environmental conditions, thereby being 

highly application-flexible as well as scalable for the electrical industry [17]. 

This paper establishes the discussion on the development of techniques in defect detection for high-voltage 

electrical equipment through deep learning and image analysis. The exploitation of these technologies will allow the 

detection of current defects as well as predictive failure detection, which would be very useful for a predictive 

maintenance scheme to greatly extend the life of the critical infrastructure involved with the electrical side. The 

promise of deep learning combined with image analysis may open bright prospects for revolutionizing the way the 

electrical system is monitored and maintained in a very electrified world where safety and efficiency are going to 

increase. 

RELATED WORK 

The application of new technologies in deep learning and image analysis for the detection of defects in high-voltage 

electrical equipment has become an interesting topic in the industrial environment during the last few years. There 

have been many studies using these technologies to develop higher accuracy and speed of fault detection in critical 

parts of electrical infrastructure. The following section briefs the significant contributions that can be seen within 

this kind of research, to focus on the existing methodologies and technologies while highlighting any existing gaps in 

the respective research which contribute to the current study. 

A. Traditional Approaches for Detecting Defects 

Traditionally, defects in high-voltage electrical equipment can be detected with the aid of manual inspections and 

sensor-based monitoring systems. For example, infrared thermography has found application in the monitoring of 

temperature change variation in transformers and circuit breakers has been a standard used for overheating 

detection, possibly an indication of insulation failure or an internal fault condition. Similarly, partial discharge (PD) 

detection has proved to be a great means of diagnosing early-stage insulation failures in high-voltage components. 

Other techniques that have been applied are ultrasound scanning and electrical signal analysis to capture PD signals, 

thus enabling the operators to see possible defects before they compromise equipment. These methods are mostly 

equipment-based and rely on some human intelligence for direct interpretation their scalability and accuracy in real-

world applications become limited [18]. 
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B. Image Analysis Techniques 

Recently, the advancement of image analysis technology has opened a new door to automatically inspect defects. 

Among the more successful applied technologies are those using thermal images to detect flaws in electrical 

equipment, such as hotspots, cracks, and surface irregularities. In previous study applied thermal image processing 

techniques towards detecting abnormal temperature distribution in high-voltage insulators with precision rates at 

high accuracy for early-stage fault-detection testing. Images from X-ray imaging serve to detect inner defects that 

cannot be seen by the naked eye. Though this type of imaging creates extremely detailed visual information, their 

performances are typically limited by the complexity involved in performing the interpretation of the images 

manually, which takes considerable time and is sometimes error-prone [19]. 

C. Application of Deep Learning for Defect Detection 

Deep learning has revolutionized the game when it comes to image-based defect detection; thus, the method is 

much more robust and automated when faults in electrical equipment are identified. Among all deep learning 

algorithms, CNNs(Convolutional Neural Networks) have been applied to this use quite extensively as they can learn 

complex patterns from a large set of images and are accurate for the identification and classification of defects in 

high-voltage systems with minimal human interface [20]. 

Probably one of the most interesting research used the CNN-based model in the detection of surface defects in 

power transmission lines using aerial images taken by drones. The model was capable of identifying corrosion, cracks, 

and even mechanical damage issues with pretty good accuracy. A deep learning framework to analyze infrared 

thermal images for overheating in high-voltage transformers. The authors can demonstrate their system as superior 

in speed and accuracy over more traditional image processing techniques, while also asserting that it is feasible within 

real-time defect detection within operational environments [21]. 

D. Multi-Modal Approaches 

Recent studies have also gained the integration of multi-modal imaging and deep learning for more improved 

detection of defects. For instance, a hybrid deep learning model was developed that combined visual, thermal, and 

X-ray images for detecting defects in high-voltage equipment. The incorporation of varying types of imaging data into 

the model has improved the detection accuracy for several defects otherwise possibly not diagnosed or easily missed 

in the imagery. In such approaches, the use of multiple data sources for building a comprehensive and reliable defect 

detection system is shown. 

