
Journal of Information Systems Engineering and Management

2025, 10(57s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

325
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Active Code Completion: Integrating Specialized Code

Generation Palettes into Development Environments

Teja Nagavardhan Talluri

tallurit7@gmail.com

Introduction

Modern source code editors extensively use code completion to assist developers by offering

contextually relevant options such as variables, methods, and code snippets, reducing errors and effort

[14]. Existing enhancements to code completion, like leveraging usage history [17][9], API information

[9][11], and crowdsourced data [13][6], have improved menu relevance. However, these systems are

typically menu-based and rigid, limiting extensibility and requiring external tools for specialized logic.

This paper introduces active code completion, which integrates customizable developer tools directly

into the editor. By associating palettes with specific object types, developers can interactively customize

parameters and receive immediate feedback before generating the code. For example, invoking

completion for a Color object could present a palette for selecting and previewing color options [15]. To

design this system, we conducted a survey of 473 developers, identifying key use cases, usability criteria,

and architectural requirements. We implemented Graphite, an Eclipse plugin, to showcase the concept,

with a pilot study demonstrating its utility through a regular expression palette. Results indicate active

code completion simplifies tool development, enhances usability, and supports a wide range of use

cases.

Fig.1. (a) An example code completion palette associated with the Color class. (b) The source code

generated by this palette.

ARTICLE INFO ABSTRACT

Received: 02 Feb 2025

Revised: 15 Mar 2025

Accepted: 25 Mar 2025

Code completion menus have increasingly supplanted standalone API browsers for

developers due to their seamless integration into the development workflow. This

paper introduces ”active code completion,” an architecture that empowers library

developers to embed interactive and highly-specialized code generation interfaces,

referred to as palettes, directly within the code editor. We explore the contexts in which

such a system can enhance productivity and discuss the design constraints that inform

both the system architecture and the specific code completion interfaces. We present

Graphite, a system designed for the Eclipse Java development environment, as a

primary implementation. Utilizing Graphite, we develop a palette tailored for crafting

regular expressions and conduct a pilot study to assess its effectiveness. Our findings

demonstrate the feasibility of integrating specialized code completion interfaces into

editors, providing empirical support for the assertion that such innovations

significantly benefit professional developers by streamlining coding tasks and

enhancing overall efficiency.

Keyword: demonstrate, streamlining, architecture, significantly

Journal of Information Systems Engineering and Management

2025, 10(57s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

326
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

 Regular Expressions SQL

Separate test script 29.6% 15.4%

Guess and check 14.0% 16.1%

External tool 37.9% 58.6%

Search for examples 12.3% 5.1%

Other 6.2% 4.9%

Fig.2. Distribution of responses to survey questions asking about typical strategies for writing regular

expressions and SQL queries.

 class

Fig.3. The distribution of responses to the question: “Consider situations where you need to

instantiate the [specified] class. What portion of the time, in these situations, do you think you would

use this feature?”

1 Survey

To approve our conceptualization of dynamic code fulfillment, refine framework and range plans, and

distinguish use cases, we led a study of expert programming engineers.

1.1 Participants

Members were enlisted by means of a programming-related discussion on reddit.com [4] and from

software engineering graduate understudies at CMU. The survey1 designated engineers acquainted with

object-arranged dialects (e.g., Java, C#) and IDEs (e.g., Overshadowing, Visual Studio). Out of 696

respondents, 473 finished the review (68%).

1.2 Familiarity with Programming Dialects and Editors

Members evaluated their experience with programming dialects on a five-point Likert scale. Most were

”intimately acquainted” or ”master” in Java, C, C++, and JavaScript, with extra commonality in C#,

Python, and PHP. The Obscuration IDE was natural to 87.1% of members, trailed by Visual Studio

(66.0%) and Vi/Vim (53.7%).

