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The convergence of data science and cybersecurity is reshaping the landscape of 

modern production engineering, where digital tools and interconnected systems 

are central to product development. This study investigates how the integration of 

machine learning-driven anomaly detection and cybersecurity frameworks can 

enhance the resilience, efficiency, and security of production environments. Using 

a multi-phase methodology that includes unsupervised learning models, 

vulnerability analysis, and statistical evaluation, the research evaluates security 

risks across CAD systems, IoT gateways, PLCs, and cloud-based platforms. 

Isolation Forest and Autoencoder models were tested across three production lines, 

with Isolation Forest demonstrating superior detection performance (F1-score > 

0.96) and lower latency. Penetration testing identified critical vulnerabilities, 

particularly in control systems and network gateways, while correlation and 

hypothesis testing revealed significant relationships between vulnerability severity, 

incident frequency, and operational downtime. The post-integration period showed 

a marked decline in anomaly incidents, validating the effectiveness of embedded 

security protocols. This study concludes that combining data science with 

cybersecurity within the production lifecycle not only protects intellectual property 

and system integrity but also enables scalable, secure innovation. The findings 

advocate for a DevSecOps-oriented approach in engineering, ensuring that security 

is treated as a core component of intelligent, data-driven manufacturing. 

Keywords: Production Engineering, Data Science, Cybersecurity, Anomaly 

Detection, Secure Product Development, Machine Learning, DevSecOps, Industrial 

Security 

INTRODUCTION 

Context of modern production engineering 

Production engineering has evolved significantly with the emergence of Industry 4.0, integrating 

automation, real-time data acquisition, and advanced analytics into the manufacturing lifecycle 

(Chaduvula et al., 2018). This transformation enables rapid product development cycles, lean 

operations, and cost efficiencies. However, the convergence of digital systems with traditional 

production workflows introduces new vulnerabilities. In modern settings, engineering processes rely 

heavily on digital tools such as computer-aided design (CAD), embedded systems, and cloud-based 

product lifecycle management platforms (Thuraisingham et al., 2022). This digital dependency, while 
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offering efficiency and scalability, also expands the attack surface for cyber threats targeting 

intellectual property (IP), control systems, and quality assurance mechanisms (Rahim et al., 2019). 

Role of data science in enhancing product development 

Data science plays a critical role in optimizing production engineering by extracting actionable 

insights from vast volumes of manufacturing data (ProkoPowicz et al., 2023). Predictive maintenance, 

defect detection, real-time performance analytics, and customer-driven design iterations are now 

possible due to advancements in machine learning and big data processing. These data-driven 

methodologies reduce downtime, increase product reliability, and enable personalized product 

development (Sarker et al., 2020). Moreover, simulation-driven design and digital twins are 

increasingly employed in product development environments, allowing engineers to model, test, and 

refine designs with unprecedented accuracy and speed. However, this increased reliance on data also 

brings challenges related to data integrity, unauthorized access, and model poisoning attacks (Thames 

& Schaefer, 2017). 

Cybersecurity challenges in engineering pipelines 

Cybersecurity within the production engineering domain has become an essential consideration, 

particularly as manufacturing systems become more interconnected. Threat actors targeting 

production facilities may exploit insecure APIs, tamper with sensor data, or deploy ransomware to 

halt operations (Chhetri et al., 2017). Attacks such as the 2017 Triton malware incident, which 

targeted industrial control systems, underscore the devastating potential of cybersecurity breaches. 

Furthermore, adversarial machine learning has emerged as a concern, with attackers manipulating 

training data or inference processes to induce incorrect outputs in automated systems (Hero et al., 

2023). As engineering teams increasingly adopt autonomous tools and cloud-based collaboration 

platforms, ensuring the confidentiality, integrity, and availability of data across the product 

development lifecycle is vital. 

The need for integrated security-driven data strategies 

Securing production engineering requires a paradigm shift integrating cybersecurity principles 

directly into the data science workflows that support product development. This integration must go 

beyond traditional IT safeguards and address domain-specific risks, such as firmware manipulation, 

additive manufacturing sabotage, and insider threats (Chhetri et al., 2018). Approaches like secure-

by-design engineering, zero-trust architecture, and real-time threat monitoring need to be 

incorporated into the production lifecycle. Moreover, ethical and regulatory considerations, such as 

compliance with GDPR or NIST frameworks, must be factored into engineering decisions, especially 

when dealing with sensitive design data or customer-driven customization (Dedousis et al., 2021). 
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Objectives of the study 

This research investigates the intersection of data science and cybersecurity in the context of modern 

production engineering. It explores how data-driven techniques can be leveraged not only to optimize 

development and production processes but also to safeguard against cyber threats that jeopardize 

product quality and operational continuity. The study aims to identify security gaps in current 

engineering pipelines, propose robust data protection models, and demonstrate how AI and analytics 

can serve as both enablers and protectors of engineering innovation. By combining engineering 

expertise with advanced cybersecurity and data science methods, this study contributes toward the 

development of secure, intelligent, and resilient production ecosystems. 