E. Predictive Maintenance and Fault Prognosis 

Another prominent domain of exploration in defect detection is deep learning for predictive maintenance and fault 

prognosis. Traditional maintenance methods follow a reactive approach to defects after faults have been identified, 

which largely is followed after inspections or sensor data. In contrast, using deep learning models with the capability 

of forecasting faults by considering past data will help shift towards a paradigm of predictive maintenance. In this 

sense, a model using recurrent neural networks and long short-term memory, where has shown how time-series data 

were extracted from high-voltage equipment to predict the possible failure of the equipment shortly. Thus, they 

proved that (Artificial Intelligence) AI-driven prediction models can have a net effect on the reduction of downtime 

and associated maintenance costs due to the detection of potentially failing equipment before failure [22]. 

Although deep learning and image analysis were quite promising in advancing fault detection for high-voltage 

electrical equipment, many challenges remain. The most significant challenge lies in the availability of data since an 

effective deep-learning model typically needs large and diverse datasets. Real-time processing of image data requires 

considerable computations, even when run in isolation or other resource-constrained environments. This is the 

interpretability of what deep learning models do, and often models of deep learning are like "black boxes," and it's 

difficult for users to understand what decision-making has been going on behind the scenes. Despite these challenges, 

research in AI continues to advance, along with imaging technologies that continue to break barriers in defect 

detection. Future work will include the pursuit of scalable robust deep models, integration of multi-modal data, and 

development of faster real-time, edge-computing solutions for defect detection. 
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METHODOLOGY 

A. High Voltage Electrical Equipment Defects 

It is known that any kind of high-voltage equipment installation, for example, disconnector, circuit breaker, surge 

arrester, insulators, CT, and VT, suffers from major failures whenever the internal temperature of the component 

exceeds critical thresholds. These anomalies result mainly from unbalanced voltage or current, breakages of electrical 

components, contacts not operating properly, or fluctuations in voltage, among others. Assessing the total 

temperature measurement of high-voltage equipment with the aid of Infrared Thermography (IRT). 

B. High Voltage Power Transformer Defects 

Such temperatures are high enough to cause temperature changes that adversely affect the internal structure of 

transformers, especially on the windings and coils. Transformers are often considerably lower or cooled by oil. Thus, 

cooling systems play a basic role in ensuring that internal temperatures do not become too high than what is tolerable. 

IRT tests have been widely used for the thermal analysis defects that occur in oil transformers. The normal substation 

Dry has a high-voltage power transformer. Transformers, on average, run much hotter than oil-insulated ones and 

hence is very tough to make thermal technique-determining decisions independently for fault location. For this 

problem, estimation devices like the built-in heat and pressure measuring system are very useful in giving better 

estimations in the applications of power generation plants. Thermal tests often reveal faults within cooling devices, 

additional cooling fans, primary and secondary joints, and portions of the oil transformer's bushing. 

C. Defects in Circuit Breakers 

Circuit breakers internally generate some heat as a result of the current flow. The case of anomalies was mainly 

related to temperature change in circuit breakers which were engineered automatically to become open. IRT provides 

the benefit of providing early detection of anomalies based on temperature changes, allowing possible failures to be 

intervened upon before a real failure occurs. 

D. Defects in Surge Arresters 

Infrared thermography can identify surge safety issues, for example, arrester leakage and tracking current on 

insulators. Such a problem is complex, as there is a need for observation of minute heat transformations that cannot 

be easily monitored.  

E. Cutout Switch Bus Fuse Connections Defects 

The cutout switch bus fuses are crucial for protecting the equipment in a power system from overload conditions 

in high-voltage electrical installations. As overload situations increase the temperature in the fuse junction, this may 

eventually lead to poor contact and ignite the fuse pin.  

