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Distributed Denial of Service (DDoS) attacks are among the most destructive cyber 

threats. They push so much fake traffic to these sites that they can no longer be reached 

by real users. It is hard for legacy intrusion detection systems to catch new threats as 

soon as they arise. This review focuses on how ML helps find DDoS attacks, mainly in 

SDNs, IoT systems and those used in Agriculture 4.0. Using both supervised, 

unsupervised and hybrid ML models greatly boosts the accuracy and expands the 

applications of detection technology. We also review important datasets, different 

feature engineering solutions and how models perform, giving a full overview of both 

existing research and upcoming trends. 
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INTRODUCTION 

The increasing trust on digital infrastructures has made cyberspace a prime target for malicious activities, among 

which Distributed Denial of Service (DDoS) attacks remain one of the most disruptive. These attacks flood targeted 

systems with illegitimate requests, overwhelming their capacity and rendering legitimate access impossible. 

Traditional intrusion detection systems often fall short in recognizing complex DDoS patterns in real-time due to the 

evolving sophistication of attack vectors and the use of anonymizing techniques by attackers [1,2]. 

In the past few years, including machine learning (ML) in information security has been suggested as a good way to 

protect systems. ML can sort through lots of network traffic data to distinguish good from bad traffic which helps 

detect threats early and respond automatically [3,4]. Through Deep Neural Networks, Support Vector Machines and 

ensemble models, ML has been used in Software-Defined Networks (SDNs) and Agriculture 4.0 to reliably point out 

DDoS attacks with few false signals [5,6]. 

Most advanced information security systems not only take advantage of machine learning but include tools like 

feature selection, data preparation and adaptive learning to boost their efficiency and ability to scale [7,8]. Research 

also points out that using real-world data like CICDDoS2019 helps train and validate these methods for actual use 

[9].  

BACKGROUND OF THE STUDY 

Distributed Denial of Service (DDoS) attacks now pose a great danger to digital infrastructure by overwhelming 

resources with large botnets and disrupting users’ ability to connect. Most of the time, these systems cannot catch 

new or changed attack styles because they are built on limited signatures and fixed rules [11]. To deal with these 

issues, ML and DL models have aimed to do the learning and pattern detection of attacks themselves while viewing 

network traffic. For example, deep learning in anomaly-based intrusion detection is effective in handling the changes 
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and new threats in dynamic networks [11]. Using CNNs and RNNs identifies both the shape and the specific timing 

of the data which is necessary for telling whether behavior is safe or harmful [12]. 

Many research studies have analyzed and investigated how ML can be applied in cybersecurity. These works tell us 

that deep learning can greatly improve detection, but there are still difficulties in real-time performance, labeling 

data and being explained [13]. Besides that, using advanced systems with hybrid, ensemble and feature selection 

strategies can boost the strength of systems and lower false positive cases [14]. 

In addition, quantum cryptography and artificial intelligence are now working together with traditional cybersecurity 

methods, providing new paths for insights into quantum enhanced security systems [15]. Using emerging 

technologies together with conventional ML frameworks can build DDoS mitigation systems that are strong, flexible 

and stand firm against attacks. 

METHODOLOGY 

As this study adopts a systematic review approach, it is essential to outline the methodology employed for selecting 

and analyzing the literature to ensure transparency and reproducibility. 

1. Search Strategy 

A large search was done in these academic databases: ScienceDirect, IEEE Xplore, MDPI, SpringerLink and ACM 

Digital Library. From 2017 to 2025, researchers searched through conference papers, peer-reviewed journal articles 

and review articles. The search terms included: 

• “Distributed Denial of Service” OR “DDoS” 

• “Intrusion Detection” OR “Cybersecurity” 

• “Machine Learning” OR “Deep Learning” 

• “DDoS mitigation” OR “Traffic classification” 

2. Study Selection Criteria 

Articles were screened based on the following criteria: 

• Inclusion Criteria: 

o Focused on ML based approaches for DDoS detection or mitigation. 

o Empirical studies using benchmark or real-world datasets. 

o Reviews or comparative studies analyzing ML models for network security. 

o Published in English between 2017 to 2025. 

