
Journal of Information Systems Engineering and Management
2025, 10(9s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Efficient Component Packing with Algorithmic Optimizations

Nilesh P Sable1, Kirti H. Wanjale2, Swapnali Makdey3, Ketan J. Raut4, Ashok Kanthe5, Varsha Jadhav6
1Department of Computer Science & Engineering (Artificial Intelligence), Vishwakarma Institute of Information Technology, Pune.

drsablenilesh@gmail.com
2Department of Computer Engineering, Vishwakarma Institute of Technology, Pune, Maharashtra, India

kirti.wanjale@vit.edu
3Assistant Professor, Department of Artificial Intelligence and Data Science, Fr. Conceicao Rodrigues

College of Engineering, Mumbai, Maharashtra, India. swapnalimakdey@gmail.com
4Department of Electronics and Telecommunication Engineering, Vishwakarma Institute of Technology (Kondhwa campus), Pune

ketan.raut@viit.ac.in
5Associate Professor, Department of Computer Engineering, Fr. Conceicao Rodrigues College of Engineering, Mumbai, Maharashtra, India.

ashokkanthe@gmail.com
6Associate Professor, Artificial Intelligence and Data Science , , Vishwakarma Institute of Technology, Pune, Maharashtra, India

Varsha.jadhav@vit.edu

ARTICLE INFO ABSTRACT

Received: 22 Oct 2024

Revised: 18 Dec 2024

Accepted: 30 Dec 2024

This research paper introduces a recursive algorithm that maximizes component placement by

optimizing their orientations in each layer. A software utility was developed using this algorithm

called Productive Package. This is used to calculate the maximum number of components that

can be packed in the box, the utility enhances efficiency and reduces errors compared to manual

calculations. This involves system analysis and design methods to optimize the packaging

process. The evaluation of Productive Packager demonstrates its accuracy and effectiveness by

comparing its output with manual packaging calculations for various box and component sizes.

The utility offers time savings, improved accuracy, and customization options, making it a

valuable tool for optimizing packaging processes and enhancing transportation efficiency.

Keywords: Optimisation algorithm, Box Packing Problem, Python, 3D Optimization, STEP,

STL

1. INTRODUCTION

Packaging is an essential aspect of product distribution, and optimizing the use of space within a container or box

is critical to ensure efficient and cost-effective transportation. The task of calculating the optimal number of

components that can be accommodated within a box through manual means is not only labor-intensive but also

susceptible to inaccuracies. The Three-Dimensional Bin Packing Problem (3D-BPP) presents a tangible and

practical combinatorial optimization challenge that significantly influences economic outcomes, environmental

considerations, and safety concerns (Ramos et al., 2018). Packing methodologies have found extensive application

across various industries, including the automotive sector, as an effective strategy for addressing the storage

dilemmas associated with components within containers (Joung et al., 2014).

This research paper presents the development and evaluation of a software utility called Productive Packager, which

aims to calculate the maximum number of components that can be packed inside a box of fixed size. The utility

employs a custom recursive algorithm that optimizes the orientation of the components to fit the maximum number

of them in a layer. The algorithm iterates layer by layer, and the final sum is displayed to the user.

The Productive Packager utility offers several advantages over traditional manual packaging calculations. Firstly, it

reduces the time required to determine the optimal orientation of the components, thus improving efficiency.

Secondly, it improves the accuracy of packaging calculations by accounting for the dimensions of each component

and ensuring that they are arranged in the most efficient way possible. Finally, it offers flexibility by allowing the

user to specify the dimensions of the box and the components, enabling customization to specific packaging

requirements.

The evaluation was carried out by comparing the output of the Productive Packager algorithm with manual

401

J INFORM SYSTEMS ENG, 10(9s)

packaging calculations for a range of box and component sizes. The algorithm also demonstrated a high level of

accuracy, with the output matching the manual calculations.

In the development of the proposed algorithm, the principles of system analysis and design played a crucial role.

System analysis involved a thorough examination of the existing packaging processes, identifying challenges, and

defining the requirements for an optimized solution. System design encompassed the creation of a recursive

algorithm that maximizes component placement through optimized orientations in each layer. By applying these

principles, we aimed to align business objectives with the technical aspects of the system, creating a tool that

provides tangible benefits in terms of time savings, improved accuracy, and customization options.