F. Insulation defects in power substation 

Electrical component insulation failures can lead to short circuits between conductors. High currents may overheat 

and cause cutout switches, bus fuses, or circuit breakers to open. The problem could be due to insufficient insulation 

as well. Fig.1 shows a thermal map of an insulator within one particular power substation. 

 

Fig 1. Thermal images of power substation equipment 

In this study, an innovative approach to predict and classify defects in high-voltage electrical equipment, using 

deep learning by processing infrared (IR) thermal images, is proposed. Deep-learning-based feature extraction 

automatically learns and extracts meaningful features from the thermal images, thereby enabling proper 

classification of such high-voltage equipment. 
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G. Data Acquisition 

Environmental temperatures which operate around them The IR thermal images of this study were captured by a 

FLIR T630 thermal camera. The camera captures the infrared images with high precision and accuracy. The 

substations record high voltage electrical equipment; the recorded images were about cold ambient temperatures 

ranging from -4°C to 4°C. The thermal images were taken when the electrical equipment was on, and the data 

acquired would be actual. The data acquired had different high-voltage electrical equipment including transformers, 

circuit breakers, and insulators. 

Each of the apparatus was categorized according to its working temperature, thus allowing us to establish a basis 

of establishing between conditions of normality and deficiency. The classification was carried out by using two levels 

of equipment was classified as either "defective" or "non-defective" based on the change of temperature (ΔT) as 

summarized in Table 1. ΔT refers to the difference of temperature between the ambient temperature and the surface 

temperature of the equipment. As ΔT more than anticipated in a piece of equipment, put on the list of faulty ones 

owing to potential overheating or bad insulation. Fig. 2 shows the flow of the method. 

 

Fig 2. Proposed defective equipment prediction model for high voltage electrical devices 

TABLE 1. TWO CLASSES OF EQUIPMENT WITH THE RECOMMENDATION 

High Voltage 

Equipment Class ΔT (°C) 

Suggested Idea 

Not a flaw 

Equipment with 

High Voltage <21 

Standard tools for the 

job 

Equipment with 

High Voltage 

Defects ≥21 

High-priority 

equipment and 

defective equipment 

H. Deep Thermal Feature Extraction 

The basis of the defect prediction approach lies in the extraction of deep features from the thermal images using 

deep learning techniques. The study used a CNN in this case, as it has been proven to be highly effective for image-

related tasks, and catches spatial hierarchies and patterns in data. CNN has shown remarkable success in computer 

vision tasks when performing direct learning from raw images that provide meaningful representations. 
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The study used the AlexNet architecture, one of the most well-known CNN models that demonstrated exceptional 

performance in large-scale image classification competitions, such as on ImageNet. Three fully linked layers and five 

convolutional layers make up the AlexNet architecture. Every one of the convolutional layers applies multiple 3×3 

filters to input images that allow the network to extract rich spatial features at various abstraction levels. Following 

the max-pooling layers are the layers of filters. These max-pooling layers reduce the spatial dimensions of feature 

maps and thus make the computation efficient. 

𝑊𝑛(𝑥) = 𝜎(∑ 𝑧𝑛−1𝑊𝑛−1,𝑟 ∗ 𝑇𝑛,𝑟
𝑗
+ 𝑏𝑛(𝑥)

𝑅
𝑟=1 )               (1) 

Where 𝑊𝑛−1,𝑟 represents the feature map from the previous layer 𝑛−1,𝑇𝑛,𝑟𝑗 denotes the filter for the 𝑟-th 

channel,𝑏𝑛(𝑥) is the bias term, 𝜎 is the activation function.  

In this work, the study exploited a pre-trained AlexNet model mainly trained on the ImageNet dataset during the 

implementation. That is how transfer learning works and allows us to take advantage of the general learning the 

network has achieved on large-scale image classification problems and apply it directly to the thermal images dataset. 

The study was consequently capable of achieving high accuracy while still speeding up the training process by fine-

tuning the AlexNet model for defect detection. The features from the thermal images are mainly used as inputs for 

further classification tasks. 