• Exclusion Criteria: 

o Non-ML-based or purely theoretical DDoS research. 

o Articles lacking experimental validation. 

o Non-peer-reviewed sources (blogs, editorial notes). 

o Duplicate or redundant publications. 

1. Selection Process 

2. The PRISMA methodology was used to guide the selection process. Initially, 312 articles were identified. After 

removing 48 duplicates, 264 articles were screened. After reviewing these, 72 full-text articles were assessed 

for eligibility, resulting in a final selection of 38 studies. The complete PRISMA flow diagram illustrating this 

process is presented in Figure 1. 
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                  Figure 1. PRISMA Flow Diagram Illustrating the Study Selection Process for Systematic Review 

4. Bias and Limitations 

While every effort was made to ensure objectivity and coverage, the following limitations were acknowledged: 

• Selection bias: Limiting sources to English-language and indexed publications may have excluded relevant 

studies. 

• Publication bias: The review may lean toward studies with favorable outcomes or high detection accuracies. 

TAXONOMY OF DDOS ATTACKS 

Distributed Denial of Service (DDoS) attacks encompass a broad spectrum of techniques aimed at overwhelming 

target systems with traffic to disrupt availability. A clear taxonomy of these attacks helps in understanding the 

behavioral characteristics, vectors, and defense requirements of each type. Based on current literature and surveys 

in intrusion detection, DDoS attacks can be classified into several major categories: volume-based attacks, protocol-

based attacks, and application-layer attacks [18,19]. 

1. Volume-Based Attacks 

Volume-based cyber-attacks are designed to overwhelm a target system's bandwidth by flooding it with excessive 

traffic, commonly through methods like UDP flooding, ICMP flooding, or amplification techniques. These attacks are 

defined by their high data throughput, typically quantified in bits per second (bps)[19]. In multimedia-focused IoT 

environments, such attacks are particularly harmful, as they consume substantial bandwidth and significantly 

degrade service performance[26]. 

2. Protocol-Based Attacks 

Unlike volume-based attacks, protocol attacks focus on exhausting server resources such as connection tables, CPU, 

or memory, often measured in packets per second (pps) [19, 27]. Protocol-based DDoS attacks are especially 

challenging to detect in cloud and IoT environments where traffic patterns are highly dynamic [20]. 

3. Application-Layer Attacks 
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These are stealthier and more sophisticated, targeting specific features of web applications, such as HTTP, HTTPS, 

DNS, or SMTP. Examples include HTTP GET/POST floods, Slowloris, and low-and-slow attacks. They are measured 

in requests per second (rps) and are particularly difficult to detect using conventional threshold-based approaches 

[18,26]. Enhanced ML/DL models, such as ANN and clustering ensembles, have shown efficacy in detecting these 

nuanced behaviors [26,27]. 

4. Distributed Source Variants 

A key dimension in DDoS taxonomy is whether the attack originates from a single system or a botnet. Distributed 

sources make mitigation difficult due to IP spoofing and geographic dispersion. Systems like Botnet-for-hire (DDoS-

as-a-Service) have further blurred the lines, allowing unskilled attackers to launch massive attacks with rented 

infrastructure [19,28]. 

5. Intelligent and Adaptive Attacks 

Recent trends show the rise of adaptive DDoS attacks that learn from target responses and dynamically adjust 

parameters like attack vector, volume, and timing to evade detection [18,22]. To combat such threats, researchers 

advocate integrating advanced ML techniques such as ensemble KNN, capsule networks, and decision tree classifiers, 

which are capable of real-time behavioral adaptation [22-25]. 

 

Figure 2. Taxonomy of DDoS Attacks 

3. ROLE OF MACHINE LEARNING IN CYBERSECURITY 

While security measures such as firewalls and static intrusion detection systems (IDS) have worked well in the past, 

they cannot adapt and expand as new cyber threats, especially Distributed Denial of Service (DDoS) attacks, emerge. 

Because of this, cybersecurity professionals are using Machine Learning (ML) more often to handle new and 

unexpected attacks [26]. 

