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This study presents a two-stage; three-phase grid-connected solar photovoltaic (PV) system that 

leverages advanced deep learning techniques to optimize Maximum Power Point Tracking 

(MPPT), significantly enhancing energy extraction and power quality. The system architecture 

integrates a Landsman Converter with an Artificial Neural Network (ANN)-based MPPT 

controller, which dynamically adjusts the duty cycle to respond to fluctuations in irradiance and 

temperature, ensuring efficient DC-DC conversion. Building on this, a deep learning layer 

continuously refines the MPPT algorithm in real time, boosting tracking accuracy and response 

speed. In the first stage, the Landsman Converter, optimized with deep learning, enables rapid, 

precise power tracking, achieving an impressive MPPT efficiency of 86.38%. The second stage 

incorporates a Phase-Locked Loop (PLL)-controlled DC-AC inverter, providing stable grid 

synchronization and reducing Total Harmonic Distortion (THD) to -40.27%, which enhances 

overall power quality and supports grid stability under variable conditions. MATLAB simulations 

demonstrate that this deep learning-enhanced system consistently outperforms conventional 

approaches, establishing its potential as a scalable, high-efficiency solution for grid-connected 

PV systems. The proposed framework not only improves real-time energy yield but also supports 

stable renewable energy integration into the grid, promoting sustainable energy adoption. By 

combining deep learning with traditional ANN-based MPPT in a robust, two-stage control 

system, this research offers a promising approach to maximizing solar PV performance, making 

a valuable contribution to the field of renewable energy and intelligent power regulation.. 

Keywords: Grid-connected PV System, Maximum Power Point Tracking (MPPT), Artificial 

Neural Network (ANN), Deep Learning Optimization , Phase-Locked Loop (PLL), Renewable 

Energy Integration, Landsman Converter 

 

INTRODUCTION 

The increasing global demand for clean and sustainable energy has led to the rapid growth of solar photovoltaic (PV) 

systems as a key renewable energy source. Solar PV technology provides an environmentally friendly alternative to 

conventional fossil fuels, significantly contributing to carbon emission reductions and enhancing energy security. 

However, integrating solar PV systems into electrical grids presents several technical challenges, including 

optimizing energy conversion, managing intermittency, and ensuring grid stability under varying environmental 

conditions such as fluctuating solar irradiance and temperature. 

To maximize energy extraction, grid-connected PV systems heavily rely on Maximum Power Point Tracking (MPPT) 

algorithms. Conventional MPPT techniques, such as Perturb and Observe (P&O) and Incremental Conductance 

(IncCond), are widely used due to their simplicity. Despite their popularity, these methods often suffer from 

limitations in tracking accuracy and response speed, especially under rapidly changing environmental conditions. 

These drawbacks can lead to suboptimal energy harvesting and reduced overall system efficiency. 
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Recent advancements have introduced Artificial Neural Networks (ANNs) as a more sophisticated solution for 

MPPT. ANNs enhance MPPT performance by dynamically adapting to changing environmental factors, thus 

significantly improving tracking efficiency and responsiveness. By leveraging machine learning capabilities, ANN-

based MPPT controllers offer superior speed and accuracy in locating the Maximum Power Point, thereby optimizing 

energy extraction from the PV array. 

Beyond efficient MPPT, advanced power conversion and grid synchronization are essential for the reliable operation 

of grid-connected PV systems. The Landsman Converter has been recognized as an effective solution for DC-DC 

conversion, offering high efficiency with minimal power losses. The integration of an ANN-based MPPT with a 

Landsman Converter optimizes the DC output voltage, which in turn enhances overall system efficiency. Additionally, 

employing a Phase-Locked Loop (PLL)-controlled DC-AC inverter ensures precise synchronization with the grid, 

minimizing Total Harmonic Distortion (THD) and achieving a near-unity power factor, which are critical for 

maintaining grid stability. 

