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Advanced and scalable intrusion detection frameworks are in great demand for the rapid 

proliferation of Software-Defined Networking (SDN) in Industrial Internet of Things (IIoT) 

environments. Traditional methods for network anomaly detection fail to adapt to dynamic 

traffic patterns, handle resource-constrained edge deployments, and utilize vast amounts of 

unlabeled data samples. To address these limitations, we propose an integrated framework 

combining state-of-the-art techniques for accurate, efficient, and scalable intrusion detection in 

SDN-based IIoT networks. Our framework starts with domain-adapted feature extraction by the 

use of EfficientNet-B0, a lightweight yet powerful architecture, fine-tuned on IIoT-specific traffic 

data samples. Incremental learning with Elastic Weight Consolidation ensures adaptability to 

new intrusion patterns while preserving previously learned knowledge. SimCLR is applied to 

generate robust embeddings through self-supervised learning in environments where labeled 

data are scarce. Autoencoders detect novel patterns in anomaly detection, while XGBoost 

conducts precise classification of known threats. Furthermore, DQN optimizes the mitigation 

strategy of either flow rerouting or rate limiting in real time based on the network state. In case 

of edge-based deployment, Tiny-YOLO presents a lightweight model for anomaly detection that 

performs low latency with high accuracy. This holistic framework achieves a detection accuracy 

of ~96%, with a false positive rate below 3% and a latency of under 15 ms, supporting the large-

scale IIoT networks of more than 10,000 nodes. Our methodology pushes forward scalability, 

adaptability, and robustness by unifying feature extraction, anomaly detection, classification, 

and mitigation process 

Keywords: EfficientNet-B0, Incremental Learning, Self-Supervised Learning, Anomaly 

Detection, IIoT Security, Samples 

 

Abbreviation Full Form 

IDS Intrusion Detection System 

IoT Internet of Things 

IIoT Industrial Internet of Things 

SDN Software-Defined Networking 

ML Machine Learning 

EWC Elastic Weight Consolidation 

SimCLR Simple Contrastive Learning 

DQN Deep Q-Learning 

GAN Generative Adversarial Network 

VAE Variational Autoencoder 

TCP Transmission Control Protocol 

UDP User Datagram Protocol 

ICMP Internet Control Message Protocol 

AUC Area Under the Curve 

FPR False Positive Rate 

F1-Score Harmonic Mean of Precision and 

Recall 

CAN Bus Controller Area Network Bus 

IoMT Internet of Medical Things 

WSN Wireless Sensor Network 

SMOTETomek Synthetic Minority Oversampling 

Technique Combined with Tomek 

Links 

MLSTL Machine Learning-Based Synthetic 

and Tomek Links 

XGBoost eXtreme Gradient Boosting 

AI Artificial Intelligence 

GPU Graphics Processing Unit 

TPU Tensor Processing Unit 
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APT Advanced Persistent Threat 

QoS Quality of Service 

IoT-IDS Internet of Things Intrusion 

Detection System 

WSN-IoT Wireless Sensor Network Internet 

of Things 

IoMT-IDS Internet of Medical Things 

Intrusion Detection System 

ML-IDS Machine Learning Intrusion 

Detection System 

SDN-IDS Software-Defined Networking 

Intrusion Detection System 

SMOTE Synthetic Minority Oversampling 

Technique 

1. INTRODUCTION 

The rapid growth of IIoT has revolutionized the traditional industrial networks that integrated smart devices, sensors, 

and controllers into interconnected ecosystems. However, with the increased connectivity and reliance on SDN for 

managing IIoT networks [1, 2, 3], such systems are open to a broad spectrum of security threats, ranging from 

sophisticated intrusions to cyberattacks. Existing IDSs do not satisfy the strict challenges that IIoT scenarios pose, 

including resource starvation on edge devices, inadequately labeled training data, and the need to evolve quickly in 

order to keep up with emerging threats. Traditional IDS solutions [4, 5, 6] use mostly static feature extraction as well 

as fixed rule-based mechanisms which prove to be inadequate for dynamics and heterogeneity of the traffic in the 

IIoT. Also, with a very high requirement for having good detection accuracy at minimal latency, the system often 

becomes challenging for the latter. Recent developments in machine learning and deep learning have provided hope 

for enhancing IDS capabilities, but standalone techniques fall short of scalability, robustness, and adaptability in 

real-world IIoT scenarios. This work introduces an integrated, multi-layered framework that addresses those 

deficiencies by incorporating cutting-edge AI techniques and lightweight models. First, the framework would adapt 

domain-specific feature extraction utilizing EfficientNet-B0 neural network architecture, finely optimized for IIoT-

traffic patterns. Finally, incremental learning using EWC ensures that the system would remain adaptive on newly 

presented intrusion patterns and retain all previously acquired knowledge. Self-supervised learning using SimCLR 

uses tremendous amounts of data that are not labeled and are resilient to anomalies, with improved anomaly 

detection. Detection precision further increases with false positives when using a hybrid detection mechanism 

involving autoencoders and XGBoost. At the tail, finally, for real-time optimization of mitigation strategies using 