1.3 Palette Mockups

We introduced mockup ranges for a Color class, a standard articulation class, and a SQL question class,

close by instances of range conjuring and produced code. For the Color class, most members depended

on code culmination menus (58.4%) or class documentation (19.0

1 https://www.surveymonkey.com/s/2GLZP8V

Color 9.6% 22.1 % 32.4 % 28.2% 7.7 %
RegExp 36.6 % 29.5% 21.8% 7.3% 4.8 %

SQL 18.2% 19.3 % 30.9 % 20.4% 11.4 %

https://www.surveymonkey.com/s/2GLZP8V

Journal of Information Systems Engineering and Management

2025, 10(57s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

327
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

For ordinary articulations and SQL inquiries, members revealed solid commonality, with outer

apparatuses usually utilized for help. Evaluations of range helpfulness showed the ordinary articulation

range as especially useful, while the Color and SQL ranges got moderate help. Figure 3 sums up these

discoveries.

Unconditional criticism from 193 members (variety range), 129 (ordinary articulation range), and

142 (SQL range) gave significant plan experiences, impacting the rules framed in the accompanying

segments.

2 Design Criteria

We created plan rules for the framework and individual ranges in view of study reactions and casual

conversations with engineers. The quantity of overview reactions tending to every measure is given in

brackets. These measures were utilized to plan Graphite (Area V) and may likewise apply to other

manager coordinated apparatuses.

2.1 Maintaining Detachment of Worries (183)

Numerous members noticed that ranges shouldn’t blend rationale and information, for example,

embedding variety constants straightforwardly into program code. This issue was less huge for normal

articulations, which are by and large thought about piece of the program rationale.

2.2 Integration with Testing Systems (35)

Members proposed producing unit tests rather than inline test strings for the standard articulation

range. This would require supporting code age past the cursor area.

2.3 Support for Reinvocation (19)

A few members mentioned the capacity to reinvoke ranges and save their state, including changes made

to created code.

2.4 Support for Range Settings and History (41)

Members communicated a longing for ranges to hold settings and history across summons, for example,

putting away most loved varieties or data set association data.

2.5 Support for Settled Articulations (13)

A few members noticed that ranges ought to help complex articulations, not simply constants, and have

the option to review the encompassing code setting for rightness.

2.6 Keyboard Safeness (12)

There were worries about mouse-based interfaces, with clients inclining toward console alternate ways,

particularly those utilizing editors like Vim.

2.7 Responsiveness

Members accentuated that the augmentation shouldn’t influence IDE execution or responsiveness.

2.8 IDE and Language Portability

Numerous members mentioned that ranges be versatile across various IDEs and programming dialects,

needing structural help for this adaptability.

2.9 Varying Client Needs

Clients had different requirements for range intricacy, with some favoring more straightforward

connection points and others mentioning extra elements. A design that upholds adjustable ranges or a

selected point of interaction could oblige this fluctuation.

Journal of Information Systems Engineering and Management

2025, 10(57s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

328
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

3 Use Cases

We requested that overview members recommend classes that could profit from dynamic code

fulfillment. A sum of 119 members made ideas, characterized into a few classes. The following are the

most eminent classes.

3.1 Graphical Components (27)

Members proposed ranges for graphical articles like brushes, text styles, buttons, and UI components.

A few likewise proposed ranges for 3D natives and plot arrangements.

3.2 Query Dialects (17)

Notwithstanding SQL and normal articulations, ideas included inquiry dialects like XPath and XQuery

for XML.

Collection

Class

Total Literal Percentage

ArrayList 464 44 9.5%

HashMap 56 19 33.9%

HashSet 122 62 50.8%

Hashtable 86 10 11.6%

Vector 729 31 4.2%

Total 1457 166 11.4%

Fig.4. Usage patterns for common Java collection classes in the java.util package in our code corpus.

Uses that fit a pattern that can be captured by a literal make up a significant portion of all uses. Not all

possible usage scenarios of this type were captured by our analysis, so these numbers are lower

bounds.