Building upon these advancements, this paper introduces a novel two-stage, three-phase grid-connected solar 

PV system that integrates deep learning optimization techniques with traditional ANN-based MPPT. The proposed 

system utilizes a Landsman Converter for efficient DC-DC conversion, coupled with a deep learning-enhanced MPPT 

algorithm that continuously refines control parameters in real-time. This deep learning layer improves the 

responsiveness and accuracy of MPPT adjustments under dynamic conditions, leading to higher energy yields. In the 

second stage, a PLL-controlled inverter facilitates precise grid synchronization, thereby reducing THD and enhancing 

power quality. 

The primary objective of this research is to improve the performance of grid-connected solar PV systems by 

incorporating deep learning techniques for real-time MPPT optimization, enhancing overall energy efficiency, grid 

stability, and reliability. MATLAB simulations demonstrate that the proposed system achieves substantial 

performance improvements, with an MPPT efficiency of 86.38% and a significant reduction in Total Harmonic 

Distortion (THD) to -40.27%, compared to conventional methods. These advancements highlight the potential of 

combining deep learning with advanced power regulation strategies to optimize solar PV performance, contributing 

to the global shift towards sustainable and stable energy solutions. 

 RELATED RESEARCH WORK 

The integration of solar photovoltaic (PV) systems into electrical grids has gained considerable attention in recent 

years due to the global push towards sustainable energy solutions. This increasing interest is driven by the need to 

improve the efficiency, stability, and reliability of solar PV systems, especially in the context of large-scale grid-

connected applications. A significant area of research has focused on enhancing Maximum Power Point Tracking 

(MPPT) techniques to optimize the energy extraction from PV systems under varying environmental conditions. 

Traditional MPPT methods, such as Perturb and Observe (P&O) and Incremental Conductance (IncCond), are widely 

used due to their simplicity and ease of implementation. However, these conventional approaches often suffer from 

slow response times and limited tracking accuracy, particularly under dynamic weather conditions [1], [2]. 

To address these challenges, Artificial Neural Network (ANN)-based MPPT algorithms have emerged as a promising 

alternative, offering superior adaptability and precision in tracking the Maximum Power Point (MPP) under 

fluctuating solar irradiance and temperature. The use of ANNs enables real-time adjustment of control parameters, 

resulting in improved tracking speed and enhanced energy yield compared to traditional techniques [3, 4]. Studies 

by Rezk et al. and Kim et al. have demonstrated that ANN-based MPPT controllers significantly outperform 

conventional methods, achieving higher tracking accuracy and faster convergence to the MPP [3], [7]. 

In addition to MPPT improvements, advancements in DC-DC conversion technologies have further enhanced the 

performance of grid-connected PV systems. The Landsman Converter has been identified as an efficient DC-DC 

converter capable of operating in both step-up (boost) and step-down (buck) modes, which makes it suitable for solar 

PV applications that require flexible voltage regulation. Research by Pandey et al. and Ishaque et al. highlights the 

effectiveness of integrating ANN-based MPPT with Landsman Converters, resulting in optimized DC output and 

reduced power losses[5],[9].The Landsman Converter's ability to maintain high efficiency during energy conversion 

is crucial for maximizing the power transfer from the PV array[6],[8]. 
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Furthermore, grid synchronization plays a vital role in the stable operation of grid-connected PV systems. Phase-

Locked Loop (PLL) techniques are commonly employed in inverters to ensure accurate synchronization between the 

inverter output and the grid [18]. The PLL mechanism effectively minimizes phase errors, reduces Total Harmonic 

Distortion (THD), and achieves near-unity power factor, which are essential for maintaining grid 

stability[10],[11].Studies by Wang et al. and Shah et al. emphasize the importance of PLL-based inverters in 

enhancing grid compliance, especially in scenarios with high renewable energy penetration[11,12]. 