Deep Q-Learning or DQN, Tiny-YOLO permits deployment at the edge in light-weight, low latency. The integrated 

framework enables both robust intrusion detection as well as mitigation at high accuracies and minimum false 

positives in terms of low latencies. Integration of state-of-the-art methods across this platform makes it capable to 

secure scalable and efficient approaches to prevent evolving SDN-based IIoT networks. 

Motivation & Contribution 

This exponential growth of IIoT networks has brought about unprecedented opportunities in industrial automation 

and operational efficiency. However, this integration of SDN and IIoT has created a highly dynamic network 

environment susceptible to very sophisticated and ever-changing cyber threats. Current intrusion detection systems 

cannot meet the high demands of IIoT environments, especially regarding scalability, adaptability, and efficiency. 

The further aggravations of the issues mentioned above, such as real-time processing, a scarcity of labeled data, and 

economical deployment of resources, make things worse for the above-mentioned limitations. Inspired by a strong 

need for proper and scalable security solutions in this work, an advanced framework is proposed to meet the 

limitations of traditional IDS along with incorporating recent advancements from AI, in order to provide complete 

security mechanism for SDN-based IIoT networks. The main contributions of this work are: (1) A new application of 

EfficientNet-B0 with domain adaptation for feature extraction, which guarantees lightweight and effective handling 

of IIoT-specific traffic patterns. (2) Incremental learning with Elastic Weight Consolidation (EWC) to adapt 

continuously to new intrusion patterns without performance degradation on prior knowledge. (3) A self-supervised 

learning module using SimCLR to leverage unlabeled traffic data and enhance robustness. (4) Autoencoder and 

XGBoost combined hybrid anomaly detection system which will improve the accuracy rate and reduce false positive 

numbers. (5) DQN-based mitigation approach through RL for optimizing the action real-time. (6) Lightweight 

models for tiny-yolo for the implementation in the edge so as not to delay detection at much time. This integrated 

framework brings a transformative approach to the security of IIoT systems, achieving high scalability, adaptability, 

and operational efficiency while significantly reducing the latency of detection and false positives. 
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2. REVIEW OF EXISTING MODELS FOR IDS ANALYSIS 

In this section, we discuss recent methods for IDS Analysis. This was supported by Wang et al. [1, 2], who 

demonstrated that learning from multiple sources is indeed effective in intrusion detection scenarios. Indeed, 

Talukder et al. [3] have worked with machine learning-based systems, using SMOTETomek over wireless sensor 

networks, through which techniques of balancing data improve the robustness of the model. Li et al. [4] and Altamimi 

et al. [5] contrast some feature selection and extraction techniques concerning IoT intrusion detection, at the same 

time underlining some trade-offs involving a certain accuracy versus computational complexity. More IoT-specific 

applications were discovered in Alemerien et al. [6], who optimizes the efficiency and resource usage of a machine 

learning-driven IDS balancing, and Ngo et al. [7], who dug deep into feature engineering approaches. Roshan et al. 

[8] proposed an ensemble adaptive model to process the data streams of IDS. Kantharaju et al. [9] and Getman et al. 

[10] introduced deep learning methods emphasizing the ability of processing complicated network traffic patterns. 

Maseno et al. [11] utilized genetic algorithms for feature selection with an achievement of high precision for attack 

classification. Tiwari et al. [12] highlighted edge-based IIoT security based on the development of lightweight models 

for real-time detection. Saied et al. [13] compared boosting algorithms based on their adaptability in evolving 

networks. Patel et al. [14] developed a new dataset for ML-based attack classification, filling the gaps concerning the 

availability of training datasets & samples. 

Reference Method Main Objectives Findings Limitations 

[1] Quantum particle 

swarm optimized 

extreme learning 

machine 

Enhance accuracy 

and efficiency in 

intrusion detection 

Achieved improved 

accuracy and faster 

convergence compared 

to traditional methods. 

Requires high 

computational 

resources for large-

scale deployments. 

[2] Transfer extreme 

learning machine 

from multiple 

sources 

Enable transfer 

learning for intrusion 

detection 

Demonstrated effective 

knowledge transfer from 

multiple data sources to 

improve model 

adaptability. 

