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The growth of Internet of Things (IoT) devices in smart cities has increased the risk of cyber 

threats due to new attack surfaces and limited built-in security. This paper presents an adaptive, 

multi-layered security framework that combines deep learning, reinforcement learning, and 

blockchain to detect and mitigate threats in IoT environments. The system uses a Convolutional 

Neural Network–Long Short-Term Memory (CNN–LSTM) model to detect anomalies in 

network traffic with high accuracy. When a threat is detected, a Deep Q-Network (DQN) agent 

selects the most appropriate response based on the threat level, trust score of the device, and 

service importance. To ensure transparency and integrity, all events and actions are stored 

immutably using Hyperledger Fabric and the InterPlanetary File System (IPFS). Experiments 

using the BoT-IoT dataset show that the CNN–LSTM model achieves 97.8% accuracy and an 

AUC of 0.992. The DQN agent reduces false isolations to 2.8% and maintains an average 

response time of 148 ms. Compared to traditional systems, the proposed framework offers better 

accuracy, faster decision-making, and improved trust management. The use of blockchain 

ensures secure, auditable records across multiple domains. This approach provides a scalable 

and intelligent solution for securing smart city infrastructures against evolving threats. 

 

INTRODUCTION 

The rapid proliferation of Internet of Things (IoT) devices within smart city infrastructures has led to significant 

improvements in urban efficiency and resource management. These systems support real-time traffic control, energy 

monitoring, waste management, and e-governance. However, they are also inherently vulnerable to cybersecurity 

threats due to their heterogeneous nature, limited computational power, and widespread deployment [1][2]. 

The fusion of Artificial Intelligence (AI) with Blockchain technology offers a promising paradigm for addressing these 

vulnerabilities. While AI provides intelligent anomaly detection and adaptive decision-making, blockchain ensures 

secure, tamper-proof logging and decentralized control [3][4]. This synergy creates robust frameworks that can 

autonomously detect, analyze, and mitigate threats in dynamic and complex urban environments [5]. 

Motivated by the increasing sophistication of cyber-attacks and the pressing need for scalable, self-healing security 

mechanisms, research has turned toward adaptive AI–blockchain frameworks as the next frontier for securing smart 

cities [6]. 

Role of AI in Cybersecurity for Smart Cities 

AI has emerged as a core enabler in cybersecurity automation, allowing systems to predict and respond to threats 

with minimal human intervention. In IoT-enabled smart cities, AI systems can process vast streams of data from 

sensors and network devices to detect anomalies, intrusions, and behavioral shifts that may indicate malicious 

activity [7][8]. 

Deep learning models such as CNNs, RNNs, and federated learning-based classifiers are being integrated into urban 

systems for real-time threat detection. For example, AI-driven intrusion detection systems (IDS) can identify zero-

day attacks by learning latent patterns in encrypted traffic or node behavior [9]. 
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Moreover, Explainable AI (XAI) enhances transparency, allowing decision-makers to understand model 

predictions—crucial for regulatory compliance and public trust in smart infrastructure [10]. 

Challenges in AI-Driven Cybersecurity 

Despite its potential, implementing AI in cybersecurity comes with significant challenges: 

a. Data Quality and Privacy 

AI algorithms require large volumes of labeled, high-quality data, which is scarce and often sensitive in nature. This 

limits model accuracy and introduces risks of data leakage in public networks [12]. 

b. Model Interpretability 

AI models, especially deep neural networks, are often considered "black boxes," making it hard to justify security 

decisions—a major concern for government or legal applications in smart cities [13]. 

c. Scalability in Distributed Environments 

Deploying AI across distributed and resource-constrained IoT devices introduces latency, energy consumption, and 

deployment complexity, especially when AI is implemented at the edge or in fog computing layers [14-16]. 

d. Adversarial Attacks 

AI models themselves can be targeted by adversarial inputs or poisoned training data, making them unreliable in 

mission-critical cybersecurity scenarios. 

METHODOLOGY 

This study proposes a multi-layered security framework that integrates deep learning, reinforcement learning, and 

blockchain technologies to detect, respond to, and log cyber threats within IoT-enabled smart cities. The methodology 

is structured across four main functional layers: data ingestion and preprocessing, deep anomaly detection, adaptive 

mitigation, and decentralized trust enforcement. Each layer contributes a modular function to ensure scalability, 

autonomy, and auditability. 