METHODOLOGY 

Framework for securing production engineering 

The methodology adopted in this study is designed to comprehensively evaluate and enhance the 

security posture of production engineering environments by integrating data science techniques with 

cybersecurity protocols across various stages of product development. The research began by mapping 

a typical production engineering pipeline, encompassing design, prototyping, testing, and 

manufacturing stages. Key digital touchpoints and technologies—such as CAD tools, IoT-enabled 

machinery, cloud-based collaboration platforms, and quality control systems—were identified as 

critical components to monitor for cybersecurity vulnerabilities. A threat modeling approach based on 

STRIDE (Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and Elevation 

of privilege) was applied to each component to assess potential risks and system exposure. 

Application of data science for anomaly detection 

To enable proactive threat mitigation in the production process, advanced data science techniques 

were implemented. A machine learning-based anomaly detection model was trained using historical 

data from industrial sensors, server logs, and development tool usage patterns. The dataset was pre-

processed using standardization and outlier removal to ensure quality inputs for model training. 

Unsupervised learning techniques, including Isolation Forest and Autoencoders, were applied to 

detect deviations from expected operational behaviors. Principal Component Analysis (PCA) was used 

for dimensionality reduction and visualization of high-dimensional operational data to identify latent 

risk factors in the engineering pipeline. These methods allowed the identification of abnormal events, 

such as unauthorized access or machine behavior inconsistencies, in near real-time. 

Cybersecurity evaluation and penetration testing 

To complement the data-driven models, manual and automated penetration testing was conducted on 

simulated production environments. Open-source tools like OWASP ZAP and Metasploit were used to 

scan vulnerabilities across APIs, version control systems, and firmware update modules. Simulated 

attacks were designed to replicate real-world cyber threats such as man-in-the-middle attacks, 
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phishing-based credential theft, and injection vulnerabilities within the design submission tools. Risk 

scoring was performed using the Common Vulnerability Scoring System (CVSS) to prioritize threats 

based on severity and exploitability. Security audit logs were analyzed using a hybrid approach of rule-

based log parsing and NLP-driven event correlation to identify multi-step intrusion patterns. 

Integration with product development lifecycle 

A DevSecOps approach was incorporated into the engineering and product development process, 

emphasizing continuous integration and continuous delivery (CI/CD) pipelines fortified with 

automated security gates. Static and dynamic code analysis tools were integrated to detect security 

flaws in software supporting the production tools. This methodology ensured that security was 

embedded within the design, testing, and deployment phases of product development. In parallel, 

data governance strategies were implemented to safeguard sensitive product and customer data 

through encryption, role-based access control (RBAC), and regular compliance audits. 

Statistical validation and performance evaluation 

For quantitative assessment, various statistical analyses were conducted. The performance of anomaly 

detection models was evaluated using accuracy, precision, recall, and F1-score metrics. Receiver 

Operating Characteristic (ROC) curves were plotted, and the Area Under the Curve (AUC) was 

calculated to compare classifier effectiveness. Hypothesis testing, including paired t-tests and ANOVA, 

was used to assess the significance of model improvements and the impact of implemented 

cybersecurity measures across different production settings. A correlation matrix was also generated 

to explore associations between system vulnerabilities, model prediction accuracy, and frequency of 

security incidents. 

This methodology offers a multidisciplinary approach to securing production engineering by 

leveraging data science for early detection, cybersecurity for protection, and statistical rigor for 

validation, all within the dynamic context of modern product development environments. 

RESULTS 

The integration of data science techniques and cybersecurity protocols into the production 

engineering workflow yielded measurable improvements in both system security and anomaly 

detection efficiency. As shown in Table 1, the Isolation Forest model consistently outperformed the 

Autoencoder across all three production lines (PL-1 to PL-3), achieving an average accuracy of 97.2%, 

precision of 96.6%, and F1-score of 0.962. In contrast, the Autoencoder yielded a slightly lower F1-

score of 0.935, with higher false positive and false negative rates. Detection latency was also 

marginally lower for Isolation Forest, demonstrating its superior real-time responsiveness. These 

results highlight the model's effectiveness in distinguishing abnormal events from regular operations 

across heterogeneous production environments. 
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Table 1: Anomaly-detection model performance across production lines 

Production 

Line 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

Detection 

Latency 

(ms) 

FPR 

(%) 

FNR 

(%) 