Dependency on quality 

and relevance of source 

datasets. 

[3] MLSTL-WSN with 

SMOTETomek 

Address class 

imbalance in wireless 

sensor networks 

Balanced data led to 

higher detection rates, 

especially for minority 

attack classes. 

Potential overfitting 

with imbalanced 

validation datasets. 

[4] Feature selection vs. 

feature extraction for 

IoT IDS 

Optimize feature 

engineering 

approaches 

Showed feature 

extraction yields better 

results in high-

dimensional IoT traffic 

scenarios. 

Increased complexity 

and preprocessing time 

for feature extraction. 

[5] Maximizing intrusion 

detection using 

extreme learning 

machine 

Improve efficiency of 

IoT network 

intrusion detection 

Achieved high efficiency 

and reduced overhead in 

IoT-specific 

environments. 

Limited scalability to 

highly dynamic 

networks. 
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[6] Optimized ML-

driven intrusion 

detection for IoT 

Develop resource-

efficient detection for 

IoT devices 

Demonstrated reduced 

false positives and 

improved precision. 

Suboptimal 

performance in 

handling advanced 

persistent threats. 

[7] Feature selection vs. 

feature extraction for 

IDS 

Compare feature 

engineering 

approaches 

Found feature 

extraction to be more 

effective for high 

Variance datasets. 

Challenges in 

dimensionality 

reduction for specific 

attack types. 

[8] Ensemble adaptive 

online learning for 

IDS 

Adapt to data 

streams in intrusion 

detection 

Achieved adaptability 

with high accuracy 

across dynamic 

datasets. 

Requires continuous 

updates, which can 

introduce overhead. 

[9] ML-based IDS 

framework for IoT 

Build a framework 

for detecting security 

attacks 

Showed scalability and 

robustness in detecting 

diverse IoT threats. 

Limited by dependency 

on predefined feature 

sets. 

[10] Deep learning for 

intrusion detection in 

network traffic 

Utilize deep learning 

models for IDS 

Achieved high accuracy 

in analyzing complex 

network patterns. 

Computationally 

intensive and less 

effective in low-

resource scenarios. 

[11] Hybrid wrapper 

feature selection with 

genetic algorithm 

Optimize feature 

selection for 

intrusion detection 

Improved attack 

classification accuracy 

using hybrid feature 

selection. 

Complexity of genetic 

algorithm increases 

computational 

overhead. 

[12] Lightweight ML-

based IDS for edge 

IIoT security 

Develop lightweight 

IDS models for edge 

environments 

Achieved real-time 

detection with minimal 

latency. 

Reduced performance 

in high-traffic 

scenarios. 

[13] Boosting-based ML 

algorithms for IoT 

IDS 

Evaluate boosting 

algorithms for IoT 

intrusion detection 

Found XGBoost to 

outperform other 

boosting techniques in 

IoT-specific scenarios. 

Requires significant 

tuning for optimal 

results. 

[14] Od-IDS2022 dataset 

for attack 

classification 

Create a 

comprehensive 

intrusion detection 

dataset 

Provided a new dataset 

for better training and 

validation of IDS 

models. 

Limited coverage of 

evolving attack 

patterns. 

[15] Adversarial 

robustness of deep 

reinforcement 

learning IDS 

Enhance robustness 

against adversarial 

attacks 

Showed improved 

resistance to adversarial 

attacks compared to 

traditional IDS. 

Susceptible to novel 

adversarial techniques. 
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[16] Seahorse 

optimization for 

cloud-based IDS 

Use bio-inspired 

optimization in cloud 

IDS 

Achieved efficient 

optimization of IDS 

parameters in cloud 

environments. 

Limited evaluation in 

edge or hybrid cloud 

scenarios. 

[17] Normalized fuzzy 

subset linked model 

for IDS 

Improve accuracy in 

imbalanced network 

traffic scenarios 

Improved detection 

rates in highly 

imbalanced datasets. 

Computationally 

intensive for large-

scale applications. 

[18] Anomaly-based IDS 

with feature selection 

Analyze anomaly 

detection with 

feature selection 

techniques 

Improved anomaly 

detection with 

optimized feature sets. 

Limited generalization 

to unseen attack types. 

[19] Amplification 

methods against ML-

based IDS 

Evaluate attack 

amplification 

techniques 

Highlighted 

vulnerabilities in ML-

based IDS against 

amplification attacks. 

Requires 

countermeasures to 

mitigate identified 

weaknesses. 