 

Figure 1. Architecture Diagram 

Figure. 1 illustrates the overall architecture, which comprises four primary layers: (A) Data Ingestion and 

Preprocessing, (B) AI-Based Threat Detection, (C) Adaptive Threat Mitigation, and (D) Decentralized Trust and 

Logging. 

Dataset and Preprocessing 
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This study employs the BoT-IoT dataset, a publicly available and widely used benchmark created by the Cyber Range 

Lab at the University of New South Wales (UNSW), specifically designed for IoT security research [19]. The dataset 

simulates a heterogeneous IoT network environment comprising smart devices such as weather sensors, garage 

doors, and refrigerators, and includes a diverse range of benign and malicious traffic. Attack types include Distributed 

Denial of Service (DDoS), Denial of Service (DoS) over TCP, UDP, and HTTP protocols, data theft, and 

reconnaissance (e.g., scanning and probing). With over 70 million labeled instances, the dataset offers rich ground 

truth and temporal diversity, making it suitable for supervised learning and sequence modeling. 

A structured preprocessing pipeline is applied to prepare the dataset for model training. Initially, 30 relevant features 

are selected based on prior research and domain knowledge, capturing packet flow characteristics such as source and 

destination IP addresses, port numbers, protocol types, byte counts, inter-arrival times, and packet rates. This is 

followed by data cleaning, which includes the removal of null values, duplicates, and non-informative constant 

columns. To standardize the input space, all numerical features are normalized using Min-Max scaling, as defined in 

(1): 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝑥min

𝑥max−𝑥min
  (1) 

where x is the original feature value, and xmin and xmax represent the minimum and maximum values of that feature, 

respectively. This transformation ensures all input values fall within the range [0,1], which improves model 

convergence and training stability. 

To address the inherent class imbalance in the dataset—where benign traffic instances far outnumber malicious 

ones—the Synthetic Minority Over-sampling Technique (SMOTE) is applied. SMOTE generates synthetic samples 

for underrepresented classes by interpolating feature space between minority class neighbors, thereby reducing bias 

during model training. 

Following class balancing, the dataset is temporally segmented into fixed-length time-series windows to preserve the 

contextual flow of network activity. This segmentation enables the use of sequence-aware models such as Long Short-

Term Memory (LSTM) networks for anomaly detection. Finally, the processed dataset is partitioned into training 

(70%), validation (15%), and testing (15%) subsets to facilitate model development, hyperparameter tuning, and 

performance evaluation. 

Deep Learning-Based Threat Detection 

To accurately identify cyber threats within the IoT environment, a hybrid deep learning architecture combining 

Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks is developed. This 

architecture leverages the strengths of both CNNs and LSTMs—where CNNs are effective in capturing spatial 

correlations and local feature patterns within input sequences, and LSTMs excel at learning long-term dependencies 

and temporal dynamics. The fusion of these architectures is particularly well-suited for analyzing network traffic, 

which exhibits both spatial and sequential patterns over time. 

The input to the model comprises time-windowed sequences of normalized network traffic data, each representing a 

fixed-length segment of feature vectors derived from IoT packet flows. The CNN component of the architecture 

consists of one-dimensional convolutional layers, which apply multiple filters to extract high-level representations of 

traffic characteristics such as port usage anomalies, packet density fluctuations, and protocol-specific behaviors. 

These convolutional layers are followed by activation functions (e.g., ReLU) and max-pooling operations to reduce 

dimensionality and retain the most salient features. 

The output feature maps from the CNN layers are then passed to the LSTM layers, which are designed to model 

temporal dependencies across sequences. LSTM units maintain internal memory cells and gating mechanisms (input, 

forget, and output gates), allowing them to learn how prior traffic behavior influences current observations. This 

temporal modeling is crucial for detecting evolving threats such as slow-scan attacks, distributed probing, or multi-

stage intrusions. 
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The final output layer is a fully connected dense layer with a sigmoid activation function. It produces a threat 

probability score 𝑦̂ ∈ (0,1), representing the likelihood that a given sequence is malicious. A threshold (e.g., 0.5) is 

applied to classify the traffic as either benign or malicious. 