PL-1 Isolation 

Forest 

97.2 96.8 95.9 0.963 140 3.1 4.1 

PL-1 Autoencoder 95.5 94.1 93.0 0.936 155 4.8 5.5 

PL-2 Isolation 

Forest 

96.8 95.9 95.1 0.955 135 3.4 4.2 

PL-2 Autoencoder 94.9 93.7 92.5 0.931 150 5.0 5.8 

PL-3 Isolation 

Forest 

97.6 97.0 96.3 0.968 138 2.9 3.7 

PL-3 Autoencoder 95.8 94.5 93.4 0.939 152 4.5 5.3 

 

The vulnerability assessment of critical system components, detailed in Table 2, uncovered significant 

security gaps. The Control PLC and IoT Gateway exhibited the highest number of vulnerabilities (27 

and 23, respectively) and the highest average CVSS scores (9.0 and 8.2), indicating severe exposure to 

potential attacks. Notably, the residual risk scores were highest in these systems (0.56 and 0.45), 

suggesting a need for prioritized remediation. Meanwhile, the CAD server and Cloud PLM presented 

moderate risk profiles, primarily due to quicker patch turnaround times and lower average CVSS 

values. 

Table 2: Vulnerability landscape of key system components 

Component Total 

Vulns 

Avg 

CVSS 

High-

Severity 

Medium-

Severity 

Mean Patch 

Time (hrs) 

Residual Risk 

Score 

CAD Server 18 7.5 6 10 24 0.38 

IoT Gateway 23 8.2 9 12 36 0.45 

Cloud PLM 14 6.9 4 8 20 0.29 

Control PLC 27 9.0 12 12 48 0.56 

Version Control 19 7.8 7 9 30 0.41 

 

Statistical analysis of operational variables revealed strong correlations between system vulnerabilities 

and their impact on production. As illustrated in Table 3, the frequency of security incidents exhibited 

a strong positive correlation with both CVSS scores (r = 0.82) and system downtime (r = 0.89). 

Conversely, model F1-score showed a negative correlation with latency (r = -0.58) and downtime (r = -

0.62), reinforcing the value of high-performing detection models in reducing system disruptions. 
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Table 3: Pearson correlation matrix of critical variables 

 CVSS Incident Freq F1 Latency Downtime 

CVSS 1 0.82 -0.64 0.71 0.68 

Incident Freq  1 -0.72 0.76 0.89 

F1   1 -0.58 -0.62 

Latency    1 0.74 

Downtime     1 

 

The efficacy of the security interventions was statistically validated through hypothesis testing, 

summarized in Table 4. Across all production lines, post-patch comparisons demonstrated significant 

reductions in incident frequency, with p-values ranging from 0.001 to 0.009 and effect sizes above 

0.9, indicating large practical impacts. For instance, PL-3 observed a 46% decrease in incidents post-

intervention. Additionally, the performance difference between the Isolation Forest and Autoencoder 

models was also statistically significant (p = 0.012), confirming the superiority of the former in real-

world deployment conditions. 

Table 4: Hypothesis-testing summary for security interventions 

Test ID Comparison p-value Effect Size (d) Significant (α 

= 0.05) 

Incident 

Reduction (%) 

1 PL-1: pre- vs post-patch 0.004 1.02 Yes 43 

2 PL-2: pre- vs post-patch 0.009 0.94 Yes 39 

3 PL-3: pre- vs post-patch 0.001 1.15 Yes 46 

4 Isolation Forest vs 

Autoencoder (F1 scores) 

0.012 0.81 Yes — 

 

Visual analysis further supports these findings. Figure 1 presents the ROC curves for both models, 

where the Isolation Forest curve consistently dominates, achieving a higher true positive rate at every 

false positive threshold. Figure 2 illustrates the monthly anomaly detection trends, showing a sharp 

decline in incidents following the deployment of integrated security measures. The baseline period 

showed a consistent average of 25–30 incidents per month, which dropped to below 15 post-

intervention, highlighting the real-world effectiveness of embedding cybersecurity into the production 

engineering lifecycle. 
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Figure 1: ROC Curves for Anomaly Detection Models 

 

Figure 2: Monthly anomaly trends 
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DISCUSSION 

Effectiveness of machine learning in anomaly detection 

The results of this study confirm the efficacy of data science approaches, particularly machine learning 

models, in detecting anomalous behavior within complex production engineering environments. The 

Isolation Forest model consistently outperformed the Autoencoder in terms of accuracy, F1-score, and 

lower detection latency, as observed in Table 1. These findings align with the hypothesis that 

unsupervised learning algorithms can effectively model normal operational baselines and flag 

deviations without requiring extensive labeled datasets (Shaabany & Anderl, 2018). The high F1-

scores and low false negative rates suggest that such models can detect subtle threats or system 

inconsistencies before they escalate into failures, thus playing a preventive role in production security. 