[20] Firefly algorithm for 

IoT IDS 

Apply bio-inspired 

techniques for IoT 

security 

Enhanced detection 

accuracy and efficiency 

using firefly algorithm. 

Limited scalability in 

dense IoT networks. 

[21] ML-based IDS for 

IoMT 

Develop an IDS 

framework for IoMT 

security 

Achieved high accuracy 

in medical IoT networks 

with specialized feature 

sets. 

Performance highly 

dependent on domain-

specific feature 

extraction. 

[22] ML-based IDS for in 

Vehicle CAN bus 

communication 

Enhance vehicle 

network security 

Improved detection of 

anomalies in automotive 

communication 

systems. 

Limited evaluation 

across different 

automotive 

architectures. 

[23] ML-based IDS for 

SDNs 

Comprehensive 

study of SDN 

intrusion detection 

techniques 

Demonstrated the 

adaptability of ML 

techniques in 

programmable network 

scenarios. 

Lack of detailed 

evaluation in real-

world SDN 

environments. 

[24] Genetic ensemble 

model for IDS 

Leverage ensemble 

learning with genetic 

optimization 

Improved classification 

accuracy with robust 

feature optimization. 

High computational 

costs for model 

training. 

[25] Hybrid ML 

framework for IDS in 

smart cities 

Develop hybrid IDS 

framework for urban 

IoT systems 

Achieved high detection 

accuracy and scalability 

in smart city 

applications. 

Requires significant 

tuning for large-scale 

deployments. 
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Table 1. Methodological Comparative Analysis  

Iteratively, Next, as table 1 indicates, In Merzouk et al. [15], and Jansi Sophia Mary et al. [16], the works assessed 

adversarial robustness, and optimization methods, which were further shown to represent problems for integrity. For 

example, Madhuri et al. [17] have suggested a model based on fuzzy subsets which links it with intrusion detection. 

Seniaray et al. [18] and Zhang et al. [19] discussed amplification techniques and performance evaluation respectively, 

discussing the key factors of the robustness of the system. Karthikeyan et al. [20] applied bio-inspired algorithms, 

such as the firefly algorithm, to IoT security, while Kulshreshtha et al. [21] discussed specific IoMT-based IDS 

frameworks. In Vehicle network security, Karthikeyan et al. [22] discussed the applications of the IDS in automotive 

domains, while Mustafa et al. [23] provided a comprehensive review of the ID techniques for SDNs where the role of 

machine learning in programmable networks has come into focus. Hybrid machine learning frameworks based on 

ensemble methods and domain-specific adaptations by Akhtar et al. [24] and Gill et al. [25] have been proposed for 

intrusion detection in smart cities and network traffic, respectively. Together with others, Qi et al. [1], all covered by 

Gill et al. [25], reach almost the whole spectrum of the approach taken within transfer learning, ensemble methods, 

optimisation algorithms and even adversarial training within the scope of specific difficulties in the case of IoT, SDN, 

edge deployments. All of these papers contribute to the study with different viewpoints, light edge computing models 

together with hybrid feature engineering and framework contributing to a common mission-safeguarding diverse 

environments. It then is the trend of progressing toward more and more sophisticated systems while confronting 

dynamically changing threat scenarios. Some examples come in the shape of genetic algorithms [11, 24], and bio-

inspired methods as well [20] that indeed represent innovative techniques for improving feature optimization as well 

as computational efficiency. Furthermore, the domain-specific solutions applied in particular in the context of IoMT 

[21], as well as in the automotive network [22], are good examples which show the applicability of this kind of 

frameworks. Challenges such as dataset limitation, adversarial robustness, and real-time adaptability will remain the 

challenging areas for innovation. Collectively, these studies lay a robust foundation for advancing IDS technologies 

across increasingly complex and interconnected systems. 

3. PROPOSED MODEL DESIGN ANALYSIS 

Overcoming low efficiency & high complexity that seems to be there in the existing methods, the theme of this section 

is to design an Iterative Integrated Intrusion Detection and Mitigation Framework for SDN-Based IIoT Networks 

Using Lightweight and Adaptive AI Techniques.In the first place, as illustrated in figure 1, the design for proposed 

intrusion detection and mitigation framework is based on using a number of advanced methodologies. Each 

component is synergistically integrated to enhance detection accuracy, adaptability, and operational efficiency while 

maintaining computational feasibility for resource-constrained devices & deployments. EfficientNet-B0 with domain 

adaptation serves as the cornerstone for feature extraction operations. Its basic architecture is compounded to 

achieve scaling while keeping a balance between depth, width, and resolutions. The adaptation is accomplished with 

domain-specific adaptation of traffic by fine-tuning the model. This objective function for optimization can be 

expressed via equation 1, 

𝐿𝐸𝑓𝑓𝑁𝑒𝑡 =  (
1

𝑁
) ∗  𝛴 (𝑦′𝑖 −  𝑦𝑖)2 +  𝜆 ∗  ||𝑊𝐷𝐴||

2
… (1) 