A. Loss Function 

The model is trained using the Binary Cross-Entropy (BCE) loss function, which quantifies the difference between 

the predicted probabilities and the actual class labels. The loss function is defined as: 

ℒBCE = −
1

𝑁
∑  

𝑁

𝑖=1

[𝑦𝑖 ⋅ log⁡(𝑦̂𝑖) + (1 − 𝑦𝑖) ⋅ log⁡(1 − 𝑦̂𝑖)] 

where: 

• 𝑦𝑖 ∈ {0,1} is the ground truth label for sample 𝑖, 

• 𝑦̂𝑖 ∈ (0,1) is the predicted threat probability for the same sample, and 

• 𝑁 is the number of samples in the batch. 

This loss penalizes incorrect predictions more heavily when the model is highly confident, encouraging probabilistic 

calibration. 

B. Training Configuration 

The model is trained over 50 epochs using the Adam optimizer with a learning rate of 0.001 and a batch size of 128. 

Performance is evaluated using standard metrics including accuracy, precision, recall, F1-score, and the Area Under 

the Receiver Operating Characteristic Curve (AUC). These metrics provide a comprehensive assessment of the 

model's classification capability, especially under conditions of class imbalance. 

C. Output and Integration 

Once trained, the CNN–LSTM model serves as the system’s first decision point. For every incoming sequence of 

network activity, it outputs a threat probability score and a corresponding binary classification. These results are 

subsequently forwarded to the reinforcement learning-based mitigation layer, which determines the appropriate 

response based on the perceived threat level and contextual parameters. 

Adaptive Threat Mitigation Using Reinforcement Learning 

To enable intelligent and dynamic responses to detected cyber threats, the proposed framework incorporates a Deep 

Q-Network (DQN) agent for decision-making. Unlike traditional rule-based or reactive mitigation systems that rely 

on predefined static policies, the DQN agent adopts a model-free reinforcement learning approach. It learns an 

optimal mitigation policy by interacting with the environment and maximizing cumulative rewards over time, 

adapting to changing threat patterns and system conditions. 

The state representation provided to the DQN agent comprises five key inputs: the threat probability score output 

from the CNN–LSTM detection model, the current trust score of the IoT node (ranging from 0 to 100), the criticality 

index of the node (scaled from 1 to 5 based on its functional importance within the smart city infrastructure), the last 

mitigation action taken, and the time elapsed since the last detected anomaly. This multi-dimensional state space 

captures both the threat context and the operational history of the IoT node, enabling the agent to make informed 

decisions. 

Based on the input state, the agent selects one of five discrete mitigation actions: (1) monitor (i.e., take no action and 

continue observation), (2) generate an alert for administrative review, (3) temporarily isolate the affected node from 

the network, (4) downgrade the node's trust level, or (5) log the event without intervention (passive response). These 

actions are designed to balance network security with service availability, allowing for both aggressive and 

conservative responses depending on the situation. 
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The reward function guiding the agent's learning process is carefully structured to incentivize correct and timely 

threat mitigations, penalize false positives and unnecessary isolations, and promote the continuity of essential 

services. Rewards are positive when threats are accurately mitigated with minimal disruption, and negative when the 

agent overreacts to benign activity or fails to act on malicious behavior. The agent is trained over 1,000 episodes using 

an ε-greedy exploration strategy and experience replay, which enhances learning stability and exploration of the 

action space. 

Decentralized Logging via Blockchain and IPFS 

To ensure tamper-proof enforcement and traceable incident response within IoT-enabled smart cities, the proposed 

framework integrates a decentralized logging system built on Hyperledger Fabric blockchain and the InterPlanetary 

File System (IPFS). The blockchain layer maintains immutable records of key security-related events, including 

detected anomalies, decisions made by the reinforcement learning (DQN) agent, and trust level updates for IoT 

nodes. Smart contracts are deployed to automate response actions based on the DQN outputs, enhancing system 

responsiveness and autonomy. To reduce blockchain overhead while preserving comprehensive data logs, detailed 

records such as raw traffic data, threat traces, and mitigation histories are stored off-chain in IPFS. Only 

cryptographic hash pointers to these logs are stored on-chain, ensuring both integrity and efficiency. This hybrid 

design upholds auditability, data verifiability, and regulatory compliance across distributed service layers in smart 

city environments. 