This is particularly critical in manufacturing contexts where even minor anomalies can lead to 

cascading effects on quality and throughput (Gupta et al., 2020). 

Prioritization of vulnerabilities in critical components 

The vulnerability assessment conducted across key system components revealed distinct risk profiles, 

emphasizing the importance of component-specific security strategies. As shown in Table 2, the 

Control PLC and IoT Gateways exhibited the highest vulnerability counts and average CVSS scores, 

making them prime targets for exploitation (George, 2025). These components are typically 

embedded in real-time process control and machine communication, and breaches here could lead to 

operational sabotage or data leakage. The long patch times and high residual risk scores suggest 

systemic issues in patch management protocols, necessitating automation and continuous monitoring 

(Ameta et al., 2024). Moreover, the Cloud PLM and CAD servers, while showing fewer high-severity 

vulnerabilities, still warrant consistent security updates due to their roles in storing sensitive design 

data and collaborative engineering files. 

Statistical interdependencies and implications 

The correlation matrix presented in Table 3 offers crucial insights into the interdependence of security 

metrics. The strong positive correlation between CVSS scores and incident frequency (r = 0.82) 

confirms that systems with higher vulnerability severity are more likely to experience frequent attacks. 

Interestingly, the F1-score's negative correlation with latency and downtime further underscores that 

better-performing detection models contribute to operational resilience (Wu et al., 2018). These 

statistical relationships can inform predictive risk modeling where system administrators allocate 

resources based on projected vulnerability impact and historical incident patterns. This finding is 

consistent with emerging literature that emphasizes the need to align security analytics with 

performance metrics in industrial systems (Prinsloo et al., 2019). 
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Real-world impact of security integration 

One of the most significant outcomes of this study is the demonstrable impact of cybersecurity 

integration on reducing anomaly incidents. The time-series trends illustrated in Figure 2 show a 

marked drop in anomaly frequency after deploying machine learning-driven security mechanisms. 

Hypothesis testing results in Table 4 confirm the statistical significance of this improvement, with all 

p-values below 0.01 and large effect sizes, indicating not only consistency but also the robustness of 

the intervention (Mahesh et al., 2020). These outcomes provide empirical support for adopting 

security-by-design principles and integrating threat detection into the product development lifecycle. 

Production lines that once recorded over 25 incidents per month saw that number drop below 15, 

highlighting the potential cost and risk savings from such interventions (Mullet et al., 2021). 

Balancing performance and security in product development 

A notable insight from this study is the dual role of data science not just as a tool for optimizing 

performance but also as a mechanism for enforcing security. In product development environments 

where rapid iteration and cross-team collaboration are essential, traditional security practices may 

slow down delivery cycles. However, embedding lightweight anomaly detection models and 

automated patch pipelines, as demonstrated in this research, enables continuous delivery without 

compromising security (Culot et al., 2019). This DevSecOps-like integration bridges the gap between 

engineering innovation and operational integrity. Furthermore, statistical validation reinforces that 

such integration is not merely theoretical but yields measurable benefits across performance, 

reliability, and safety (Ani et al., 2017). 

Future directions and limitations 

While the current study focuses on three production lines and select system components, future 

research could expand the scope to include multi-vendor environments, diverse geographic locations, 

and larger-scale product development cycles (Toussaint et al., 2024). Additionally, adaptive security 

models that evolve with system behavior could further enhance protection (Wai & Lee, 2023). 

Limitations include the reliance on synthetic penetration testing and model performance in simulated 

environments, which, while controlled, may not capture all real-world complexities. Nonetheless, the 

evidence supports the premise that integrating data science and cybersecurity in production 

engineering creates more secure, efficient, and resilient manufacturing systems (Wisdom et al., 2025). 

CONCLUSION 

This study underscores the critical importance of integrating data science and cybersecurity within 

production engineering to secure product development workflows and enhance operational resilience. 

Through the deployment of machine learning-based anomaly detection models, comprehensive 

vulnerability assessments, and statistical validation, the research demonstrated how intelligent 

systems can both detect threats in real time and mitigate risks across diverse production 

environments. The Isolation Forest model proved particularly effective, while statistical correlations 
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revealed meaningful links between system vulnerabilities, detection performance, and operational 

disruptions. The post-integration decline in anomaly incidents further validates the success of 

embedding security measures within data-driven engineering pipelines. As production systems 

become increasingly digitized and interconnected, the fusion of cybersecurity and data science offers a 

proactive, scalable solution for safeguarding innovation, maintaining system integrity, and ensuring 

the reliability of modern product development ecosystems. 
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