2. RELATED WORK

The problem of packing components into a box is a classic problem in operations research. There are many different

algorithms that have been proposed for solving this problem, including heuristic algorithms, exact algorithms, and

machine learning algorithms.

Heuristic algorithms are typically the most efficient algorithms for packing components into a box. Some of the

most well-known heuristic algorithms include the first-fit algorithm, the best-fit algorithm, and the next-fit

algorithm. These algorithms are relatively simple to implement and can be used to achieve good packing solutions

in a reasonable amount of time.

Exact algorithms can be used to find the optimal packing solution, but they are typically much slower than heuristic

algorithms. The bin-packing problem represents a significantly challenging combinatorial optimization issue with

strong NP-hard characteristics, as noted by Korte et al. (2012). Which means that there is no polynomial-time

algorithm that can find the optimal solution in all cases.

Machine learning algorithms have recently been proposed for solving the packing problem. These algorithms can

learn from historical data to improve their performance. Dynamic Programming algorithms are also introduced.

Typically these bin-packing problems are classified into 1, 2 or 3 dimensions. Secondly, the shape of the container,

if it’s regular or irregular and also if the shapes are of one type or many.

There is a lot of research done on the 2D BPP where various algorithms were introduced to pack rectangles and

squares effectively in a 2D space. Many of these algorithms are heuristic in nature and employ various optimisation

strategies on top of the core logic. Chan et. al (2011) summarizes and analyzes many of these 2D BPP algorithms,

including one phase heuristics, two phase heuristics and local search heuristics. Lodi et. al (2014) also summarizes

2D algorithms in addition to approximations to optimize the model.

Work on 3D has been slow but steady. Harrath (2021) proposed a new heuristic algorithm for solving the 3D bin

packing problem under a balancing constraint. The balancing constraint requires that the bins be filled as evenly as

possible. Joung et al. (2014) came up with a grouping algorithm, which is a heuristic algorithm for 3D packing of

freeform objects. The algorithm clusters components with comparable shapes by evaluating the likeness of their

enclosing boxes. The grouping algorithm is then used to determine the order in which the parts are loaded, the

orientation of the parts, and the position of the parts. Erbayrak et al. (2021) combines these approaches to develop

a new multi-objective optimization model for the 3D bin packing problem. The model considers two objectives: the

number of bins used to pack the items and the load balance between the bins. The model also considers the family

of each item, which is a set of items that have similar properties. Some algorithms like one proposed by Chen et. al

(2010) employ genetic algorithms combining it with local search heuristics for better optimization.

However, despite the progress in prior research addressing specific aspects of packaging optimization and system

analysis, there remains a need for a comprehensive software utility that integrates recursive algorithms and efficient

orientation optimization to maximize component placement. This paper aims to address this gap by introducing the

Productive Packager utility, which incorporates advanced system analysis and design principles to offer an efficient,

accurate, and customizable solution for optimizing packaging processes and enhancing transportation efficiency.

By building on the insights and approaches from the aforementioned works, this research contributes to the field

by providing a practical tool that aligns business objectives with the technical aspects of packaging optimization.

2.2 MOTIVATION

The 3D Box Packing Problem (BPP) is a classic optimization problem that arises in various real-world applications,

402

J INFORM SYSTEMS ENG, 10(9s)

including logistics, warehousing, and transportation. The motivation for this paper comes from the practical

difficulties faced by small and medium-sized industries in packing components inside boxes of fixed sizes. The cost

of boxes and shipping charges can quickly add up, and thus, finding an optimal packing solution can help reduce

packaging material and transportation costs significantly. The proposed algorithm in this paper aims to provide an

efficient and effective solution to the BPP, ultimately helping industries save time, money, and resources.

Small to medium-sized industries often struggle with the problem of efficiently packing components inside boxes

of fixed sizes, resulting in additional costs of purchasing larger boxes and higher shipping fees. This problem can

have a significant impact on the overall cost of their operations, affecting their profitability and competitiveness in

the market. To address this challenge, we propose a solution that leverages advanced algorithms and optimization

techniques to efficiently pack components into boxes, reducing the need for larger boxes and lowering shipping

costs . This solution has the potential to significantly improve the bottom line of these industries, allowing them to

remain competitive in the market and invest in growth opportunities.