I. Random Forest Classification 

The study followed the following steps to classify the electrical equipment into non-defective and defective 

categories: the study fed the deep features extracted from the thermal images to AlexNet and used the Random Forest 

(RF) algorithm. It is one of the most widely applied machine learning techniques, which is robust in performance, 

easy to implement, and can deal with a large number of vectors without overfitting. The RF classifier works by 

building an ensemble of decision trees during the training process wherein each tree is built based on a random subset 

of the input features. 

The approach, the RF algorithm, splits at each node based on a randomly selected subset of features and constructs 

trees using the CART(Classification and Regression Trees)  approach. This will improve the generalization capability 

of the model and prevent overfitting. After passing the deep features extracted by the CNN to the RF classifier, it 

presents its voting for a class label (defective or non-defective) from each of its trees and finally decides on the 

classification based on major voting from all the trees. 

𝑓(𝑥) = 𝑎𝑟𝑔max
𝑦𝜖𝑌

∑ 𝐼(𝑦 = ℎ𝑗(𝑥))
𝐽
𝑗=1                      (2) 

J is the number of trees in the forest, ℎ𝑗(𝑥) is the prediction from the 𝑗-th tree for input 𝑥, 𝑌 represents the set of 

possible class labels (defective or non-defective), 𝐼 (⋅) is the indicator function, which returns 1 if the condition is true, 

0 otherwise. Each decision tree ℎ𝑗 (𝑥, Θ𝑗) is built using the CART algorithm with a randomly chosen subset of features 

Θ𝑗. 

In the methodology, the RF algorithm splits the data at each node based on randomly selected features and builds 

the trees using the CART approach; the randomness of these algorithms helps in improving the generalization 

capability of the model while preventing overfitting. Passing the deep features from CNN to the RF classifier, each 

tree in the forest votes for a class label - which may be defective or non-defective, and based on the majority vote of 

the votes returned by all the trees, the final decision of classification is made. 

The study selected the RF approach because of its superior performance to classifiers such as SVM(Support Vector 

Machine) and boosting algorithms. The capability it has to deal with complex interactions between attributes and 

resilience against noisy data samples makes it a great candidate for the task of defect classification. 

J. Comparison of Support Vector Machine SVM 

Further validation: The SVM classifier was used and tested for the prediction of defects. SVM is the most widely 

used classification algorithm which aims at finding the optimal separating hyper-plane that maximizes the margin 

among the classes. SVM's ability to classify linear as well as nonlinear problems made it a good candidate for defect 

prediction. 
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In the experiments, the study trains an SVM model using a deep feature set extracted from CNN. The study defines 

an SVM classifier with a nonlinear radial basis function (RBF) kernel to introduce complex decision boundaries in 

separating defective classes from non-defective classes. Mathematically, a kernel function may be defined as follows: 

𝐾(𝑧, 𝑧𝑟) = 𝑒𝑥𝑝 (−
||𝑧−𝑧𝑟||

2𝜎2
)                          (3) 

min
𝛼

1

2
∑ ∑ 𝑦𝑟𝑦𝑥𝛼𝑟𝛼𝑥𝐾(𝑧, 𝑧𝑥) − ∑ 𝛼𝑥

𝑛
𝑥=1

𝑛
𝑟=1

𝑛
𝑥=1             (4) 

 

Where 𝑧 and 𝑧𝑟 represent the extracted deep features from CNN, and 𝜎 is a constant that controls the width of the 

kernel. 

K. Performance Metrics 

Evaluation of the approach was done with multiple evaluation metrics, which are primarily accuracy, precision, 

recall, and F1-score, applied to both the RF classifier and the SVM classifier. Among these, accuracy is a measure of 

the overall correctness of a model, whereas precision and recall are equivalent to precision and recall in an ability to 

correctly classify defective equipment. The F1-score stands for the harmonic mean between precision and recall, 

offering a single figure that balances the trade-off between false positives and false negatives. 

