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Smart grids are a big part of modern energy systems because they make it easier to handle and 

distribute energy. Still, it's hard to keep the grid stable because working conditions, supply, and 

demand for energy are always changing. The Bioinspired (PSO) + GRU Model is a strong way to 

handle the complexity of grid stability prediction that is shown in this work. An algorithm based 

on biology and deep learning make the system very accurate and reliable. It uses Gated Recurrent 

Units (GRUs) to model time and Particle Swarm Optimisation (PSO) to choose which features to 

use. The suggested design uses the Smart Grid Stability collection, which has 60,000 records of 

grid properties such as delay, flexibility, and power. It also has a goal variable that shows how 

stable the grid is. Using tools like SMote can help even out the classes in a dataset, which makes 

sure that the model is trained fairly. PSO is used to pick the most important features, which 

lowers the number of dimensions and speeds up processing. GRUs can find sequential links in 

the grid's operational data using Multiheaded attention methods. This lets them make accurate 

predictions about stability. For example, SVC, LGBR, and ANN are not as accurate as this model, 

which has an F1-score of 99.1% and an accuracy rate of 99.5%. The confusion matrix study shows 

that the framework is even more stable, with low judgement mistakes. Thorough planning steps, 

such as normalisation, dimensionality reduction, data cleaning, and more, make sure that the 

model gets good inputs. This paper stresses how important it is for smart grid systems to use 

cutting edge deep learning and efficiency methods to solve real-world problems. The suggested 

method could be used to make predictions more accurate and could also be scaled up to be used 

in real-time grid tracking systems. In the future, this method could be used in other study areas 

that need model time data and big decisions. 

Keywords: Smart Grid Stability, Bioinspired Optimization, Particle Swarm Optimization 

(PSO), Gated Recurrent Unit (GRU), Deep Learning, Temporal Data Modeling, Feature 

Selection, Multiheaded Attention Mechanism, Smart Grid Monitoring, Grid Stability Prediction, 

Class Imbalance, Energy Management 

 

I. INTRODUCTION 

Because of the huge rise in energy use and the use of these new energy sources and technologies, power networks rely 

on green energy sources and distributed energy systems in a very different way. Cutting-edge technologies like 

artificial intelligence (AI), the Internet of Things (IoT), and machine learning (ML) are used by modern smart systems 

to make the best use of energy exchange and consumption: You can now move from standard grids to smart grids, 

which use less energy, are more reliable, and leave less of a carbon footprint. Still, smart grids are getting more 

complicated, which makes them less stable and shorterens their useful life. Keeping such complicated systems 

running reliably and for good management depends on being able to predict their safety. In the context of the smart 

grid, stability means that it can handle problems and keep the balance of the networks that make, move, and 

distribute electricity. Changes in loads, the production of green energy, and exchanges between computers and the 

real world pose a major threat to the security of the grid. Accurate predictions of stability are needed to make strategic 

decisions and maybe even stop change from happening. At the moment, grid stability research methods are mostly 
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built on set models that aren't very good at handling the dynamic and nonlinear parts of smart grids. So, we need to 

look into better prediction models that can handle complicated time series data, find hidden trends, and help us make 

decisions.  

In recent years, deep learning models have become the best way to predict the security of a smart grid because they 

are specifically built for sequential data. It is well known that recurrent neural networks (RNNs), especially the Gated 

Recurrent Unit (GRU) and its variations, can show temporal relationships and non-linear trends in time-series data. 

Smart grid systems are appealing in GRUs because they are easier to set up and run than regular RNNs and Long 

Short-Term Memory (LSTM) networks. GRUs work well, but they could do even better if they used more methods to 

fix issues like wrong long-term predictions, uneven data, and choosing the right features. One of the biggest problems 

with forecast models for smart grids is that datasets are not balanced by nature. When models overfit to strong classes 

and fail on under-represented ones, unbalanced datasets could lead to biassed results. This problem only comes up 

when security goes through unusual but important changes. Using the Synthetic Minority Oversampling Technique 

(SMote) and other methods for data balancing has made it possible for minority groups to be better represented 

without changing how the data is spread out generally. Lessening the gap between classes would make it possible for 

more general and reliable prediction models.  