3. OBJECTIVES

The objectives of this project are as follows:

● To design and develop an algorithm that can accurately extract the dimensions of components from a

3D (STEP) file.

● To develop a custom algorithm that can calculate the maximum number of components that fit inside

a fixed dimension box.

● To build a user-friendly PC application that can accept 3D (STEP) files as input and display the

calculated maximum number of components as output.

● To test the application and algorithm and ensure that it can handle a range of input scenarios and

produce accurate and reliable results.

3.1 Constraints.

● Every individual component must be fully contained within the confines of the box.

● Overlap among components inside the box is strictly prohibited.

● Every component is oriented in parallel alignment with the surfaces of the box.

4. WORKING

● The user first inputs the dimensions of the outer box (length, breadth and height). This is achieved

using a Graphical user interface (GUI) which is built in python using the Tkinter library.

● Users opt for a 3D Standard for the Exchange of Product Data (STEP) file. These STEP files are designed

to facilitate the generation, modification, and distribution of 3D model designs among diverse

computer-aided design (CAD) software. This file format adheres to standardized specifications.

● Algorithm converts the STEP file to a STL file which is easier to work with. Stereolithography (STL) is

a file format commonly used for 3D printing and computer-aided design (CAD). It lacks color and

texture. Here, extra details of the component are smoothed out and converted to a simpler model so

that the computation of dimensions is faster. This uses the Trimesh and GMSH modules which are

available in Python and some other languages.

● Now using the STL model as the base, the dimensions of the components are calculated, i.e. length,

breadth and height. This is basically calculating the dimensions of the bounding box of the component.

NumPy-STL is the python module that helps us calculate the extents and thereby the bounding box of

the stl model.

● The custom algorithm calculates the optimal orientation of the component for a layer. The logic is based

on a simple mathematical algorithm.

403

J INFORM SYSTEMS ENG, 10(9s)

The challenge of determining how parts should be positioned is known as the part-orientation problem. In

two-dimensional situations, the calculation of orientation is constrained within a span of 0 to 360 degrees.

However, in 3D scenarios, orientation calculation becomes more complex as it needs to consider each axis

individually. This increased complexity poses computational challenges. Santosh et al. addressed this issue by

defining the orientation of parts based on a 90-degree criterion [12]. Particularly, when handling a right cuboid

component characterized by dimensions (l × b × h), it is possible to derive six distinct orientations, as

illustrated in Figure 1.

Figure 1. Six Orientations of a single component

4.1 ALGORITHM

Data : Dimensions of box(x,y,z) and item(a,b,c)

Result : No. of items that can fit inside the box

set answer to 0

function boxes(dimensions, spaceleft)

val ← call (bestorientation)

add val to answer

 when val = 0

 return

 spaceleft ← call(freespace)

call (boxes)

404

J INFORM SYSTEMS ENG, 10(9s)

call (boxes)

print (answer)

bestorientation : ⌊
𝑥

𝑎
 ⌋ × ⌊

𝑦

𝑏
 ⌋ × ⌊

𝑧

𝑐
 ⌋ will give you number of boxes in one orientation. We have to find the maximum

number of boxes for the current remaining space. For that we must check for each orientation of the item. Simply

permute a,b,c. Compute each orientation and take the largest.

freespace : The permutation that gives the most number of boxes helps in finding the free space for the next

iteration. It is observed that the box dimension that leaves the most space(remainder) when divided with its

respective item dimension i.e.[max(dim_box % dim_item)] is the only box dimension that changes for the next

iteration. Other two remain the same. Flowchart for the algorithm is depicted in figure 2.

Figure 2. Flowchart for the algorithm

4.2 TECHNOLOGIES USED

We have used different modules of Python to achieve various functionalities.

405

J INFORM SYSTEMS ENG, 10(9s)

1. Tkinter - Tkinter serves as an excellent technology stack for developing graphical user interfaces (GUIs) in

Python. As a native integration with the Tk GUI toolkit, Tkinter seamlessly connects Python code with the

underlying Tk library, leveraging its powerful features. With its cross-platform compatibility, Tkinter

empowers developers to create GUI applications that can run smoothly on various operating systems,

including Windows, macOS, and Linux. One of the key advantages of Tkinter is its ease of use, as it provides

a straightforward and intuitive interface for GUI development. Its extensive widget toolkit enables the

creation of interactive and visually appealing user interfaces, including windows, buttons, labels, menus, and

more. Tkinter also offers support for event-driven programming, allowing developers to respond to user

interactions effectively. Moreover, Tkinter integrates smoothly with other Python libraries and tools,

enhancing its flexibility and expanding its capabilities. Its inclusion in the Python standard library ensures

its availability and stability for developers worldwide. Overall, Tkinter empowers developers to create

feature-rich GUI applications in Python with relative ease, making it a popular choice in the Python

ecosystem.