Since SVM, Random Forest and Decision Trees are simple to use and effective on labeled datasets, researchers mostly 

rely on them to detect DDoS attacks. Aljuhani [26] stated that with ANN, they could model traffic behaviors with an 

accuracy over 97%, proving that deep learning holds impressive potential in traffic modeling. In practice, when these 

models work with network data, their performance suffers because of noise, uneven data classes and continued 

mutations of attacks mentioned by Khalaf et al. [27]. This means that, while supervised models do well in specific 

situations, they only work well for new data if the preprocessing is strong and the models are constantly updated. It 

appears from new research that using hybrid methods which include both labeled and unlabeled data, allows 

cybersecurity systems to achieve stability and accuracy as threats and attacks develop over time. 
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Unsupervised learning techniques, including clustering and autoencoder-based anomaly detection, provide viable 

alternatives when labeled data is scarce or unavailable. These approaches detect traffic deviations from learned 

baselines, making them effective for early anomaly detection—even in encrypted or obfuscated traffic [28]. 

Hybrid and ensemble techniques—such as the combination of decision trees with XGBoost or CNN+RNN stacks—

enhance detection robustness by fusing multiple learning perspectives. Qasim and Nsaif [30] demonstrated a hybrid 

time-series model with improved true positive rates and reduced false alarms, showcasing the growing sophistication 

of such integrated architectures. 

The rise of these intelligent systems is facilitated by the availability of benchmark datasets such as CICDDoS2019, 

NSL-KDD and BoT-IoT which simulate real-world traffic scenarios. Nonetheless, limitations persist regarding 

dataset generalizability, feature extraction consistency, and handling of encrypted traffic [31]. Moreover, the opaque 

decision-making nature of deep learning models, coupled with their vulnerability to adversarial inputs, continues to 

pose critical research challenges [32]. 

Table 1. Comparative Analysis of ML Approaches 

Ref Authors ML Technique Dataset Used Accuracy / 

Performance 

Domain 

[26] Aljuhani (2021) ANN Custom ~97% General Networking 

[27] Khalaf et al. 

(2019) 

SVM, RF NSL-KDD, BoT-

IoT 

94–98% Hybrid Defense Models 

[29] Mittal et al. 

(2023) 

LSTM, CNN CICDDoS2019 >95% SDN 

[30] Qasim & Nsaif 

(2024) 

Hybrid (Time 

Series) 

Custom Reduced false 

alarms 

Time-Series Detection 

[31] Ahmed & Atia 

(2025) 

CNN + RNN Real SDN traffic 96.7% Software-Defined 

Networking 

[32] Odusami et al. 

(2020) 

Meta-analysis Application-layer Mixed Web Services/Apps 

 

MACHINE LEARNING MODELS AND ALGORITHMS FOR DDOS DETECTION 

Machine Learning (ML) plays a pivotal role in identifying and countering Distributed Denial of Service (DDoS) 

attacks, thanks to its ability to recognize traffic anomalies and classify threats in real time. Unlike static, rule-based 

detection systems, ML approaches can dynamically adapt to evolving attack behaviors without relying on fixed 

signatures. The following section explores widely used ML techniques for DDoS detection, highlighting their 

strengths and application areas. 

1. Supervised Learning Models 

Supervised ML techniques are commonly used for DDoS detection as they rely on labeled datasets to learn and 

classify traffic into normal or attack classes. 

• Support Vector Machines (SVM): Known for their robustness in high-dimensional spaces, SVMs are effective 

in distinguishing between attack and legitimate traffic flows. Al-Qatf et al. [36] enhanced SVM performance 

by integrating feature extraction methods. 

• Random Forests and Decision Trees: These ensemble and tree-based classifiers are widely used for their 

interpretability and resistance to overfitting. Shen et al. [33] employed a bat-algorithm-enhanced ensemble 

approach for efficient classification of intrusion attempts. 

• Fast Learning Networks (FLN): Ali et al. [34] implemented a FLN combined with Particle Swarm 

Optimization (PSO) to accelerate learning and improve detection speed in network intrusion scenarios. 