The picking of traits is yet another important part of forecast models. Large files of smart grids may contain duplicate 

or unnecessary data that hurts the performance of the model. In feature selection tasks, particle swarm optimisation 

(PSO) and other bio-inspired optimisation methods have worked very well. PSO models group social activity to find 

the best feature subsets. This makes the model clearer and makes it more useful. When used with GRU networks, 

PSO helps choose the right input elements, which leads to more accurate and powerful results. The type of time series 

data that smart grids use means that they need complex systems to gather long-term ties and relevant links. 

Multiheaded attention methods, which were first used in transformer models, have shown a lot of promise in solving 

these issues. Multiheaded attention changes the importance of different time points in the input stream so that 

models can focus on important timing trends. This makes it easier for them to guess. Multiheaded attention and GRU 

networks work together to make a system that can find both short- and long-term links in data about grid stability.  

This paper shows a mixed neural network structure that combines bio-inspired PSO planning, GRU networks, and 

Multiheaded attention methods to predict how stable smart grids will be: The method should take care of important 

problems in predictive modelling, such as data mismatch, feature selection, and long-term dependency modelling. 

The suggested model tries to make the most of the best parts of each part so that it can make better predictions than 

other methods. This study makes the field better in four ways. First, it lessens the bad effects of class mismatch in 

smart grid datasets by using Smote's data balance method. Second, it uses PSO to pick features so that the research 

can focus on the most important inputs. Third, it uses GRU networks and Multiheaded focus methods to make the 

model better at recording time dependencies. When everything is said and done, the framework's performance is 

carefully compared with that of simple models to show how well it can predict the smart grid are stable.  

The order of this paper is all over the place down here. In Part 2, important work is looked at with an eye towards 

current methods to smart grid security and what they can't do. The suggested method is explained in phase 3, which 

includes training techniques, feature selection, model building, and data preparation. In phase 4, the trial results are 

shown along with a review of how well the proposed model works compared to the commonly used methods. In phase 

5, we talk about what the results mean, and in phase 6, we outline possible future study paths. Taking everything into 

account, our work fills a big need for advanced forecast models in the field of smart grid stability. Bio-inspired 

planning, GRU networks, and Multiheaded attention methods can all be used together to predict time series in 

settings that are complicated and change over time. Through this study, we hope to help make smart grid systems 

more reliable and long-lasting, so they can be used by more people and make money for a long time.  

II. LITERATURE REVIEW 

Finding out how safe smart grids are has become more important over the last few years as we've looked for more 

reliable and long-lasting energy sources. This literature study looks at the different methods that are used to predict 

the safety of smart grids today. It also looks at their flaws and opportunities for growth. To fix grid safety problems, 

people usually use set and random methods. Power flow analysis, transient stability assessment, and tiny signal 

stability analysis are some of the tools that are often used to keep an eye on and make sure grid stability. Even though 

these methods can teach us a lot, they can't fully capture the unexpected and irregular behaviour of modern smart 

grids because they are based on well-known rules and straight-forward assumptions. Also, these methods don't work 



445  

 

J INFORM SYSTEMS ENG, 10(9s) 

very well with the huge amounts of time-series data that smart grids make. In the past few years, machine learning 

(ML) has shown a lot of promise for predicting how safe smart systems will be. Directed learning methods like 

ensemble models, decision trees, and support vector machines (SVMs) have been used to look into stable 

classification problems. These projects could help make more accurate predictions than current methods and find 

complex trends in data. For example, random forest models [8] have been used to predict how stable the power grid 

will be when green energy is used. These models can help you see trends that stay the same over time, but they're not 

great at handling data that changes over time. Deep learning is now a powerful tool for fixing problems thanks to 

smart grid time series forecast. A lot of people have used recurrent neural networks (RNNs) to copy the linear 

structure of grid stability data, especially Long Short-Term Memory (LSTM) networks. For example, LSTMs have 

done better than traditional models at predicting grid frequency safety at different load levels [9]. It's hard to write 

LSTMs, and their curves fade over time. This means that different systems, like Gated Recurrent Units (GRUs), need 

to be looked into.  