3.3 Simplified or Space Explicit Sentence structure (16)

Ideas included ranges for getting away from strings, creating HTML code, and working with complex

numerical or compound recipes. One outstanding idea was working on Java assortment class

instatement.

We examined Java assortment class utilization from the Qualitas Corpus [18] and found that many

purposes could be improved with a strict introduction range, as displayed in Figure 4.2.

3.4 Unclear Boundary Suggestions (11)

Members recommended ranges for classes with hazy boundary impacts, for example, sound channels

and movement descriptors, where quick criticism (visual or hear-able) could support tweaking

boundaries.

3.5 Integrating with Documentation and Models (7)

A few members proposed coordinating instructional exercises or models straightforwardly into the

range, making them simpler to access without exchanging settings.

3.6 Complex Launch and Cleanup Systems (5)

Ranges could aid classes requiring complex arrangement and cleanup, similar to the BufferedReader in

Java, or lightening the plant design convenience issue

Journal of Information Systems Engineering and Management

2025, 10(57s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

329
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

[8].

3.7 Instantiation As a visual demonstration (2)

A range could help with launching objects as a visual demonstration, for example, perusing an easy

route key blend for a class addressing alternate routes.

3.8 Proof Assistants

For dialects with solid connections to formal rationale (e.g., Coq), ranges could assist designers with

building intelligent confirmation partner interfaces [16].

4 System Plan and Implementation

We fostered a functioning code consummation framework named Graphite (Graphical Ranges to Assist

with launching Types in the Supervisor) as an Obscuration augmentation for Java, in view of its ubiquity

among review members. The framework empowers designers to make and utilize HTML5-based ranges,

which can be related with both underlying and client characterized classes, straightforwardly in the

IDE’s code finish menu.

4.1 HTML5-Based Palettes

Ranges are fabricated utilizing HTML5 (HTML, CSS, JavaScript), picked for its adaptability and

simplicity of joining with different IDEs, as all major windowing tool compartments support internet

browser controls. This approach additionally works on range sending and advancement, utilizing

standard URLs and giving powerful troubleshooting devices.

4.2 Palette API

Ranges connect with the IDE through a basic JavaScript Programming interface remembered for the

graphite.js script. The Programming interface considers embedding code, dropping range activities,

recovering chosen text, and distinguishing the IDE and language being used. The straightforwardness

of the Programming interface works with simple range creation and coordination with different editors.

4.3 Palette Discovery

Graphite gives two techniques to partner ranges with classes:

Annotation-based: The @GraphitePalette explanation interfaces a range to a class, determining the

range URL and portrayal. Explicit: For outer or unmodifiable classes, ranges are related with classes

by means of an inclination sheet in Overshadowing.

4.4 Design Exchange Offs

The plan is lightweight and adaptable, however it additionally includes compromises:

Contrasts in Java and JavaScript semantics might cause issues (e.g., variety names and standard

articulation motors). UI requirements limit the capacity to execute complex spring up menus or

admittance to encompassing code. Reinvocation parsing can be difficult for the two designers and

clients.

4.5 Palettes

We carried out two ranges utilizing the jQuery library:

Color Selection This range permits clients to enter CSS variety strings, with sentence structure

checking and reviewing. Standard Java tones are accessible as patterns, and reinvocation is upheld. It

comprises of around 500 lines of code.

Journal of Information Systems Engineering and Management

2025, 10(57s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

330
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Regular Expressions The customary articulation range helps clients in entering and testing designs

intuitively. It gives mistake criticism, case-awareness flipping, and test string coordinating. The range

embeds the right Java source code and holds experiments in remarks. It comprises of around 700 lines

of code.

5 Pilot Study

We directed a pilot study to assess the Graphite framework’s convenience for composing ordinary

articulations.

5.1 Study Methods

Between-Subjects Design Members were haphazardly allocated to control or treatment gatherings.