Recent research has also explored hybrid MPPT strategies that combine ANN with optimization algorithms like 

Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) to further boost system performance. These hybrid 

approaches leverage the strengths of both machine learning and heuristic optimization techniques, leading to faster 

convergence rates and higher energy yields under complex environmental conditions[13],[14],[19].Carrasco et al. 

reported that hybrid MPPT algorithms offer significant improvements over standalone methods, making them highly 

suitable for large-scale solar installations [13]. 

Building upon these advancements, deep learning techniques have recently been introduced to further optimize 

MPPT performance. Deep learning models, such as Deep Neural Networks (DNNs) and Convolutional Neural 

Networks (CNNs), have shown potential in capturing non-linear relationships between environmental variables and 

PV output, thereby enhancing tracking accuracy [20]. Studies by Aly et al. and Kumar et al. demonstrate that deep 

learning-based MPPT controllers can achieve higher efficiency and adaptability in real-time solar power generation 

scenarios [21, 22]. The integration of deep learning models with conventional power regulation techniques provides 

a promising pathway for improving the overall efficiency and reliability of solar PV systems. 

Moreover, hybrid deep learning approaches that combine deep learning algorithms with traditional MPPT 

strategies have been investigated to optimize solar energy harvesting further. For instance, Shah and Patel developed 

a hybrid deep learning and PSO-based MPPT control, which demonstrated superior performance in terms of energy 

yield and response speed compared to standard MPPT methods [24]. The incorporation of deep learning models for 

real-time MPPT adjustment under rapidly changing environmental conditions presents a novel approach to 

maximizing the efficiency of grid-connected PV systems. 

This research builds on the existing body of work by proposing a two-stage, three-phase grid-connected solar PV 

system that integrates ANN-based MPPT with a deep learning optimization layer. The proposed system utilizes a 

Landsman Converter for efficient DC-DC conversion, coupled with a PLL-controlled inverter for enhanced grid 

synchronization. The addition of a deep learning layer refines MPPT adjustments in real-time, resulting in improved 

energy extraction, reduced THD, and enhanced grid stability. MATLAB simulations validate the effectiveness of the 

proposed system, showing significant improvements in MPPT efficiency, THD reduction, and overall energy yield 

compared to conventional approaches. This work contributes to advancing solar PV system performance by 

integrating cutting-edge deep learning techniques with established power regulation technologies 

[15],[16],[17],[23],[25]. 

PROPOSED METHODOLOGY 

System Overview 

The proposed system is a two-stage, three-phase grid-connected solar photovoltaic (PV) framework designed to 

optimize energy conversion, enhance grid stability, and improve overall efficiency. It integrates a Landsman 

Converter with a hybrid Maximum Power Point Tracking (MPPT) approach that combines Artificial Neural Networks 

(ANNs) with a Deep Learning Optimization Layer (DNN). This innovative configuration dynamically adjusts MPPT 

control signals to adapt to real-time environmental changes, ensuring maximum energy extraction and grid 

compatibility.Fig.1  Enhanced two stage three phase grid connected PV system 
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Fig.1: Enhanced two stage three phase grid connected PV system 

The system comprises two primary stages: 

• DC-DC Conversion Stage: Utilizes a Landsman Converter integrated with a deep learning-optimized 

ANN-based MPPT algorithm. 

• DC-AC Inversion Stage: Employs a Phase-Locked Loop (PLL)-controlled inverter for precise grid 

synchronization and power quality enhancement. 

This architecture focuses on leveraging deep learning techniques to dynamically adjust MPPT parameters in real-

time, significantly improving tracking speed and energy yield compared to conventional methods. 

Stage 1: DC-DC Converter with Deep Learning-Optimized ANN-based MPPT 

The first stage focuses on optimizing power extraction from the PV array using the Landsman Converter, a high-

efficiency DC-DC converter known for its low power losses in both step-up and step-down operations. The hybrid 

MPPT approach comprises the following components: 

A.ANN-Based MPPT: 

• A three-layer feed-forward ANN processes real-time solar irradiance and temperature data to predict an initial 

duty cycle for the Landsman Converter. 

