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Introduction: The increasing complexity of automotive manufacturing, driven by 

customization requirements and tight assembly tolerances, necessitates robotic systems with 

enhanced flexibility and real-time adaptability. The automotive industry has long been a leader 

in implementing industrial automation, particularly through the deployment of robotic systems 

to streamline repetitive manufacturing tasks. However, with the increasing complexity of 

vehicle models, shorter product life cycles, and growing customization demands, conventional 

rigid robotic systems are no longer sufficient. These systems, traditionally optimized for fixed 

tasks, struggle to cope with dynamic environments, part variations, and unstructured 

conditions inherent in modern manufacturing floors. To address these challenges, recent 

advancements in adaptive robotics—enabled by sensor integration, machine learning, and 

simulation-based control—offer promising avenues for developing highly flexible, precise, and 

intelligent robotic solutions [1], [2]. 

Objectives: This paper presents a simulation-based adaptive control framework that 

integrates a three-layer architecture: (i) a perception layer using vision and force sensors, (ii) a 

control layer incorporating an adaptive PID controller with reinforcement learning, and (iii) an 

execution layer involving robotic actuation and feedback. 

Methods: The system was implemented in MATLAB/Simulink and tested on a 6-DOF robotic 

manipulator model with simulated sensor noise, external disturbances, and part misalignment. 

Sensor data is fused via a Kalman filter, enabling accurate estimation of pose and contact force. 

While Q-learning is used for controller adaptation in simulation, the architecture is designed to 

accommodate real-time implementation using step-wise learners such as SARSA(λ) or offline-

trained gain schedulers.  

Results: Results demonstrate a 76.6% reduction in RMSE and a 50% improvement in 

adaptation time over static PID control. The framework provides a scalable and robust 

approach suitable for autonomous robotic assembly systems.  

Conclusions: The proposed three-layer architecture—comprising perception, control, and 

execution—enables the system to dynamically respond to variable part geometries, sensor 

noise, and external disturbances. Simulation results demonstrate that the adaptive controller, 

when combined with Kalman-filtered sensor data and Q-learning-based gain tuning, 

significantly outperforms traditional static PID controllers in both accuracy and robustness. 

Specifically, the system achieves a 76.6% reduction in RMSE and exhibits faster recovery under 

disturbance conditions. 
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INTRODUCTION 

The automotive industry has long been a leader in implementing industrial automation, particularly through the 

deployment of robotic systems to streamline repetitive manufacturing tasks. However, with the increasing 

complexity of vehicle models, shorter product life cycles, and growing customization demands, conventional rigid 
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robotic systems are no longer sufficient. These systems, traditionally optimized for fixed tasks, struggle to cope with 

dynamic environments, part variations, and unstructured conditions inherent in modern manufacturing floors. To 

address these challenges, recent advancements in adaptive robotics—enabled by sensor integration, machine 

learning, and simulation-based control—offer promising avenues for developing highly flexible, precise, and 

intelligent robotic solutions [1], [2]. 

Adaptive robotic systems are designed to adjust their behavior in real-time based on environmental changes and 

task-specific feedback. In automotive assembly, these systems utilize multi-modal sensors such as vision, force-

torque, and proximity sensors to perceive part geometries, detect misalignments, and fine-tune actuation [3], [4]. 

For instance, integrating sensor fusion algorithms, such as Kalman filtering or deep learning-based fusion, allows 

robots to improve localization, force modulation, and contact-aware assembly tasks [5]. These adaptive capabilities 

are particularly beneficial in operations requiring high positional accuracy and compliance, such as fitting interior 

panels, assembling door modules, or installing electronic components with tight tolerances. 

Simulation plays a critical role in the design and validation of such adaptive robotic systems. Simulation 

environments like MATLAB Simulink enable researchers to test robotic behavior in varied scenarios without 

physical hardware constraints [6], [7]. Through these simulations, it is possible to model contact forces, part 

deformations, sensor noise, and control adaptation strategies, thus ensuring robustness before deployment. 