The benchmark group utilized no ranges, while the treatment bunch approached a variety range and

could utilize a standard articulation range. No particular preparation was given. A between-subjects

configuration was utilized to try not to gain impacts from an inside subjects plan.

Training Just the treatment bunch was told the best way to summon Graphite ranges. A concise show

of the variety range was given before errands started. Members had 45 minutes to finish 9

responsibilities including standard articulation creation.

Tasks Assignments included composing ordinary articulations to approve and recover information

(e.g., temperatures). Members could utilize outer assets with the exception of looking straightforwardly

for task replies.

5.2 Participants

Seven PhD understudies from CMU took part, with four in the benchmark group and three in the

treatment bunch. Members were repaid $15, and all had related knowledge with Java and customary

articulations.

5.3 Hypotheses

We estimated that the treatment gathering would confront less challenges with the Java Example

Programming interface’s industrial facility example and departure groupings. The treatment bunch

additionally followed through with additional responsibilities by and large (7 versus 6).

5.4 Preliminary Reading

Members checked on Programming interface documentation, frequently leaving it open all through the

review. One control subject utilized outside documentation.

5.5 Control Group

Members utilized different procedures like outside instruments and test scripts. A few battled with get

away from groupings and plant design launch. One subject supplanted representative break

arrangements with ASCII codes pointlessly.

5.6 Treatment Group

Most members in the treatment bunch utilized the range really after a concise exhibition. They settled

departure and launch issues rapidly, with some involving outer devices related. They followed through

with additional jobs than the benchmark group (7 versus 6). The reinvocation include was utilized by

two subjects, however they didn’t feature experiments, requiring reemergence of test information.

Journal of Information Systems Engineering and Management

2025, 10(57s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

331
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

5.7 Threats to Validity

The little example size and treatment bunch inclination because of curiosity might influence results.

Furthermore, just a customary articulation range was tried, and its blemishes were tended to after the

review.

Related Work

Dynamic code fulfillment is connected with the idea of dynamic libraries [19], which summon program

rationale at accumulate time or configuration time. This method blends cooperation from visual dialects

with regular text-based programming, possibly tending to convenience challenges related with visual

dialects [12]. Instruments like Barista [10] and the RBA proofreader [7] mix text and organized altering,

with Barista offering rich sort explicit connection points, and RBA zeroing in on code coherence. Be that

as it may, both utilize custom space explicit dialects, which might be new to clients.

Explicit IDE highlights like CodeRush [5], Resharper [1], and IntelliJ Thought’s inline standard

articulation range [3] offer predefined arrangements, however they are frequently hard-coded and not

extensible. Late renditions of Visual Studio permit client characterized ranges for specific fields in the

property sheet [2]. Future work will investigate an extensible, console driven way to deal with improve

code age and wipe out issues with range reinvocation and state upkeep.

Conclusion

The inspiration driving this work comes from the developing group of proof recommending that

coordinating exceptionally concentrated instruments straightforwardly into a designer’s work process

can fundamentally upgrade efficiency and facilitate the improvement cycle. One region where this

combination holds extraordinary potential is in the domain of code finish. Conventional code fulfillment

frameworks regularly propose universally useful ideas in light of the setting of the code being composed.

Nonetheless, there is a critical chance to develop this thought by integrating particular instruments that

give additional background info delicate, space explicit suggestions. In this paper, we have presented

the idea of dynamic code consummation as a speculation of regular code fruition frameworks, growing

its capacities to permit designers to consistently get to specific functionalities inside their work

processes.

To approve the handiness of this idea, we created a few use cases that show the way that specific

instruments, coordinated inside the improvement climate, can upgrade the coding system. Also, we led

a broad study of expert engineers to distinguish normal difficulties in programming improvement and

accumulated experiences that educated the plan regarding such apparatuses. In light of the

consequences of this overview, we had the option to foster general plan limitations that any dynamic

code consummation device ought to stick to, guaranteeing both convenience and adequacy in genuine

situations. These plan requirements additionally filled in as the establishment for fostering the hidden

engineering important to help dynamic code culmination frameworks.