MODEL TRAINING AND EVALUATION 

A. Training Methodology 

The proposed threat detection model is trained using a hybrid deep learning architecture that combines 

Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) units. The training process is 

performed in a supervised learning setting using the preprocessed BoT-IoT dataset, which includes a balanced 

distribution of benign and malicious traffic classes after applying SMOTE. 

Each input sample is structured as a fixed-length time-series sequence representing a 10-second window of network 

activity. These sequences are normalized and batched prior to training. The model is trained to classify each sequence 

as either benign (label 0) or malicious (label 1) using the Binary Cross-Entropy (BCE) loss function. 

The model is trained for 50 epochs using the Adam optimizer with a learning rate of η=0.001and a batch size of 128. 

Early stopping based on validation loss is used to prevent overfitting. The LSTM units are initialized with a hidden 

state size of 128, and dropout regularization with a rate of 0.3 is applied after LSTM layers to improve generalization. 

Once the CNN–LSTM model converges, it is integrated with the Deep Q-Network (DQN) for adaptive mitigation. The 

DQN agent is trained separately using reinforcement learning over 1,000 episodes, where the environment 

transitions are derived from the anomaly detection outputs and trust dynamics of IoT nodes. The agent updates its 

Q-values using the Bellman equation: 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 ⋅ max
𝑎′

 𝑄(𝑠𝑡+1, 𝑎
′) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 

where: 

• 𝑠𝑡 is the current state, 

• 𝑎𝑡 is the selected action, 

• 𝑟𝑡 is the received reward, 

• 𝛾 ∈ [0,1] is the discount factor, 

• 𝛼 is the learning rate, and 

• 𝑄(𝑠, 𝑎) is the action-value function. 

The agent uses an 𝜀-greedy policy for exploration, with 𝜀 decaying over time. 
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Performance Evaluation 

To evaluate the performance of the proposed framework, we assess the CNN–LSTM detection model and the DQN-

based mitigation policy separately and jointly. The detection model is evaluated using standard classification metrics, 

including: 

1. Accuracy: 

 Accuracy =
( True Positives +  True Negatives )

( True Positives +  True Negatives +  False Positives +  False Negatives )
 

2. Precision: 

 Precision =
 True Positives 

( True Positives +  False Positives )
 

3. Recall: 

 Recall =
 True Positives 

( True Positives +  False Negatives )
 

4. F1-score: 

 F1-score = 2 ∗
( Precision ∗  Recall )

( Precision +  Recall )
 

5. AUC-ROC Curve (Area Under the Receiver Operating Characteristic Curve) 

False Positive Rate =
False Positives 

( False Positives + True Negatives )
, True Positive Rate= Recall=

True Positives 

( True Positives + False Negatives )
 

RESULTS AND DISCUSSION 

To validate the proposed framework, a series of experiments were conducted using the BoT-IoT dataset. The 

performance was evaluated at two levels: (1) the anomaly detection capability of the CNN–LSTM model, and (2) the 

decision-making efficiency of the Deep Q-Network (DQN) agent for adaptive mitigation. All models were trained and 

tested using a workstation with an Intel i7 CPU, 32 GB RAM, and an NVIDIA RTX 3080 GPU. 

A. Anomaly Detection Performance 

The CNN–LSTM model was trained on 70% of the dataset and tested on the remaining 15%, with the rest used for 

validation. Table I summarizes the classification performance: 

Table 1 – CNN–LSTM Detection Model Performance 

Metric Value (%) 

Accuracy 97.8 

Precision 96.4 

Recall 98.2 

F1-Score 97.3 

AUC 99.2 

 

The training performance of the proposed CNN–LSTM anomaly detection model was monitored over 50 epochs 

using the BoT-IoT dataset. As shown in Figure. 2, both the training and validation accuracy increased steadily 

throughout the training process, reaching approximately 98% and 96%, respectively. Correspondingly, the training 

and validation loss decreased consistently, indicating effective convergence and strong generalization capability. The 
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similarity in the training and validation curves confirms the absence of overfitting, validating the model's robustness 

on unseen data. 