GRUs interest people because they make it easy to duplicate time links with little computer work. The load safety of 

the smart grid has shown that GRUs can accurately predict it [10]. GRU models have some good points, but they 

might need to be improved in order to handle large amounts of data better and make more accurate long-term 

predictions. A common problem that makes smart grids less predictable is that datasets don't have enough rare but 

important stable events. One way to deal with this is to use oversampling methods, like SMote (synthetic minority 

oversampling technique). According to research, SMote could help machine learning systems better predict when the 

power grid might go down, which doesn't happen very often [11]. On the other hand, bad oversampling shows that 

we need better data balance methods because it can lead to overfitting and bad decisions.  

Picking the right features is important for getting accurate predictions and making forecast models easier to 

understand. People often use particle swarm optimisation (PSO), genetic methods (GA), and ant colony optimisation 

(ACO), all of which are based on living things, to do this. It was PSO that helped find the best sets of traits to use in 

time series forecast. When you combine PSO with deep learning models, it's easier to see what will happen in the 

future. This means that bio-inspired methods may be able to predict grid health. [12]. Sequence modelling has been 

changed a lot by Multiheaded focus systems that let models provide multiple data time stages with different levels of 

importance. At first, we found them in transformers, where they were It has been shown that attention processes help 

people understand everyday words pretty well. They can also be used to predict time series, as more study has shown. 

Multiheaded attention has been added to LSTM networks, making them more accurate and easier to use for 

estimating energy use in smart grids, for example [13]. Multiheaded attention hasn't been studied in depth yet, but 

combining it with GRU networks may lead to more accurate predictions of smart grid stability. Because they mix 

many methods, hybrid models are interesting because they let problems be solved without relying on just one. 

Predictions are more accurate and faster when mixed systems are used, which means using both deep learning models 

and bio-inspired planning. Putting PSO and LSTM models together should make green energy predictions better 

than using just one model [14]. This paper builds on earlier work by suggesting a mixed model that uses Multiheaded 

attention to make forecasts more accurate, PSO to pick features, and GRU to describe time.  

Table 1. Summary of related research 

Research Area Technique Advantage Focus Limitation 

Traditional Methods for 

Grid Stability 

Prediction 

Linear 

approximations 

Limited scalability Rule-based 

methods 

Fails in dynamic 

conditions 

Machine Learning and 

Smart Grids 

Supervised 

algorithms 

Higher accuracy Handles complex 

patterns 

Temporal 

dependency 

challenges 

Deep Learning for 

Time-Series Prediction 

LSTMs and GRUs Captures temporal 

dependencies 

Non-linear 

modeling 

Computational 

complexity 

Addressing Data 

Imbalance 

SMOTE 

oversampling 

Improves minority 

class performance 

Better class 

representation 

Risk of overfitting 
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Feature Selection Using 

Bio-Inspired 

Optimization 

PSO and GA Improves efficiency Reduces 

dimensionality 

Requires 

integration 

Multiheaded Attention 

Mechanisms 

Transformer-

based models 

Focuses on relevant 

patterns 

Enhances 

interpretability 

Underexplored with 

GRUs 

Hybrid Models for 

Smart Grid 

Applications 

Combines PSO and 

GRUs 

Addresses 

individual 

limitations 

Improves 

prediction 

accuracy 

Requires seamless 

integration 

 

Research Gaps and Contributions 

While existing studies have made significant strides in smart grid stability prediction, several gaps remain. These 

include: 

1. Limited exploration of GRU networks integrated with advanced attention mechanisms. 

2. Inadequate handling of data imbalance in stability prediction datasets. 

3. Suboptimal feature selection approaches that fail to leverage the full potential of bio-inspired optimization 

techniques. 