2. Trimesh - Trimesh provides a comprehensive set of functionalities for working with 3D mesh data. One of

its key capabilities is the ability to load and process STEP files, which are commonly used for representing

3D CAD models. By using Trimesh, you can import a STEP file, gaining access to the geometric information

and topology of the CAD model. Trimesh allows you to extract vertices, faces, and other relevant information

from the loaded model, enabling further processing and analysis.

3. Gmsh - Gmsh is a specialized library for mesh generation and manipulation. In the context of converting

STEP files to STL files, Gmsh plays a crucial role. Once you have loaded the CAD model using Trimesh, you

can utilize Gmsh to convert the extracted geometry into a format compatible with Gmsh. Gmsh supports

various mesh formats, including its native MSH format and the widely used STL format. You can utilize Gmsh

to generate an unstructured mesh based on the extracted geometry, ensuring that it satisfies your specific

requirements. Gmsh provides extensive control over meshing parameters, allowing you to achieve the

desired mesh quality and refinement. Finally, Gmsh enables you to export the generated mesh in the STL

format, which is widely accepted and supported by various applications and 3D printers.By leveraging the

capabilities of Trimesh and Gmsh together, you can seamlessly convert STEP files to STL files. Trimesh

allows you to access the geometric information and topology of the CAD model, while Gmsh provides the

tools and algorithms for generating a high-quality mesh representation compatible with the STL format.

This combined workflow ensures efficient and accurate conversion from STEP to STL, enabling you to further

utilize the resulting STL file for 3D printing, simulation, or other applications that require a mesh

representation of the original CAD model.

4. Numpy-STL - The numpy-stl library offers a convenient way to calculate dimensions of objects extracted

from STL files. By loading the STL file using the library's mesh.Mesh.from_file() function, the mesh data is

accessible through attributes of the resulting mesh.Mesh object. The mesh.vectors attribute provides access

to the vertices of the mesh, while the mesh.points attribute holds the corresponding coordinates. With this

data available, various dimensions can be calculated. For example, the bounding box dimensions can be

determined by finding the minimum and maximum values along each axis (x, y, z) of the vertices. These

calculations leverage the capabilities of numpy-stl to provide accurate and efficient measurements of the

object's dimensions, enabling further analysis, simulation, and design optimization.

5. RESULTS

The GUI for the application is showcased in Figure 3. It has input fields for the dimensions of the box, i.e. length,

breadth and height.

Next input is the selection of the step file. Clicking the button opens up the file open dialog box upon which the user

can select the STEP file.

The dimensions of the components are calculated and displayed.

The total number of components that would fit inside the box are displayed and highlighted. Also the number of

components that fit in an individual orientation are also displayed.

406

J INFORM SYSTEMS ENG, 10(9s)

Figure 3. User Interface of the software utility

For example, if the component dimensions are (4,2,2) and the box dimensions are (6,6,6). Figure 4 demonstrates

how they might be laid out by the manual method (components only in one orientation) while Figure 5 demonstrates

how they are arranged according to our algorithm. The manual method only manages to pack 9 components with a

packing efficiency of 66.67 % while our algorithm manages to pack 13 components with a packing efficiency of

96.67%. There is an improvement of 30%.

Figure 4. Components

arranged using manual

method (single orientation)

Figure 5. Components

arranged using our algorithm

(multiple orientations)

The following table summarizes the results for the tests conducted for verifying the effectiveness of our algorithm.

The component size and box size are specified in cm. ‘Manual’ and ‘Our Algorithm’ specify the packing efficiency

using the manual method and then using our algorithm respectively. The last column highlights the betterment in

the packing efficiency due to our algorithm.

407

J INFORM SYSTEMS ENG, 10(9s)

Table 1. Comparison of efficiency of manual method and our algorithm.