• The ANN is trained on a dataset of historical solar conditions, achieving high prediction accuracy with minimal 

computational overhead. 

B.Deep Learning Optimization Layer: 

• A deep neural network (DNN) is layered over the ANN to refine duty cycle predictions in real-time. The DNN 

employs advanced feature extraction to adapt to dynamic changes in irradiance and temperature. 

• Training utilizes a dataset of 10,000 samples, and optimization is performed using the Levenberg-Marquardt 

algorithm. Validation yielded a mean squared error (MSE) of 0.003, indicating high precision. 

C.Landsman Converter Control: 

The converter operates at a switching frequency of 60 kHz, delivering stable DC output at 400 V with less than 1% 

ripple. The hybrid MPPT ensures tracking efficiency of 99.5%, significantly reducing power losses compared to 

conventional methods. 

D. Control Algorithm: 

The deep learning layer continuously monitors real-time data and adjusts the MPPT control signals based on 

predictive analytics, optimizing the PV output. 

E. Mathematical Model for Deep Learning-Optimized MPPT: 

• Input Parameters: Solar irradiance (G), temperature (T), PV voltage (Vpv), PV current (Ipv). 

• ANN Output: Initial duty cycle (Dinit). 
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• DNN Adjustment: Refined duty cycle (Dopt) to maximize power output. 

 

Stage 2: DC-AC Inverter with Enhanced PLL for Grid Synchronization 

The second stage converts the optimized DC power to AC using a three-phase inverter, enhanced with an advanced 

PLL mechanism for grid synchronization. This stage ensures that power injected into the grid is in phase with the 

grid voltage, reducing Total Harmonic Distortion (THD) and maintaining near-unity power factor. 

A.Advanced PLL Control: 

The enhanced PLL includes an adaptive filtering mechanism, which uses deep learning to predict and compensate 

for phase deviations caused by grid fluctuations, thus ensuring tighter synchronization. 

The system utilizes real-time data from grid voltage and current sensors to adjust the inverters phase angle 

rapidly, improving the response to dynamic grid conditions. 

B.Harmonic Distortion Reduction: 

The inverter incorporates harmonic filtering enhanced by predictive models from the DNN. This reduces Total 

Harmonic Distortion (THD) to less than 1.5%, meeting IEEE 519 standards for power quality. 

C.Reactive Power Management: 

In corporates a deep learning-based predictive model to manage reactive power compensation, supporting grid 

voltage regulation and improving overall power quality in grids with high renewable energy penetration. 

Mathematical Model for Enhanced PLL-based Synchronization: 

A. Phase Error Detection: Measures and corrects the phase difference (θ) between the grid voltage and 

inverter output. 

 

 

B. Harmonic Reduction: 

 

where Vn_aretheharmonic components of the voltage wave form. 

Deep Learning Implementation and Workflow 

The deep learning component is the core innovation of the proposed system. Its workflow is as 

follows: 

• Input Parameters: The model processes solar irradiance, temperature, PV voltage, and current in real time. 

• Training and Validation: Historical and synthetic datasets are used for supervised learning, followed by 

reinforcement learning for real-time adaptability. 

• Output Optimization: The DNN refines MPPT control signals and PLL synchronization parameters 

dynamically, ensuring optimal performance across all operating conditions. 

Simulation Setup and PerformanceMetrics 

MATLAB/Simulink is used to validate the performance of the proposed system. Key parameters include: 
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The simulation consists of two primary stages: the DC-DC conversion stage and the DC-AC inversion stage. 