This research addresses these gaps by proposing a novel hybrid framework that integrates PSO, GRU, and 

Multiheaded attention mechanisms. By addressing key challenges such as data imbalance, feature selection, and 

temporal dependency modelling, the proposed framework aims to advance the state-of-the-art in smart grid stability 

prediction. 

III. DATASET 

The 60,000-row synthetic dataset called the Smart Grid Stability dataset has 14 columns and is used to test grid 

stability in a wide range of situations shown in figure 1. Twelve numerical parameters are organised into three groups: 

delay features (Delay1, Delay2, Delay3, Delay4) show how the grid has changed over time; adapt features (adapt1, 

adapt2, adapt3, adapt4) show how to make changes; and power features (power1, power2, power3, power4) show 

metrics related to power. All of these factors affect how the grid works in real time, which is why they are so important 

for making predictions.  

 
Figure 1. Dataset Sample 
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Figure 2. Data Distribution 

Two target variables in the dataset are stab, a numerical value signifying grid stability, and stabf, a categorical variable 

with two classes—stable and unstable—often used for classification problems. The dataset shows some class 

imbalance; more unstable events than stable ones in figure 2. 

 

IV. DATA PRE-PROCESSING AND BALANCING 

Drop columns is the process of getting rid of unnecessary or duplicate data that has nothing to do with the 

prediction goal. For example, zero variance or strongly linked traits are taken out to lower the number of dimensions 

and the cost of processing. 

Check for Missing Values One important first step is to look for missing numbers. If there are any, null or empty 

data points are found and dealt with. To keep the data clean, empty values can be filled in with statistical values like 

mean, median, or mode, or rows and columns with large amounts of missing data can be removed. 

Data Normalization, particularly with Standard Scaler helps to make number features more consistent by setting 

their mean to 0 and their standard deviation to 1. This makes sure that features with different ranges or units don't 

have a big effect on the model while it's being trained, which improves speed and convergence. 

Label encoding takes category factors and turns them into numbers. So that the model can handle classification data 

well, each group is given a unique numerical value. These pretreatment steps give you clean, consistent data that can 

be used for more advanced forecasting methods. 

 

 

Figure 3. Data Visitation by Parameters 
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The Figure 3, Data Visitation by Parameters represents essential preprocessing steps for preparing the dataset to 

enhance the performance of the Bioinspired (PSO) + GRU Model. 

 

Figure 4. Sample Count in Percent (Before Data Balancing) 

The Synthetic Minority Oversampling Technique (SMote) lets you take too many samples from the minority class to 

fix this problem shown in figure 4. This process makes fake cases to make the dataset more fair. This makes sure that 

both classes help the learning process equally. One could also pick the weighted loss functions or the sampling of the 

majority class. The balance that is being looked at affects how accurate the predictions are and how fair and right the 

model is in general.  

V. FEATURE SELECTION 

a. LGBM Feature Importance 

 

Figure 5: LightGBM Classifier Feature Importance 

Figure 5 shows how the LightGBM Classifier calculated the importance of each feature by adding up the wins from 

all the breaks that used that feature. With total wins of more than 4,800, features like delay 1, delay 4, and delay 3 

are definitely the best and make the model work better. The power characteristics (power2, power3, and power4) 

show small gains, which suggests they don't have much of an effect on the decision-making process. The adapt 

characteristics, on the other hand, show that they aren't that important either. LightGBM's ability to select features 

based on gradient boosting makes sure that the most important factors in the dataset are well understood. This image 

shows how important delay-based characteristics are for predicting smart grid stability, even though adapt-based 

features don't have much of an effect.  
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b. RF Regressor permutation importance 