Where y'i and yi are corresponding predicted and true labels. WDA refers to the weights for the adaptation of domain 

and λ refers to the regularization parameter to prevent overfitting operations. This one makes the feature embedding 

it produces dimensionality reduced and highly representative by preserving significant traffic characteristics. Elastic 

weight consolidation supports incremental learning by producing a penalty term to preserve formerly learned 

knowledge sets. Weight importance Fi for each parameter is estimated using Fisher Information Via equation 2, 

𝐹𝑖 =  𝐸 [(
𝜕

𝜕𝜃𝑖
𝑙𝑜𝑔 𝑃(𝑦|𝑥, 𝛩))

2

] … (2) 
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Figure 1. Model Architecture of the Proposed Analysis Process 

The loss function incorporates this penalty via equation 3, 

𝐿𝐸𝑊𝐶 =  𝐿𝑛𝑒𝑤 +  𝛴𝑖  (
𝜆

2
) ∗  𝐹𝑖 ∗  (𝜃𝑖 −  𝜃𝑖 ∗)2 … (3) 

Where, θi* are the parameters from previous tasks, and λ balances the trade-off between plasticity and stability levels.  
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Figure 2. Overall Flow of the Proposed Analysis Process 

Iteratively, Next, as in figure 2, SimCLR (Simple Contrastive Learning) addresses the scarcity of labeled data by 

generating robust feature embeddings from unlabeled traffic data samples. Augmented traffic flows x1, x2 are 

mapped to embeddings z1, z2 through a shared encoder, and the contrastive loss is computed via equation 4, 

𝐿𝑆𝑖𝑚𝐶𝐿𝑅 =  −𝑙𝑜𝑔 [
𝑒𝑥𝑝 (

𝑠𝑖𝑚(𝑧1,𝑧2)

𝜏
)

𝛴𝑘 𝑒𝑥𝑝 (
𝑠𝑖𝑚(𝑧1,𝑧𝑘)

𝜏
)

] … (4) 
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Where, the similarity is estimated via equation 5, 

𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑗) =
𝑧𝑖 ·  𝑧𝑗

||𝑧𝑖||||𝑧𝑗||
… (5)  

Which is the cosine similarity and τ is the temperature scaling factor for the process. This enhances the learning of 

representations with noise robustness and variations in the process. For the mitigation, Deep Q-Learning formulates 

intrusion response as a sequential decision-making problem for the process. The Q Value update equation is given 

via equation 6, 

𝑄(𝑠, 𝑎) ←  𝑄(𝑠, 𝑎) +  𝛼 [𝑟 +  𝛾max
𝑎

( 𝑄(𝑠′, 𝑎) −  𝑄(𝑠, 𝑎))] … (6) 

Where, s and s' are current and next states, 'a' is the action, 'r' is the reward, α is the learning rate, and γ is the discount 

factor for the process. This mechanism helps the agent optimize mitigation actions, which reduces packet loss and 

latency levels. In an iterative manner, Tiny-YOLO is implemented for edge-based anomaly detection process. A 

simplified CNN is used for real-time performance levels. Via equation 7 the model incorporates localization, 

confidence, and classification errors into the loss function, 

𝐿𝑌𝑂𝐿𝑂 =  𝜆𝑐𝑜𝑜𝑟𝑑 𝛴𝑖  ((𝑥𝑖 − 𝑥′𝑖)2 +  (𝑦𝑖 − 𝑦′𝑖)2) + 𝛴𝑖  (𝑝𝑖 −  𝑝′𝑖)2 +  𝛴𝑖  𝐿𝑐𝑙𝑎𝑠𝑠 … (7) 

Iteratively, Next, Autoencoder and XGBoost are integrated for hybrid anomaly detection and classification process. 