Expanding upon these bits of knowledge, we planned and executed Graphite, a functioning code

fruition engineering that presents a few novel plan choices pointed toward working on the turn of

events, sending, and disclosure of client characterized ranges. Not at all like conventional code finish

frameworks, Graphite empowers clients to characterize custom ranges that give particular ideas and

mechanize dreary assignments intended for their programming needs. This approach upgrades the

advancement cycle as well as works on the discoverability of specific instruments via consistently

coordinating them into the coding climate.

To approve the adequacy of this design, we made two ranges: one for taking care of variety related

undertakings and one more for overseeing customary articulations. The last range was exposed to a

pilot study to survey its handiness in certifiable situations. The consequences of this study areas of

Journal of Information Systems Engineering and Management

2025, 10(57s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

332
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

strength for gave supporting that coordinating client characterized ranges into code fruition

frameworks offers unmistakable advantages, especially when engineers need to communicate with

complex, space explicit errands like normal articulation creation. The treatment bunch, which was given

admittance to the standard articulation range, got done with additional jobs by and large and

experienced less issues contrasted with the benchmark group, showing the commonsense worth of this

joining.

We trust that the progress of the Graphite framework in tending to these difficulties is demonstrative

of the more extensive capability of dynamic code fruition frameworks. By smoothing out the most

common way of characterizing and utilizing specific instruments inside an engineer’s current

circumstance, dynamic code culmination frameworks like Graphite can fundamentally decrease the

mental burden related with utilizing outside devices and exchanging between settings. This consistent

combination of particular instruments into the advancement work process further develops efficiency

as well as encourages development by making progressed includes more open to a more extensive scope

of engineers.

Taking everything into account, we affirm that dynamic code fruition frameworks can possibly

change the manner in which designers connect with their coding surroundings. With instruments like

Graphite, the most common way of composing and troubleshooting code can be made more productive,

open, and instinctive. As we keep on investigating the conceivable outcomes of dynamic code fruition

and refine its plan, we guess that these frameworks will turn into a necessary piece of present day

improvement conditions, facilitating the coding system and empowering engineers to zero in on

additional complicated, imaginative parts of their work.

References

[1] Color assistance, http://www.jetbrains.com/resharper/webhelp/Coding_

[2] Assistance__Color_Assistance.html

[3] Custom design-time control features in visual studio .net, http://msdn.

[4] microsoft.com/en-us/magazine/cc164048.aspx

[5] How to check your RegExps in IntelliJ IDEA 11? http://blogs.jetbrains.com/ idea/tag/regexp/

[6] reddit - programming, http://www.reddit.com/r/programming

[7] Show color - online documentation - developer express inc., http://

documentation.devexpress.com/#CodeRush/CustomDocument8887

[8] Snipmatch, http://languageinterfaces.com/

[9] Davis, S., Kiczales, G.: Registration-based language abstractions. In: Proc. ACMinternational

conference on Object oriented programming systems languages and applications (OOPSLA’10). pp.

754–773 (2010). https://doi.org/10.1145/

[10] 1869459.1869521

[11] Ellis, B., Stylos, J., Myers, B.: The factory pattern in API design: A usability evaluation. In: Proc.