 

Figure 6: RF Regressor Permutation Importance 

In Figure 6 Using the Random Forest Regressor, this graph shows how feature significance changes based on 

permutation significance. There is a strong connection between delay 1, delay 3, and delay 2 as shown by the fact that 

they have the highest permutation significance scores, which are around 0.3. The power features don't have much of 

an effect on the model, and neither do the adapt-based features (adapt3, adapt2, etc.). By switching around all the 

features and watching the model's performance go down, one can figure out the permutation significance, which is a 

strong sign of important predictions. This picture shows that while flexible features help a little, delay-based features 

clearly explain why the goal variable changes.  

c. Logistic Regression coefficients 

 

Figure 7: Absolute Values of Logistic Regression Coefficients 

The exact values of the coefficients from a logistic regression model are shown in this bar chart. This shows how much 

each trait contributed to the estimate shown in figure 7. The delay traits are the most important; delay 4 and delay 3 

have the highest values (about 0.8), which makes it clear that they have an effect on the model. Even though they are 

not as strong as the delay features, the adapt features also have important factors. The power-based traits, on the 

other hand (power2, power3, and power4) have low coefficients, which means they are not very good at predicting 

the future. In addition to showing how important delay-related characteristics are for making accurate predictions, 

the absolute coefficient values show how each feature is directly linked to the goal variable.  
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VI. PROPOSED HYBRID BIO-INSPIRED (PSO) + GRU MODEL 

The building blocks of the Bioinspired (PSO) + GRU Model are shown in Figure 8. Its organised and flexible structure 

helps to guess how safe smart grids will be. The process starts when raw data from the file enters the Data Input 

Layer. The next layer is the preparation layer. To get the data ready for analysis, this is where important tasks like 

dimension reduction, data cleaning, normalisation, and SMote-based balance of the data are done. The feature 

selection (PSO) part of preprocessing makes sure that only the most important features are sent forward. Things 

move faster, and the machine doesn't have to do as much work. 

  

Figure 8. Architectural Framework of the Bioinspired (PSO) + GRU Model for Smart Grid Stability 

Prediction 

The data that has already been handled is sent to the GRU Network Layer, which is made up of GRU cells and methods 

for encoding time to look for patterns and links in the input. The Multiheaded Attention Mechanism can make the 

model even more integrated by focussing on important time stages. This makes it easier to understand and leads to 

better performance. The Output Layer makes predictions, which are then sent to the Prediction Module. Depending 

on what is needed, it also ranks or groups steadiness. Finally, the Optimisation Layer makes changes to the model to 

make sure it works at its best. It uses cross-valuation, hyperparameter setting, loss minimisation, early stopping, and 

regularisation, among other things. This method makes sure that the smart grid's way of describing time data is 

strong, scalable, and effective. 

 PSO Feature Selection 

 

Figure 9. PSO Feature selction 
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The results show in figure 9 that the feature selection process stopped after the maximum number of cycles. This was 

most likely done with Particle Swarm Optimisation (PSO). The parts that were chosen stayed at [0, 5, 6, 11, 12]. These 

scores show which parts of the information are the most important. They help improve its performance by cutting 

down on the number of measurements, making the model more efficient, and keeping it from fitting too well. This 

step makes it easier for models like GRUs to make predictions by focussing on key factors like power load, voltage, 

and frequency and getting rid of variables that aren't important or are used more than once. These features are now 

being used as inputs for training models, which will speed up computations and make them more flexible.  