Moreover, reinforcement learning and adaptive PID controllers can be trained in these environments to enhance 

real-time decision-making under uncertain conditions [8], [9]. 

Machine learning algorithms further enhance the adaptability of robotic systems. Techniques such as supervised 

learning, deep reinforcement learning (DRL), and neural adaptive control help robots learn from prior interactions 

and refine their control strategies for future tasks. For example, DRL has been effectively used in simulated 

automotive environments to optimize robotic manipulation through trial-and-error learning guided by sensor 

feedback [10]. The integration of ML with real-time control enables predictive correction of part deviations and 

proactive fault handling [11]. 

OBJECTIVES 

Despite these advancements, key challenges remain—such as computational latency, sensor drift, data 

inconsistency, and the safe generalization of learned behaviors to unseen part configurations. Addressing these 

issues requires a holistic simulation-driven framework that combines real-time sensor fusion, learning-based 

control adaptation, and robust evaluation metrics. This research aims to design and validate such a framework 

through simulation, providing new insights into scalable, intelligent robotic automation in automotive 

manufacturing. 

This paper presents a simulation-based adaptive control framework that integrates a three-layer architecture: (i) a 

perception layer using vision and force sensors, (ii) a control layer incorporating an adaptive PID controller with 

reinforcement learning, and (iii) an execution layer involving robotic actuation and feedback. 

METHODS 

This section presents the proposed simulation-based methodology for an adaptive robotic system in automotive 

assembly environments. The architecture integrates sensor-driven feedback control and reinforcement learning to 

achieve high-precision part handling and alignment. The overall framework consists of three interconnected 

layers—perception, control strategy, and execution—implemented and tested in a simulation environment using 

MATLAB/Simulink. 

The system architecture (Figure 1) is designed as a modular control framework in which a 6-degree-of-freedom 

robotic manipulator interacts with automotive components featuring dimensional and positional variability. The 

robotic system continuously adapts to these changes using feedback from virtual sensors embedded within the 

simulated environment.  



Journal of Information Systems Engineering and Management 
2025, 10(57s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 734 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Figure 1. Architecture Diagram 

In the perception layer, two primary sensors are simulated: a vision sensor for estimating part pose through image 

processing, and a force/torque sensor at the end-effector to detect contact force vectors Fc∈R3. These inputs are 

combined through a Kalman Filter to generate a robust state estimate by mitigating sensor noise. The filter 

equation is given by: 

x̂k∣k = x̂k∣k−1 + Kk(zk − Hx̂k∣k−1) 

where x̂k∣k is the current state estimate, x̂k∣k−1 is the prior estimate, zk is the measurement vector, H is the 

measurement matrix, and Kk denotes the Kalman gain. 

The adaptive control strategy layer features an adaptive PID controller with dynamic gain tuning. The control input 

u(t) applied to the robotic actuators is defined as: 

u(t) = Kp(t)e(t) + Ki(t) ∫  
t

0

e(τ)dτ + Kd(t)
de(t)

dt
 

where e(t) = r(t) − y(t) represents the tracking error between the reference r(t) and the actual system output y(t). 

The gains Kp(t), Ki(t), Kd(t) are updated in real-time using gradient descent to minimize the squared error cost 

function: 

J =
1

2
e(t)2 

The tuning updates for each gain are given by: 

Kp(t + 1) = Kp(t) − ηp

∂J

∂Kp
, Ki(t + 1) = Ki(t) − ηi

∂J

∂Ki
, Kd(t + 1) = Kd(t) − ηd

∂J

∂Kd
 

where ηp, ηi, and ηd are learning rates associated with each respective gain. 