Key simulation parameters include: 

Solar PV Array Parameters 

• Rated Power: 5 kW 

• Operating Voltage: 450 V 

• Operating Current: 11.1 A 

• Irradiance (G): 1000 W/m² (standard test conditions) 

• Temperature (T): 25°C 

Landsman Converter 

• Switching Frequency: 60 kHz 

• Inductor Value: 200 µH 

• Capacitor Value: 220 µF 

• Input Voltage Range: 200–450 V 

• Output Voltage: 400 V DC (regulated) 

MPPT Control 

• Base Algorithm: Artificial Neural Network (ANN) 

• Optimization Layer: Deep Neural Network (DNN) 

• Dataset: 10,000 samples of historical solar irradiance and temperature 

• Training Method: Levenberg-Marquardt Algorithm 

• Validation Metric: Mean Squared Error (MSE) of 0.003 

• Efficiency Target: >99.5% 

Inverter and Grid Synchronization 

• Inverter Type: Three-phase DC-AC inverter 

• Grid Voltage: 230 V RMS per phase 

• Grid Frequency: 50 Hz 

• Control Mechanism: Phase-Locked Loop (PLL) with adaptive filtering 

• Harmonic Distortion Compliance: THD < 1.5% (per IEEE 519 standards) 

• Reactive Power Management: Included for grid voltage regulation 

Simulation Conditions 

• Tools Used: MATLAB/Simulink 

• Simulation Duration: Week-long simulation for energy yield evaluation 

• Dynamic Conditions: Fluctuating irradiance and temperature to test adaptability. 

Results and Discussion  

The enhanced system was modelled and simulated using MATLAB/Simulink, focusing on the performance evaluation 

of the deep learning-optimized ANN-based MPPT, advanced Landsman Converter, and adaptive PLL 

synchronization in a grid-connected environment.Fig.2 shows the Simulink circuit 



337  

 

J INFORM SYSTEMS ENG, 10(9s) 

 

Fig.2: Simulink circuit 

The simulation results validate the effectiveness of the proposed two-stagegrid-connected solar PV system in 

enhancing energy conversion efficiency and grid stability. The ANN-based MPPT controller significantly improved 

tracking performance, reducing power losses under dynamic environmental conditions. The Lands man Converter 

efficiently stabilized the DC output, contributing to the system's reliability and scalability for larger installations. 

More over, the use of PLL for grid synchronization minimized harmonicdistortion, supporting better power qualit y 

and grid stability. The reduction in THD from 11.51% (withoutPLL) to1.8% (with PLL) demonstrates the system 

'scapabilitytomeet stringent power quality standards. The near-unity power factor achieved further highlights the 

system'spotential for integration in to smartgrid applications. Overall, the proposed system provides as callable and 

cost-effective solution for large-scale solar PV installations, contributing to sustainable energy 

initiativesbyoptimizingsolarpowerutilizationandsupportinggridstability. Future work may include the integration of 

battery energy storage systems for enhanced grid support and exploring hybrid MPPT techniques for further 

performance mprovements. 

Deep Learning-Optimized MPPT Efficiency 

The integration of the deep learning layer with the ANN-based MPPT achieved an average tracking efficiency of 

99.5%, outperforming the traditional ANN-only MPPT (99.2%) and conventional P&O methods (96.5%).Fig 3 Show 

the  PV Power Output vs. Time 

 

Fig 3: PV Power Output vs. Time 

The system demonstrated faster convergence to the Maximum Power Point (MPP) during rapid changes in irradiance 

and temperature, reducing power losses by approximately 8% compared to the original system. The deep learning-

optimized MPPT maintained stable power output with minimal oscillations even under fluctuating environmental 
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conditions.The figure no.4 shows A plot showing the efficiency hovering around 99.5%, with minor fluctuations due 

to dynamic environmental conditions. Fig 4 shows the MPPT Efficiency 

 

Fig.4: MPPT Efficiency 

 

Fig.5: Comparison of Tracked power vs. Theoretical Maximum Power 

The figure no.5 compares the power tracked by the Maximum Power Point Tracking (MPPT) algorithm, represented 

by PMPPT, with the theoretical maximum power available from the solar PV array, PAvailable.The red dashed line 

represents the theoretical maximum power (PAvailable) of the PV system under ideal conditions.The blue solid line 

represents the tracked power (PMPPT) achieved by the MPPT system over time.The tracked power closely follows 

the theoretical maximum power, demonstrating the effectiveness of the MPPT algorithm.Small variations in the 

tracked power around the maximum are due to dynamic adjustments by the MPPT algorithm to changing 

environmental conditions (e.g., irradiance or temperature fluctuations).A plot demonstrating that the tracked power 

(P_MPPT) closely matches the theoretical maximum power (P_available). 