The study drew upon both classifier outputs to demonstrate how the Random Forest approach offered better 

classification accuracy coupled with improved computational efficiency, especially in processes that involve very high 

volumes of processing thermal image data. 

RESULTS 

This paper describes the results of the application of deep learning-based models in defect detection for high-

voltage electrical equipment. The feature will be extracted from the images by using convolutional neural networks 

followed by classification using Random Forest (RF) and Support Vector Machine (SVM) models. The performance 

will be analyzed on a dataset using thermal infrared images shown in Fig. 3 taken from the FLIR T630 infrared 

camera from substations. 

 

Fig 3. Database of original infrared images of high-voltage electrical giggniequipment 

A. Model Performance on Defect Detection 

The model aims to classify high-voltage electrical equipment as defective or non-defective. For the task, after 

feature extraction based on the CNN AlexNet architecture, both SVM and Random Forest (RF) classifiers were used. 

The performance metrics—accuracy, precision, recall, F1-score, and Area Under the Curve (AUC)—were used to 

compare the two classifiers' predictive abilities as shown in Table 2. 
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TABLE II. CLASSIFICATION PERFORMANCE METRICS 

Model 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) F1-Score (%) AUC 

CNN + Random Forest 94.8 93.2 95.6 94.4 0.965 

CNN + SVM 92.5 90.1 94.2 92.1 0.942 

 

 

Fig 4. Classification Performance Metrics 

Fig. 4 shows The CNN + RF model attained an accuracy level of 94.8%, surpassing that recorded by the CNN + 

SVM model, which was at 92.5%. This means that there is a higher likelihood of the RF model distinguishing between 

non-defective and defective equipment than the CNN + SVM model. 

The precision of 93.2% for the CNN + RF model depicts that most of the equipment labelled defective was indeed 

defective. Meanwhile, the CNN + SVM model had a slightly lower precision of 90.1%. 

Recall, or sensitivity, was significantly higher for the RF model (95.6%), which implies that most of the defective 

equipment is correctly identified by the model. For the CNN + SVM model, the recall was 94.2%. 

The balance between precision and recall is achieved in the form of the F1-score for the CNN + RF model. Thus, it 

is evident that the defect detection method was very robust. For the SVM model, the F1 score was 92.1%. 

With an AUC of 0.965, the model proves that it can classify well between the two classes. The AUC for the CNN + 

SVM model is also very good at 0.942; however, the RF model is still slightly better. 

B. Training Time and Computational Efficiency Comparison 

Besides accuracy metrics, in Table 3 the study also compared the training time and computational efficiency of the 

CNN + RF and CNN + SVM models. Since the dataset was highly high-dimensional and there existed thousands of 

images in total, training efficiency became an important factor for this study. 

TABLE III. TRAINING TIME COMPARISON 

Model 

Training Time 

(minutes/epoch) 

CNN + Random 

Forest 
15 

CNN + SVM 28 

87

88

89

90

91

92

93

94

95

96

97

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Performance Metrics

CNN + Random Forest CNN + SVM
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Fig 5. Training Time Comparison 

Fig.5 shows the CNN + RF model had a significantly lower training time (15 minutes per epoch) compared to the 

CNN + SVM model (28 minutes per epoch) shown in Fig. 5. This reduced training time for the Random Forest model 

makes it a more efficient approach, especially for real-time or large-scale applications. 

C. Feature Importances using Random Forest 

Another of the primary advantages of the Random Forest algorithm is the measurement of feature importance. 

Here, (the Gini Coefficient) Gini importance was utilized for the measurement of relevance among various extracted 

thermal features by CNN. Those features that involve the intensity of the thermal gradient and abnormal temperature 

at the hotspot contribute significantly to making the classification decisions. 

The feature importance graph suggests that the intensity of the thermal gradient was the feature with the highest 

score on importance, followed by abnormal hotspot temperature, therefore it can be said that these thermal 

characteristics are critical indicators of potential defects in high-voltage equipment. 