29th International Conference on Software Engineering (ICSE’07). pp. 302–312 (2007).

https://doi.org/10.1109/ICSE.2007.85

[12] Hou, D., Pletcher, D.: An evaluation of the strategies of sorting, filtering, andgrouping api methods

for code completion. In: Proc. 27th IEEE International Conference on Software Maintenance

(ICSM’11). pp. 233 –242 (2011). https:

[13] //doi.org/10.1109/ICSM.2011.6080790

http://www.jetbrains.com/resharper/webhelp/Coding_Assistance__Color_Assistance.html
http://www.jetbrains.com/resharper/webhelp/Coding_Assistance__Color_Assistance.html
http://msdn.microsoft.com/en-us/magazine/cc164048.aspx
http://msdn.microsoft.com/en-us/magazine/cc164048.aspx
http://blogs.jetbrains.com/idea/tag/regexp/
http://blogs.jetbrains.com/idea/tag/regexp/
http://www.reddit.com/r/programming
http://documentation.devexpress.com/#CodeRush/CustomDocument8887
http://documentation.devexpress.com/#CodeRush/CustomDocument8887
http://documentation.devexpress.com/#CodeRush/CustomDocument8887
http://languageinterfaces.com/
https://doi.org/10.1145/1869459.1869521
https://doi.org/10.1145/1869459.1869521
https://doi.org/10.1109/ICSE.2007.85
https://doi.org/10.1109/ICSM.2011.6080790
https://doi.org/10.1109/ICSM.2011.6080790

Journal of Information Systems Engineering and Management

2025, 10(57s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

333
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

[14] Ko, J., A., Myers, A., B.: Barista: An implementation framework for enabling newtools, interaction

techniques and views in code editors. In: Proc. ACM Conference on Human Factors in Computing

Systems (CHI’06). pp. 387–396 (2006)

[15] Lee, H.M., Antkiewicz, M., Czarnecki, K.: Towards a generic infrastructure forframework-specific

integrated development environment extensions. In: Proc. 2nd International Workshop on

Domain-Specific Program Development (DSPD’08), co-located with OOPSLA’08 (2008)

[16] Miller, P., Pane, J., Meter, G., Vorthmann, S.: Evolution of novice programming environments: The

structure editors of carnegie mellon university. Interactive Learning Environments 4(2), 140–158

(1994). https://doi.org/10.1080/

[17] 1049482940040202

[18] Mooty, M., Faulring, A., Stylos, J., Myers, B.: Calcite: Completing code completion for constructors

using crowds. In: Proc. 2010 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC’10). pp. 15–22 (2010). https://doi.org/10.1109/VLHCC.2010.12

[19] Murphy, G.C., Kersten, M., Findlater, L.: How Are Java Software Developers Usingthe Eclipse IDE?

IEEE Software 23(4), 76–83 (2006)

[20] Omar, C., Yoon, Y., LaToza, T., Myers, B.: Active code completion. In: Proc.2011 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC’11). pp. 261–262 (2011).

https://doi.org/10.1109/VLHCC.2011.

[21] 6070422

[22] Pierce, B.C.: Types and Programming Languages. MIT Press (2002)

[23] Robbes, R., Lanza, M.: How program history can improve code completion. In: Proc. 23rd

IEEE/ACM International Conference on Automated Software Engineering (ASE’08). pp. 317–326

(2008). https://doi.org/10.1109/ASE.2008.42

[24] Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,Noble, J.: Qualitas

corpus: A curated collection of java code for empirical studies. In: Proc. 2010 Asia Pacific Software

Engineering Conference (APSEC’10) (2010)

[25] Veldhuizen, T.L., Gannon, D.: Active libraries: Rethinking the roles of compilersand libraries. In:

Proc. 1998 SIAM Workshop on Object Oriented Methods for Inter-operable Scientific and

Engineering Computing (1998), http://arxiv.org/ abs/math/9810022

https://doi.org/10.1080/1049482940040202
https://doi.org/10.1080/1049482940040202
https://doi.org/10.1109/VLHCC.2010.12
https://doi.org/10.1109/VLHCC.2011.6070422
https://doi.org/10.1109/VLHCC.2011.6070422
https://doi.org/10.1109/ASE.2008.42
http://arxiv.org/abs/math/9810022
http://arxiv.org/abs/math/9810022