3.7.2 Enhanced DC-DC Converter Performance 

A. DC-DC Converter Performance: 

• The Landsman Converter, now operating at 60 kHz, provided a more stable DC output of 400 V with reduced 

ripple (<1%), optimizing the power transfer from the PV array to the inverter. 

• The deep learning model dynamically adjusted the converter’s duty cycle, resulting in improved response 

times and reduced power loss.Fig.6 Show the Converter Output Voltage and Current Waveforms 
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Fig.6: Converter Output Voltage and Current Waveforms 

GRID SYNCHRONIZATION 

ThePLLensuredprecisesynchronizationbetweentheinverteroutputandthegrid, resul tingina Total Harmonic 

Distortion (THD) of 1.8%, well with in the IEEE519 standards. The system maintained anear-unity power factor 

of0.99, reducing reactive power injection in to the grid. Fig.7 show the Inverter Output Voltage (Phase A) and Grid 

Voltage Synchronization 

 

Fig.7: Inverter Output Voltage (Phase A) and Grid Voltage Synchronization 

ENERGY YIELD 

The system demonstrated a 5.8% increase in energy yield over a week-longsimulation compared to systems using 

traditional MPPT algorithms. 

Increased Energy Yield 

The system demonstrated a 6.5% increase in energy yield over a week-long simulation compared to systems 

using standard ANN-based MPPT. This improvement is attributed to the deep learning optimization layer, which 

enhanced the system’s adaptability to real-time environmental changes.Fig.8 shows the Energy field comparison 
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Fig.8: Energy field comparison 

Increased Energy Yield 

The system demonstrated a 6.5% increase in energy yield over a week-long simulation compared to systems using 

standard ANN-based MPPT. This improvement is attributed to the deep learning optimization layer, which enhanced 

the system’s adaptability to real-time environmental changes.Fig.9 show the Energy yield comparison between ANN 

based and Deep learning 

 

Fig.9: Energy yield comparison between ANN based and Deep learning 

THD output 

With out PLL 

The inverter output waveform was generated without synchronization to the grid through PLL. As a result, 

harmonic distortions in the output voltage were significant due to the lack of synchronization and filtering. 

Key parameters: 

• Fundamental voltage amplitude: 230 V (RMS). 

• Harmonic magnitudes: Higher values for the 3rd, 5th, and 7th harmonics. 

• Resulting THD: 11.51%, indicating a high level of harmonic distortion. 

The waveform is visibly distorted due to the presence of higher harmonic magnitudes. 

The lack of synchronization and harmonic control mechanisms leads to significant deviations from a sinusoidal 

output. 

With PLL and ANN MPPT 

In this scenario, the inverter output was synchronized to the grid using PLL, with harmonic filtering further 

enhanced by ANN-based MPPT control. This significantly reduced the harmonic content in the output voltage. 

Key parameters: 

• Fundamental voltage amplitude: 230 V (RMS). 
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• Harmonic magnitudes: Reduced for the 3rd, 5th, and 7th harmonics due to PLL. 

• Resulting THD: 1.84%, meeting the target of less than 2%, this aligns with international grid standards. 

The waveform closely resembles a pure sinusoidal wave, with minimal harmonic distortions. 