GRU Integration 

 

Figure 10. GRU Integration 

The sequence neural network on display is made up of two GRU layers and a thick output layer. The second GRU 

layer reduces the number of dimensions to (None, 32) and has 9,408 trainable parameters figure 10. The first GRU 

layer, on the other hand, has 64 units, looks at sequential input, and makes a shape of (None, 5, 64) with 12,864 

trainable parameters. A final thick layer with one unit and 33 factors gives the outcome, which is good for tasks like 

regression or binary classification. The model is small and good at time-series tasks because it can extract strong 

temporal features. It has 22,305 trainable parameters, which is 87.13 KB, and there are no frozen layers.  

Table 2. configuration of the Bioinspired (PSO) + GRU Model 

Layer/Component Configuration Details 

Data Input Layer Input Shape: Depends on dataset 

dimensions 

Accepts input features (e.g., power load, 

voltage, frequency) and passes them to 

preprocessing. 

Preprocessing Layer Handles data preparation tasks. 

Normalization MinMaxScaler or StandardScaler Scales data to ensure uniformity and faster 

model convergence. 

Data Cleaning Null value handling, outlier detection Removes missing or inconsistent values for 

cleaner input. 

Dimensionality 

Reduction 

PCA or Feature Truncation Reduces feature space size to eliminate 

redundancy and improve computational 

efficiency. 

Data Balancing 

(SMOTE) 

Oversampling minority class Ensures balanced data distribution for 

better generalization. 

Feature Selection (PSO) Number of particles: 50-100; Iterations: 

50-200 

Selects optimal features using Particle 

Swarm Optimization. 
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GRU Network Layer Models temporal dependencies in 

sequential data. 

GRU Cells Number of GRU Layers: 2-3; Units per 

Layer: 64-128 

Captures time-series patterns effectively. 

Temporal Encoding Attention Mechanism (optional); 

Dropout Rate: 0.2-0.5 

Reduces overfitting and enhances learning 

of critical time steps. 

Multiheaded Attention 

Mechanism 

Heads: 4-8; Input Dim: Matches GRU 

output 

Enhances focus on critical temporal 

dependencies, improving interpretability. 

Output Layer Produces predictions for grid stability. 

Prediction Module Fully Connected Layer; Activation: 

Softmax (classification) or Sigmoid 

(binary) 

Maps encoded features to stability labels. 

Classification Output Shape: Number of stability 

classes 

Classifies inputs into stability states (e.g., 

stable/unstable). 

Stability Scoring Regression or scoring model Outputs a stability score to quantify risk 

levels. 

Optimization Layer Fine-tunes model performance through 

validation and tuning. 

Cross-Validation K-Fold (k=5 or 10) Validates model on different subsets to 

improve generalization. 

Hyperparameter 

Tuning 

GridSearchCV or RandomizedSearchCV Optimizes parameters such as learning 

rate, number of layers, and units per layer. 

Loss Minimization Loss Function: Binary Cross-Entropy or 

Categorical Cross-Entropy 

Ensures better prediction by minimizing 

errors. 

Early Stopping Patience: 5-10 epochs Stops training if validation performance 

does not improve. 

Regularization L1/L2 Regularization; Dropout: 0.2-0.5 Prevents overfitting by penalizing large 

weights and reducing over-reliance on 

specific neurons. 

 

VII. RESULT ANALYSIS 

The precision graph shows that the Bioinspired (PSO) + GRU Model works almost perfectly. The training accuracy 

quickly rises and stays close to 1.0 in the first few epochs, which shows that the model is learning from the data very 

well. The validation accuracy, which is very close to the training accuracy, shows that the model can work with data 

that it hasn't been able to work with before. This close match between training and evaluation accuracy shows that 

the model is not overfitting and is strong in figure 11. This conclusion is supported by the loss graph, which shows 

that in the first few epochs, both training and validation loss drop sharply before levelling off at zero.  
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Figure 11. Accuracy and Loss Comparison Graph of Bioinspired (PSO) + GRU Model 

As training loss goes down, it means that the model's predictions are getting more accurate. Also, the validation loss 

stays close to the training loss when few changes are expected in later epochs due to changes in the data. The model 

does a great job of handling time interactions and making reliable predictions, as shown by the small amount of loss 

and high accuracy for both datasets.  