To improve decision-making over time and under uncertain conditions, a reinforcement learning (RL) module is 

integrated. Specifically, Q-learning is employed to optimize control actions based on the observed system state. The 

Q -value update rule is given by: 
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Q(st, at) ← Q(st, at) + α [rt + γmax
a′

 Q(st+1, a′) − Q(st, at)] 

Here, st is the current state (e.g., alignment error or force deviation), at is the action taken (e.g., adjust force or 

reposition), rt is the immediate reward, α is the learning rate, and γ is the discount factor. The reinforcement agent 

seeks to maximize the long-term cumulative reward by selecting optimal actions in successive assembly cycles. 

The execution and simulation environment involves a virtual robotic manipulator with six degrees of freedom, such 

as a UR5 arm model. The simulation replicates realistic assembly conditions including ±2 mm part dimensional 

variability and misalignment up to 5∘. Dynamic contact behavior, actuator limits, and feedback latency are also 

modeled to reflect real-world manufacturing scenarios. The simulated environment includes joint-space and task-

space trajectory planning, end-effector force control, and feedback monitoring. 

 

Figure 2. UR5 robotic arm simulation environment for adaptive assembly tasks 

Performance of the proposed system is evaluated using the following key metrics. Positioning Error (PE) is defined 

as the Euclidean distance between the desired target position ptarget  and the actual end-effector position Pactual: 

PE = ‖ptarget − pactual ‖ 

Force Overshoot (FO) quantifies the extent of excessive force applied during contact and is given by: 

FO =
Fmax

Fdesired 

Ftesired × 100% 

Adaptation Time (Tadapt) is the time required for the robot to correct its trajectory or force profile to fall within 

acceptable operational thresholds. Finally, Reward Convergence is used to assess the stability and learning 

efficiency of the reinforcement learning agent, defined by the average cumulative reward over multiple episodes. 

The current implementation is simulation-based, the architecture is modular and real-time compatible. All 

perception and control modules were designed with real-time constraints in mind. The Kalman filter for sensor 

fusion is computationally efficient and suitable for deployment on embedded platforms. While tabular Q-learning 

was employed to demonstrate adaptive capability in simulation, real-time deployment would benefit from online-

compatible algorithms such as SARSA(λ), Deep Deterministic Policy Gradient (DDPG), or pre-trained gain 

scheduling networks. These alternatives maintain adaptability while respecting latency and stability constraints 

required in physical robotic systems. 

RESULTS 

The simulation experiments conducted to validate the proposed adaptive control framework, integrating sensor 

fusion (via Kalman filtering), adaptive PID control, and reinforcement learning (Q-learning). The simulation was 

executed on a 1-DOF robotic manipulator model, representing a simplified translational axis of an industrial robot, 

using MATLAB/Simulink. Key performance indicators include position tracking accuracy, control stability, 

adaptation behavior, and learning convergence. 
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 Figure 3. Simulation Block Diagram  

The control system was implemented in MATLAB/Simulink and simulated with a sampling interval of 0.01 s over a 

10-second task cycle. The robotic plant was modeled as a second-order system with mass m=1m = 1m=1 kg and 

damping coefficient b=0.1b = 0.1b=0.1 Ns/m, representative of one translational axis of an industrial robotic 

manipulator. 

To test the robustness of the control scheme, the following disturbances were introduced: 

1. Step Force Disturbance: External force impulses of ±1.0 N were applied to the plant between 3s and 6s, 

simulating contact events such as unexpected collisions or misaligned parts. 

2. Sensor Noise: Gaussian white noise with standard deviation σ=0.01\sigma = 0.01σ=0.01 m was added to 

the position measurement to emulate vision sensor uncertainty. 

3. Model Parameter Mismatch: The actual plant mass was varied by ±10% relative to the controller's nominal 

assumption, representing unmodeled dynamics or payload changes. 

A Kalman Filter was employed for sensor fusion to estimate the true state x^(t) from noisy measurements, 

providing feedback to both the adaptive controller and the reinforcement learning agent. 

Controller Configurations 

Three control strategies were tested for comparison: 

• Static PID Controller: With manually tuned fixed gains under nominal conditions. 

• Adaptive PID Controller: Gains updated using gradient descent based on error cost minimization. 