2. Feature Engineering and Selection Methods 
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The effectiveness of ML classifiers depends significantly on the quality of features. Dimensionality reduction and 

selection techniques are used to improve classifier accuracy and efficiency. 

• Stacked Sparse Autoencoders for Feature Extraction: While originally a DL method, their application in 

preprocessing for traditional classifiers like SVMs is considered ML-enhanced. Yan and Han [35] utilized 

autoencoders for creating concise feature sets that improved detection precision. 

• Optimization-Based Feature Selection: Swarm intelligence and evolutionary algorithms, like PSO and genetic 

algorithms, are often paired with ML classifiers for selecting the most relevant features, reducing false 

positives, and improving computational performance. 

3. Ensemble Learning and Hybrid Methods 

Combining multiple ML algorithms into ensembles often leads to better generalization and accuracy in DDoS 

detection. 

• Ensemble SVM with Rule-Based Models: Marir et al. [37] proposed a hybrid framework using Spark, 

combining distributed computing with ensemble SVMs for large-scale DDoS traffic classification. 

• Voting Classifiers: These aggregate predictions from multiple base learners (e.g., SVM + Random Forest + 

k-NN) to make final decisions based on majority voting, reducing misclassification. 

FEATURE ENGINEERING AND DATASET UTILIZATION 

Effective DDoS detection using machine learning hinges on well-curated features and reliable datasets. Feature 

engineering transforms raw network traffic into structured, relevant attributes that drive the learning process. 

Meanwhile, the dataset's diversity and labeling quality determine a model’s robustness, especially in dynamic and 

large-scale network environments. 

1. Advances in Feature Engineering 

Recent work by Malik and Dutta proposed a multi-stage ML pipeline using the IoT-CIDDS dataset, where they 

engineered 21 essential features using domain-specific knowledge, improving classification of DDoS attack vectors 

in smart environments [38]. Similarly, Liu et al. applied feature normalization, correlation filtering, and entropy-

based methods in Software-Defined Networks (SDN), showing that these techniques significantly reduced model 

complexity while boosting detection precision [39]. 

Zaidi et al. emphasized entropy and granular computing for identifying abnormal bursts in packet flows, enhancing 

feature discrimination even when traffic patterns were subtle or obfuscated [40]. Further refinement came from 

Alduailij et al., who used mutual information and Random Forest-based feature importance ranking to discard 

redundant dimensions and retain only statistically significant attributes [41]. 

Datasets Commonly Used in ML-Based DDoS Detection 

The quality, balance, and real-world applicability of datasets are central to building generalizable ML models. Below 

is a synthesized review of core datasets used in the literature by findings: 

Table 2. Domain-specific datasets are used in DDoS-related ML 

Dataset Source / Origin Key Features Noted In 

IoT-CIDDS Malik & Dutta (2023) Realistic IoT traffic, 21 handcrafted features, 

labeled flows 

[38] 

CICDDoS2019 Canadian Institute for 

Cybersecurity 

80+ attack types, volumetric & protocol-based 

features 

Widely 

used 

BoT-IoT UNSW Canberra IoT-targeted DDoS traffic, large-scale, includes 

DoS & data theft 

[42] 

UNSW-NB15 UNSW Canberra Rich flow-based data with real and synthetic 

attack traffic 

[43] 
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IoT-DDoS 

2022 

Sambangi et al. (2022) Focused on low- and high-rate attacks in Industry 

4.0 setups 

[44] 

OpenStack 

Logs 

Virupakshar et al. (2020) Deployment-specific traces in a private cloud for 

real-time modelling 

[45] 

CTU-13 Czech Technical Univ. Botnet-generated traffic with background noise [46] 

 

CONCLUSION 

Machine learning has revolutionized DDoS detection by enabling real-time, adaptive, and high-accuracy solutions. 

Despite the progress, challenges in dataset diversity, model interpretability, and processing overhead must be 

addressed. Future research should explore explainable AI, quantum-enhanced security, and automated feature 

engineering for robust and scalable DDoS mitigation. 
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