 

Figure 12. Confusion Matrix of Bioinspired (PSO) + GRU Model 

The confusion matrix shows is figure 12, how well the Bioinspired (PSO) + GRU Model can predict the stability of the 

smart grid in both the "Stable" and "Unstable" categories. A lot of fake negatives and true positives were made by the 

model, which correctly called 753 cases "Unstable" and 4241 cases "Stable." Very few, just six "Stable" events were 

mistakenly marked as "Unstable." Also, there were very few cases of "Unstable" events being mistakenly labelled as 

"Stable." In terms of memory and accuracy, this means that the model is very close to being perfect. This almost 

perfect result shows how well the model can handle the complexity of the dataset and include data that hasn't been 

analysed yet. The low rate of wrong classification suggests that using GRU for modelling time and Particle Swarm 

Optimisation (PSO) for feature selection has led to a somewhat reliable way of estimating how reliable smart grids 

are. The results show that the model works well in real-life situations where quick and accurate predictions are 

needed.  
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Figure 13. Comparative Performance Analysis of Models for Smart Grid Stability Prediction 

 

We compare four models' performance here based on their F1-score and how well they work: SVC, LGBR, ANN, and 

the Bioinspired (PSO) + GRU Model in figure 13. Using this model, Bioinspired (PSO) + GRU, is the best way to 

predict and group stability. It's pretty good, with an accuracy of 99.5% and an F1-score of 99.1%. With a score of 

96.5% on the F1 test, ANN comes in second. SVC and LGBR come in third and fourth, but their numbers are a bit 

lower. This paper shows how durable and effective it is to use both PSO for feature selection and GRU for time 

predictions. It does this by making both measures much better than other machine learning models, such as SVC and 

LGBR. The Bioinspired (PSO) + GRU Model works really well and is the best choice for important tasks where 

reliability and accuracy are very important, like predicting the safety of smart grids.  

VIII. CONCLUSION 

The Bioinspired (PSO) + GRU Model finally proves that it can handle datasets that aren't balanced and have complex 

temporal relationships. This makes it easier to guess how stable smart grids will be. The model reduces the number 

of variables, focusses on important characteristics, and finds repeated patterns in the data by using Gated Recurrent 

Units (GRUs) for time and Particle Swarm Optimisation (PSO) for feature selection. Its high accuracy (99.5%) and 

F1-score (99.1%) beat famous machine learning models like SVC, LGBR, and ANN in a study that compared them. 

The model is strong and reliable because it shows almost no false positives and false negatives in the confusion matrix. 

This is important for real-world use in smart grid systems. The model can generalise even more, as shown by the 

training and validation measures, since both the accuracy and loss graphs show steady growth over epochs without 

getting too well-fit. Some regularisation techniques that help the model last and be useful during training are 

dropping out and finishing early. When the GRU uses Multiheaded attention devices, it can focus on important time 

periods. The model can be used in real time because it is fast at computing and doesn't take up much space. It has 

22,305 trainable parameters. This paper shows how useful it is to use bioinspired planning methods along with deep 

learning for high-dimensional, sequential data. Many fields, like banking, healthcare, and self-driving cars, depend 

on time trends and the importance of features, so the suggested method could also be used in those areas. If 

researchers want to get the best results in the future, they should look into better attention methods, more datasets, 

and mixed approaches. In conclusion, the Bioinspired (PSO) + GRU Model is a reliable and scalable way to make 

sure that smart grids are stable, which leads to smarter and more reliable energy systems.  

 

 

SVC LGBR ANN BioInspired + GRU

Accuracy 97.3 96 96.7 99.5

F1-Score 96.4 95.4 96.5 99.1

97.3

96

96.7

99.5

96.4

95.4

96.5

99.1

%

Best Performing Models

Comparitive Analysis of Models
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