• Adaptive PID + Reinforcement Learning: A Q-learning agent selected gain profiles based on observed state 

and reward feedback. 

Position Tracking Performance 

Tracking accuracy was assessed using the Root Mean Square Error (RMSE) between the target position r(t) and the 

actual system response x(t). 

Table 1. Position Tracking Performance 

Controller RMSE (m) Improvement over Static PID 

Static PID 0.0291 — 

Adaptive PID 0.0116 60.1% 

Adaptive PID + Q-Learning 0.0068 76.6% 
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The integration of sensor fusion significantly enhanced measurement precision, while adaptive gain tuning 

improved response time and reduced steady-state error. 

 

Figure 4. Position Tracking Response 

Disturbance Rejection Capability 

The system's ability to recover from disturbances was measured by observing the adaptation time following 

external force application. The static PID controller showed delayed recovery (~2.9s), while the adaptive controller 

stabilized within 1.2s. The reinforcement learning-enhanced controller consistently converged in under 0.6s, 

demonstrating superior resilience to unexpected changes in task dynamics. 

Reinforcement Learning Convergence 

The Q-learning agent used a reward function defined as: 

rt =-e(t)2 

After ~250 episodes, the average reward per episode stabilized, indicating convergence to an optimal policy. The 

learned policy successfully generalized across dynamic conditions, improving the control response in unseen 

configurations. 

Table 2. Reinforcement Learning Convergence 

Metric Value at Episode 500 

Average Reward +0.84 

Policy Convergence Achieved (~250 ep.) 

Gain Stability Range ±8% of optimal 

 

 

Figure 5. Reinforcement Learning Convergence 
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The simulation results validate the proposed architecture under noisy measurements and system uncertainties. The 

adaptive PID controller, enhanced by learning-based gain tuning, improves tracking performance and robustness. 

Although results are obtained in a simulated environment, the algorithmic components are real-time feasible. For 

real-world implementation, the reinforcement learning module can be replaced with a low-latency variant or an 

offline-trained neural scheduler. Additionally, sensor and actuator interfaces in ROS or similar middleware 

platforms can directly integrate with the proposed framework. 

DISCUSSION 

The simulation results confirm that the proposed architecture offers significant improvements in control accuracy, 

robustness, and adaptability compared to conventional PID systems. The sensor fusion mechanism effectively 

filters noisy feedback, while the adaptive PID controller adjusts to parameter uncertainties in real time. The 

addition of reinforcement learning introduces long-term learning capability, enabling the system to optimize gain 

profiles based on cumulative experience. 

This control structure is particularly suitable for applications in automotive assembly, where robots must handle 

part variations, external contact, and dynamic conditions with high precision and minimal human intervention. 

The modular nature of the system also allows for easy extension to full 6-DOF robotic platforms and real-time 

deployment. 

This paper presents a simulation-based adaptive control framework for robotic manipulators in automotive 

assembly environments, incorporating sensor fusion, adaptive PID control, and reinforcement learning. The 

proposed three-layer architecture—comprising perception, control, and execution—enables the system to 

dynamically respond to variable part geometries, sensor noise, and external disturbances. Simulation results 

demonstrate that the adaptive controller, when combined with Kalman-filtered sensor data and Q-learning-based 

gain tuning, significantly outperforms traditional static PID controllers in both accuracy and robustness. 

Specifically, the system achieves a 76.6% reduction in RMSE and exhibits faster recovery under disturbance 

conditions. While the current implementation is evaluated in MATLAB, the modular design ensures real-time 

applicability. The perception and control components are computationally lightweight and suitable for deployment 

on embedded robotic platforms. For real-time adaptation, online-capable algorithms such as SARSA(λ) or offline-

trained gain schedulers can replace the Q-learning module. These results collectively highlight the potential of 

adaptive robotic systems to meet the growing demand for flexibility, precision, and autonomy in modern 

automotive manufacturing lines. 
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