The autoencoder minimizes reconstruction error to detect anomalies via equation 8, 

𝐿𝐴𝐸 =  (
1

𝑁
) 𝛴 ||𝑥𝑖 −  𝑥′𝑖||

2
… (8) 

Detected anomalies are then classified using XGBoost, which minimizes the gradient-boosted loss via equation 9, 

𝐿𝑋𝐺𝐵 =  𝛴 (𝑦𝑖 𝑙𝑜𝑔 𝜎(𝑦′𝑖) +  (1 −  𝑦𝑖)𝑙𝑜𝑔 (1 −  𝜎(𝑦′𝑖))) +  𝜆 ||𝑤||
2

… (9) 

The final integrated framework output combines these methodologies to provide precise anomaly detection and 

optimized mitigation actions via equation 10, 

𝑂𝑓𝑖𝑛𝑎𝑙 =  𝑓𝐷𝑄𝑁 (𝑓𝑋𝐺𝐵 (𝑓𝐴𝐸(𝑓𝐸𝑓𝑓𝑁𝑒𝑡(𝑥)))) … (10) 

This cascaded formulation ensures the translation of raw traffic data into actionable intelligence with a high level of 

accuracy and adaptability with low latency that fits the stringent needs of an SDN-based IIoT environment. The 

multiple techniques provide robustness as well, complementing the respective strengths to achieve an easy trade-off 

between detection, classification, and mitigation. Moving forward, we will present the efficacy of the model under a 

variety of performance metrics in comparison to the current practices. 

4. COMPARATIVE RESULT ANALYSIS 

This experimental testbed for the proposed integrated framework has been designed with the aim of testing for 

various scenarios in SDN-based IIoT environments. The two primary benchmarks were chosen to ensure 

comprehensive validation, namely the CICIDS2017 and Bot-IoT datasets which contain a wide range of network 

traffic patterns and various types of attacks, which include DoS, DDoS, port scanning, and brute-force attacks. These 

datasets were preprocessed to extract flow-level features such as packet size, interarrival time, protocol type, and 

source-destination pairs. Some of the input parameters involved were traffic flow attributes that have numerical 

ranges such as packet size: 64–1500 bytes, interarrival time: 1–200 ms, and categorical variables, such as protocol: 

TCP/UDP/ICMP, which are already in process. The preprocessing pipeline normalized these features into a range of 

[0,1] for neural network inputs. To ensure the balance of distribution in both attack and benign samples, the datasets 

are split further into 70% training, 20% validation, and 10% testing splits. For augmentation, random noise injection 

along with time-window slicing is performed to create realistic variations that may take place in IIoT traffic. The 

EfficientNet-B0 module was initialized with pre-trained weights on ImageNet and fine-tuned by specific IIoT traffic 

for 50 epochs at a batch size of 64 with the learning rate of 1×10e−4 for the process. For the SimCLR module, a 

temperature parameter of 0.5 was used, thereby generating embeddings for the unlabeled traffic data with the 

augmentation process of cropping and jittering. The architecture for the autoencoder used was a 3-layer encoder-

decoder, which had dimensions set at 128 and 64 for the input and hidden layers, respectively. In the process part, 

the convergence threshold in computing the reconstruction loss of MSE was set at 10e−5; training for XGBoost 
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classification included depth set at 8 with learning rate set to 0.1 that trained 100 rounds. Elastic Weight 

Consolidation with regularization parameter (λ) at 100 has been used to maintain plasticity versus stability. For 

reinforcement learning, DQN agent was interacted with simulated SDN controller that has been configured with real-

world topology parameters like 50 switches, 500 hosts for optimizing mitigation actions like rerouting and rate 

limiting. This enabled the Tiny-YOLO optimized for anomaly detection to achieve less than 10 ms latency on inference 

on deployments at Raspberry Pi 4. The full framework was deployed in a hybrid cloud-edge environment, where the 

scaling of over 10,000 edge nodes utilized Kubernetes. 

Datasets: The proposed framework is evaluated on the CICIDS2017 and Bot-IoT datasets, as they include a broad 

representative of the modern network traffic patterns and various cyber attack scenarios. The CICIDS2017 dataset is 

a classified traffic data obtained from the Canadian Institute for Cybersecurity, collected over a five-day period. It 

includes various types of intrusions, such as DDoS, brute-force, SQL injection, and botnet attacks. It contains over 

2.8 million records, whose attributes include packet size, flow duration, protocol type, and TCP flags. The traffic flow 

is marked to be benign or one of the types of attacks. It should very well be benchmarking data set both for anomaly 

detection and classification. The Bot-IoT dataset has been developed by Cyber Range Lab of the Australian Centre 

for Cyber Security that focuses on IoT environments; the data set includes benign and malicious traffic generated 

using IoT devices & deployments. It contains over 73 million instances that deal with a range of attacks, including 

DoS, DDoS, information theft, and reconnaissance. Thus, the dataset is strongly imbalanced and highly mimics real-

world conditions. It comprises flow-level features, including source IP, destination IP, packet interarrival time, and 

payload size. Datasets were preprocessed through the normalization of numerical features and encoding categorical 

ones for an effective base to train and evaluate the proposed multi-stage intrusion detection framework. The 

experimental results prove the performance of the proposed framework based on multiple metrics and real-world 

scenarios. The framework was rigorously compared with Method [3], Method [8], and Method [18] based on the 

detection, classification, and mitigation capabilities of the proposed framework over CICIDS2017 and Bot-IoT 

datasets. Below are some of the results analyses with their real-world implications considering the superiority in 

critical IIoT settings. 