PLL synchronization ensures proper grid alignment, while ANN MPPT further optimizes harmonic 

suppression.Fig.10 Show the THD without PLL and With PLL 

 

Fig.10: THD without PLL and With PLL 

Comparison with the existing system 

The proposed ANN-based system demonstrates superior performance in all evaluated metrics, particularly in MPPT 

efficiency and tracking response. These improvements are critical for renewable energy systems where fast and 

precise adaptation is essential for maximizing energy harvest. 

Parameter 
ANN Based system 

(Proposed) 
Traditional system (P&O/IncCond) 

MPPT Efficiency ###### 95-97% 
Tracking Response 0.1 seconds 0.5 – 0.8 seconds 

Steady state voltage 380V±2% 380V±5% 

THD ###### 11.51% (Without PLL) 

Power Factor 0.99 0.95 

 

The incorporation of PLL synchronization plays a pivotal role in minimizing THD and stabilizing the output 

voltage, ensuring compliance with grid standards and enhancing overall system reliability. The traditional methods, 

while simpler to implement, suffer from slower response times, higher steady-state deviations, and higher harmonic 

distortions, making them less suitable for advanced applications. 

Limitations and Challenges 

Despitetheadvantagesoftheproposedtwo-stagegrid-connected solarPV system, several limitations and challenges 

remain: 

1. ANNTrainingQuality: The accuracy of the ANN-based MPPT heavily dependson the quality of it straining 

data.In adequate training can lead to sub optimal power tracking, especially under rapidly changing 

environmental conditions. 

2. ComputationalComplexity: The integration of ANN-based MPPT and PLL synchronization increases 

computational demands. Implementing these algorithms on low-costmicrocontrollers may impact real-time 

performance and increase system costs. 

3. ComponentStress: The high switching frequency of the Lands man Converter may cause increased stress on 
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inductors and capacitors, potentially leading to component degradation and reduced system lifes pan. It can 

also introduce electro magneticinte reference (EMI). 

4. GridStability: Large-scale integration of solar PV systems can affect grid stability, particularly in weak grid 

areas.While PLL synchronization improves grid compliance, sudden fluctuationsin solar generation could 

impact voltagest ability. 

5. HighInitialCosts: The system'ssophisticatedcomponents, including ANN-compatiblecontrollersand high-

frequencyconverters, can lead to higher setup and maintenance costs. 

Conclusion and Future Work 

This paper presentsa two-stage, three- phase grid-connected solar PV system that lever ages a Landsman Converter 

with an ANN-based MPPT algorithm and PLL-controlled inverter for efficient power conversion andgridintegration. 

The proposed system demonstrates significant improvements in energy extraction, achieving a 99.2% MPPT 

efficiency, reducing Total Harmonic Distortion (THD) to 1.8%, and maintaining a near-unity power factor. These 

enhancements contribute to improved power quality, grid stability, and overallsystemreliability, making the system 

aviablesolution for large-scale solar PV installations. 

However, challenges such as computationalcomplexity, componentstress, and grid stability constraints need to be 

addressed for broader adoption. The proposed system offer sascalable and cost-effective approach to optimizing 

solar energy utilization, supporting global efforts towards sustainable energy transitions. 

Future Work will focus on: 

Hybrid MPPTTechniques: Exploring hybrid approaches that combine ANN with optimization methods like 

Fuzzy Logicor Particle Swarm Optimization (PSO) to further improve tracking accuracy and response under highly 

variable conditions. 

EnergyStorageIntegration: Incorporating Battery Energy Storage Systems (BESS) to buffer against rapid 

fluctuationsinsolar powergeneration, enhancing grid stability and enabling peakshaving. 

IoT-basedMonitoring: Implementing IoT technologies for real-time performance monitoring, predictive 

maintenance, and remote control to improve system efficiency and reduce operational costs. 

AdvancedGridSupport: Developing enhance dreactivepowermanagement and voltage regulation strategies to 

better support weakgrid infrastructures, ensuringreliableintegration of renewable energy sources. 

These future enhancements aim to overcome current limitations, making the system more robust, adaptable, and 

suitable for diversegrid conditions. 
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