The study did the statistical significance test to see if the difference between the performance of the CNN + RF 

model and the CNN + SVM model was statistically significant. The study compared accuracy scores from multiple 

validation folds on both models, using paired t-tests.  

Null Hypothesis (H0). There is no significant difference between these two models' performance. 

Since the obtained p-value equals 0.03, which is less than the widely accepted significance level of 0.05, the study 

rejects the null hypothesis; therefore, the performance of the CNN + RF model is statistically much better than that 

of CNN + SVM. 

D. Comparison Analysis 

A comparison is shown in Table 4 between the proposed approach and some recent studies between 2022 and 

2023. The approach proposed by combining CNN (AlexNet) and Random Forest (RF) for defect detection in high-

voltage electrical equipment has shown superior performance as compared to the methods used by other researchers, 

have used ResNet-50 accuracy and achieved an accuracy of 91.2%. Comparatively, the proposed method achieves a 

higher accuracy with 94.8% better precision of 93.2% and a better recall of 95.6%. This demonstrates the efficacy of 

the AlexNet architecture in feature extraction and the effectiveness of RF in classification. In the second case, the 

study used EfficientNet with a classification accuracy of 93.5%. However, the model has outperformed this one by 

1.3%, having reduced the computational complexity and simultaneously the time taken for training. 

In this regard, the study adopted a hybridized approach with CNN and a Gradient gradient-boosting machine to 

achieve an accuracy of 94.3%. However, the Random Forest in the model has generalized much better, because 

precision and recall have been greater, and it is capable of handling bigger datasets without overfitting. Using CNN 

+ SVM, (2021) obtained 92.0% which was lower compared to the 94.8% that CNN + RF resulted in with RF having 

its advantage in dealing with huge dimensionality. Then, (2024) used transfer learning with VGG-16 and got 94.1% 

accuracy. However, they have shown comparable performance in Fig. 6, but the approach's AlexNet structure was 

more efficient with faster training times and a minimal risk of overfitting. 

0

5
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25

30

CNN + Random Forest CNN + SVM
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TABLE IV. COMPARISON TABLE 

Study Model Architecture Accuracy Precision Recall 

(2022) ResNet-50 0.912 0.887 0.901 

(2023) CNN + Gradient Boosting Machines (GBM) 0.943 0.914 0.927 

Proposed Method  CNN (AlexNet) + Random Forest (RF) 0.948 0.932 0.956 

 

 

Fig 6. Comparison of various methods with the Proposed Model 

The proposed CNN + RF method uses various parameters such as accuracy, precision, and recall for carrying out 

the computation process efficiently. This makes it the state-of-the-art solution for defect detection in high-voltage 

electrical equipment. 

CONCLUSION 

This paper proposes a deep learning-based method towards advanced defect detection of high-voltage electrical 

equipment by analyzing the thermal image. This proposed model, containing the feature extraction part of the CNN 

AlexNet and the classification part of Random Forest, attains state-of-the-art accuracy of 94.8%, thereby outsmarting 

several previous approaches. Transfer learning shortened the training times without any loss in accuracy resulting in 

practically highly efficient. In contrast to other research made from 2021 to 2024, the developed methodology 

performed better in terms of precision, recall, and generalization. Given its tolerance for large dimensions, which are 

mainly the nature of thermal data related to electrical equipment, Random Forest can well be used in the classifier. 

This perspective renders CNN very efficient in classifying the fine features associated with the thermal images. 

Another comparative justification regarding the robustness of the RF classifier was obtained through the integration 

of SVM. Results of the study: the method proposed results in high effectiveness for real-time monitoring and 

maintenance of high-voltage equipment. It significantly reduces electrical failures due to the precise distinction of 

defects even at an early stage, thereby ensuring safe and reliable operation. Further improvement can be obtained 

from the developed model by experimenting with other deep architectures of a network or ensemble methods toward 

improving the efficiency of defect detection across different conditions of operation. 
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