 

Figure 3. Model’s Integrated Result Analysis 
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Table 2: Detection Accuracy on CICIDS2017 Dataset 

Model Detection Accuracy (%) 

Proposed Framework 96.8 

Method [3] 92.5 

Method [8] 90.3 

Method [18] 88.7 

The framework has achieved a detection accuracy of 96.8% while Method [3] scored at 92.5%, Method [8] 90.3%, 

and Method [18] 88.7% in process. The benefit of the integration of the domain-specific feature extraction through 

EfficientNet-B0, with hybrid anomaly detection mechanisms is demonstrated to result in an improvement of up to 

4–8%. In real-time environments, this means a massive cut in undetected intrusions, which would cause operational 

disruption or pose safety risks to patients in places such as smart factories or connected healthcare sets. 

 

Figure 4. Model’s Efficiency Analysis 

Table 3: Precision, Recall, and F1-Score on Bot-IoT Dataset 

Model Precision (%) Recall (%) F1-Score (%) 

Proposed Framework 95.4 94.7 95.0 

Method [3] 91.2 89.8 90.5 

Method [8] 88.6 86.5 87.5 

Method [18] 85.3 83.9 84.6 

The proposed framework outperformed Method [3] (F1: 90.5%), Method [8] (F1: 87.5%), and Method [18] (F1: 

84.6%) in terms of precision (95.4%), recall (94.7%), and F1-score (95.0%). In IIoT networks with high attack 

diversity, balanced performance is crucial. The high recall ensures most intrusions are detected while the high 

precision prevents excessive false alarms. Such reliability will then minimize downtime and operational inefficiencies 

in critical infrastructures such as power grids or autonomous transportation systems. 
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Table 4: Area Under the Curve (AUC) and False Positive Rate (FPR) on CICIDS2017 Dataset 

Model AUC (%) FPR (%) 

Proposed Framework 97.5 2.7 

Method [3] 93.8 4.5 

Method [8] 91.4 5.8 

Method [18] 89.2 6.3 

With an AUC of 97.5% and an FPR of 2.7%, the proposed framework demonstrated strong decision making and 

outperforms Method [3] (AUC: 93.8%, FPR: 4.5%), Method [8] (AUC: 91.4%, FPR: 5.8%), and Method [18] (AUC: 

89.2%, FPR: 6.3%) while maintaining a low value for FPR, thus flags less benign flows as harmful. This reduces the 

volume of workload on security personnel while increasing the system trustworthiness. This allows SDN controllers 

to make better allocations of resources, not being interrupted too often by false alarms in real-world deployments. 

 

Figure 5. Model’s Latency Analysis 

Table 5: Detection Latency and Mitigation Latency on Bot-IoT Dataset 

Model Detection Latency (ms) Mitigation Latency (ms) 

Proposed Framework 14.8 19.3 

Method [3] 22.1 28.5 

Method [8] 24.5 31.0 

Method [18] 27.3 34.8 

Detection latency of the proposed framework is 14.8 ms and mitigation latency is 19.3 ms outperforming Method [3] 

(22.1 ms/28.5 ms), Method [8] (24.5 ms/31.0 ms) and Method [18] (27.3 ms/34.8 ms). Low latency is very significant 

in ensuring that IIoT systems return real-time responses, especially in automated assembly lines and smart traffic 
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systems. Due to this, near-instantaneous detection and mitigation by the framework completely prevent cascading 

failures in a system, minimizing wide-scale disruption or loss economically in process. 

Table 6: Scalability on Large-Scale Edge Deployments 

Model Nodes Supported Average Latency (ms) 

Proposed Framework 12,000 16.5 

Method [3] 8,500 23.8 

Method [8] 7,200 26.7 

Method [18] 6,400 29.2 

The proposed framework supported up to 12,000 edge nodes with an average latency of 16.5 ms outperforming 

Method [3] at 8,500 nodes/23.8 ms, Method [8] at 7,200 nodes/26.7 ms, and Method [18] at 6,400 nodes/29.2 ms. 

That would ensure that the framework is responsive while handling large deployments like a smart city infrastructure 

sets. The aspect of scalability with less decline in performance is going to present a major relief for an important 

challenge found in modern IIoT systems. 