To further evaluate the classifier’s discrimination ability, a Receiver Operating Characteristic (ROC) curve was plotted 

based on the model’s predictions on the test set. As illustrated in Figure. 3, the ROC curve demonstrates a high Area 

Under the Curve (AUC) value of 0.992. This indicates that the model achieves excellent separability between benign 

and malicious traffic instances, with a strong true positive rate and a low false positive rate across various threshold 

settings. 

 

Figure 2. Training and Validation Accuracy/Loss curve 

 

Figure 3. Receiver Operating Characteristic (ROC) curve of the CNN–LSTM model 

B. Mitigation Policy Performance 

Once a threat was detected, the DQN agent was responsible for selecting the most appropriate response. Over 1,000 

training episodes, the agent demonstrated continuous improvement in cumulative rewards. Figure. 4 shows the 

average reward per episode converging after ~700 episodes, indicating effective policy learning. 
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Table 2 – DQN Agent Mitigation Results 

Metric Value 

Avg. Reward per Episode +23.6 

Successful Mitigations 94.1% 

False Isolation Rate 2.8% 

Average Response Time (ms) 148 

 

 

Figure 4. Average DQN reward per episode over 1000 training episodes 

The agent successfully avoided unnecessary disruptions (low false isolation rate) while maintaining service 

availability. The average response time of 148 ms is suitable for real-time smart city environments. 

C. End-to-End System Evaluation 

In a combined simulation scenario, the full framework (CNN–LSTM + DQN + Blockchain) was tested for its response 

pipeline under simulated attack bursts. The system was capable of detecting, classifying, and responding to most 

threats in under 250 milliseconds, including blockchain logging overhead. 

Additionally, trust scores of IoT nodes dynamically adjusted based on their behavior and the mitigation decisions 

applied, illustrating the system’s adaptive trust enforcement capability. 

D. Comparative Analysis 

The proposed model was benchmarked against two baseline approaches: 

1. Traditional CNN-only model (no temporal modeling) 

2. CNN–LSTM with static rule-based mitigation 

Table 3 – Comparative Performance 

Model Accuracy 

(%) 

F1-Score 

(%) 

Response Time 

(ms) 

False Isolation 

(%) 

CNN Only + Rule-based 91.5 89.6 210 6.4 

CNN–LSTM + Rule-based 95.2 93.8 195 4.2 

CNN–LSTM + DQN 

(Proposed) 

97.8 97.3 148 2.8 

The proposed approach outperforms both baselines in terms of accuracy, mitigation efficiency, and reliability. The 

use of adaptive RL allows the system to learn from past outcomes and make smarter decisions than static rule engines. 



Journal of Information Systems Engineering and Management 
2025, 10(57s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 722 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Figure 5. Model Comparison: Baseline vs. Proposed System 

CONCLUSION 

This paper proposed a dynamic and smart security model to identify and act on cyber threats on IoT Smart cities. 

The system uses a combination of deep learning, reinforcement learning and blockchain to form a dynamic and real-

time solution. The CNN LSTM model has been able to find both spatial and temporal trends in traffic network 

patterns and gave a high performance on the BoT-IoT dataset with AUC 0.992 and F1-score 97.3%. The Deep Q-

Network (DQN) agent also enhances the system in the decision-making of the best mitigation action that should be 

taken, according to actual risk, device mistrust, and the significance of the service. This minimizes false alarms and 

maintains response time low. Hyperledger and IPFS have been used as the foundation of the blockchain layer where 

all the events and decisions are logged securely in a tamper-proof and auditable manner. In comparison to the 

traditional rule-based systems, the approach is more accurate, responds faster, and is also highly adaptable even to 

complex attack situations. It also provides solutions to some of the major difficulties of IoT security namely 

management of large data, real-time detection, and trust in the distributed environment. Future work, to secure data 

privacy in smart city domains, we will expand the current system using federated learning. Another idea we want to 

investigate are zero-trust architectures, multi-agent reinforcement learning, and edge computing approaches in order 

to be able to scale the system and avoid excessive reliance on centralized processing. Lastly, we will work with the 

city authorities to use it as a system in a real smart city setting and to measure its effectiveness. 
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