Component

Size (cm)

Box Size

(cm)

Manual (%) Our

Algorithm

(%)

Betterment

(%)

4x2x2 6x6x6 66.67 96.67 30

5x15x25 20x50x70 85.71 96.43 10.72

5x6x6 10x20x25 64.8 75.6 10.8

5x5x15 20x20x100 90.00 99.37 9.37

4x7x7 16x20x20 61.25 73.5 12.25

5x5x13 18x24x44 61.55 70.10 8.55

1.5x2x3.5 4x9x12 66.66 77.77 11.11

9x12x144 20x144x666 77.8 89.1 11.3

6. CONCLUSION

The Productive Packager algorithm is an effective and efficient tool for optimizing the use of space when packing

components into a box. The custom recursive algorithm used by the utility ensures that components are arranged in

the most efficient way possible, while the user-friendly interface allows for customization to specific packaging

requirements. The utility offers significant advantages over traditional manual packaging calculations, including

improved efficiency, accuracy, and flexibility. The results of the evaluation demonstrate the effectiveness of the

Productive Packager utility and suggest that it could be a valuable tool for various industries that require efficient

packaging solutions.

ACKNOWLEDGMENT

This research did not receive dedicated funding support from any funding agency in the public, commercial, or

nonprofit sectors.

REFERENCES

[1] Youn-Kyoung Joung, Sang Do Noh. “Intelligent 3D packing using a grouping algorithm for automotive

container engineering”, in Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 140~151

[2] Santosh T, Fadel G, Fenyes P. A fast and efficient compact packing algorithm for free-form objects. In: ASME

2008 International Design Engineering Technical Conferences and Computers and Information in

Engineering Conference; 2008 Aug 3-6; New York, NY; p. 543-552.

[3] Ramos, A. G., Silva, E., & Oliveira, J. F. (2018). A new load balance methodology for container loading

problems in road transportation. European Journal of Operational Research, 266(3), 1140–1152.

[4] Lodi, A., Martello, S., Monaci, M., & Vigo, D. (2014). Two-Dimensional Bin Packing Problems in Paradigms

of Combinatorial Optimization, 107–129.

[5] Abdolahad Noori Zehmakan (2015). Bin Packing Problem: Two Approximation Algorithms in International

Journal in Foundations of Computer Science & Technology (IJFCST, July 2015, Volume 5, Number 4.

[6] Chan, T., Alvelos, F., Silva, E., & Valériode Carvalho, J. (2011). Heuristics for Two-Dimensional Bin-Packing

Problems. Intelligent Systems, 1–18.

[7] Harrath, Y. (2021). A Three-Stage Layer-Based Heuristic to Solve the 3D Bin-Packing Problem under

Balancing Constraint. Journal of King Saud University - Computer and Information Sciences.

[8] Erbayrak, S., Özkır, V., & Mahir Yıldırım, U. (2021). Multi-objective 3D bin packing problem with load

balance and product family concerns. Computers & Industrial Engineering, 159, 107518.

408

J INFORM SYSTEMS ENG, 10(9s)

[9] Moon, I., & Nguyen, T. V. L. (2013). Container packing problem with balance constraints. OR Spectrum,

36(4), 837–878.

[10] Wang, H., & Yanjie Chen. (2010). A hybrid genetic algorithm for 3D bin packing problems. 2010 IEEE Fifth

International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA).

[11] C. Paquay, S. Limbourg, and M. Schyns.(2018). A tailored two-phase constructive heuristic for the three-

dimensional multiple bin size bin packing problem with transportation constraints. European Journal of

Operational Research, vol. 267, no. 1, pp. 52–64.

[12] S. Walke, M. Zambare, and K. Wanjale, “A Comparative Study: Cloud Computing Service Providers”,

IJRESM, vol. 5, no. 5, pp. 208–211, May 2022.

[13] T. A. Toffolo, E. Esprit, T. Wauters, and G. Vanden Berghe. (2017). A two-dimensional heuristic

decomposition approach to a three-dimensional multiple container loading problem. European Journal of

Operational Research, vol. 257, no. 2, pp. 526–538.

[14] H.Gehring, A.Ortfeldt (1998). A genetic algorithm for solving the container loading problem. International

Transactions in Operational Research.