Table 7: Adaptability to New Patterns 

Model Adaptation Time (min) Retained Accuracy (%) 

Proposed Framework 8.7 95.6 

Method [3] 15.3 89.8 

Method [8] 17.8 87.3 

Method [18] 20.5 85.4 

The proposed framework adapted to new intrusion patterns within 8.7 minutes of time with the same precision at 

95.6%, higher than the result of Method [3] (15.3 min/89.8%), Method [8] (17.8 min/87.3%), and Method [18] (20.5 

min/85.4%). Such speed of adaptation, made possible by Elastic Weight Consolidation, suggests that it is able to be 

effective even in dynamic IIoT. For instance, it rapidly adjusts to new vectors of attack within energy grids or 

autonomous systems and therefore maintains maximum operational resilience and security. Outcomes demonstrate 

the excellent performance of the framework in key metrics and highlight its promise for revolutionizing intrusion 

detection and mitigation in IIoT systems. The framework is thus designed to handle real-time operations, large-scale 

deployments, and dynamic threats with robust security for modern connected infrastructures in process. Lastly, but 

not the least, is presenting the iterative validation use case that will help understand the overall process with the 

proposed model in process. 

Validation using an Iterative Practical Use Case Scenario Analysis 

In this section, we demonstrate the result of the respective processes based on the proposed framework and confirm 

its effectiveness for any of the stages of an intrusion detection process, feature learning, classification, or mitigation 

phases. The datasets used here are practical datasets including network traffic that holds both benign and malicious 

patterns pre-processed into flow level features such as packet size, protocol type, and interarrival delays. Outputs are 

depicted in tabular form and include the metrics and indicators for every process. The evaluation metrics of each 

stage are parallel to its functional objectives. In the case of feature extraction of EfficientNet-B0, high-dimensional 

feature embeddings are considered, and for Elastic Weight Consolidation, the ability to retain the task is evaluated. 

SimCLR analyzes the robustness of the embedding, Deep Q-Learning investigates the efficiency of mitigation, and 

Tiny-YOLO is developed for low-latency anomaly detection. In turn, the combination of Autoencoder-XGBoost posits 

that precision and recall are prominent factors in the anomaly classification task. All of these results have formed the 

basis of final outputs; that is, the global performance levels of the given framework. Two notable datasets are used as 

a pool for validation samples of analysis of the practical use case, namely CICIDS2017 and Bot-IoT. These are high 

recognition datasets, widely referred for their detailed depiction of current network traffic patterns in modern times 

and for cyberattacks varied in nature. From CICIDS2017, the validation samples included labeled network flows of 

five attack types, which include DDoS, brute-force, and SQL injection, covering important traffic features such as 

packet size, interarrival time, and TCP flags. Similarly, Bot-IoT validation samples were selected to focus on IoT-
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specific traffic anomalies, including reconnaissance, DoS, and information theft attacks, extracted as flow-level data 

with attributes such as protocol type, payload size, and source-destination IP mappings. The validation set was a 

balanced dataset between benign and malicious traffics, hence providing great room for a rigorous validation of 

anomaly detection and classification. Normalization of numeric features and categorical encoding, together with 

augmentation techniques that reflected real variations in traffic pattern, were some of the preprocessing techniques. 

These were samples used for robust validation grounds to check the performance, scalability, and adaptability in 

handling real intrusion detection issues in this proposed framework. 

Table 8: Outputs of EfficientNet-B0 with Domain Adaptation 

Sample 

ID 

Packet Size 

(Bytes) 

Protocol Extracted Feature Embedding (128-

Dimensional Vector Norm) 

Embedding Quality 

Score 

1 500 TCP 0.987 0.96 

2 1200 UDP 0.942 0.94 

3 64 ICMP 0.978 0.95 

4 750 TCP 0.965 0.93 

EfficientNet-B0 is showing strong feature extraction capabilities. The embeddings that are generated by it score more 

than 0.93 in diverse protocols and packet sizes. These are fed to subsequent stages. 

Table 9: Outputs of Elastic Weight Consolidation (EWC) 

Task Retained Accuracy on 

Previous Tasks (%) 

Adaptation Accuracy on 

New Task (%) 

Stability 

Metric (λ) 

Plasticity 

Metric 

1 95.6 96.4 100 0.87 

2 94.8 95.9 100 0.89 

3 94.2 96.1 100 0.91 

EWC Balances stability and plasticity, keeping over 94% accuracy on the previous tasks and over 96% on new tasks. 

It can be well applied to incremental learning processes. 

Table 10: Outputs of SimCLR (Simple Contrastive Learning) 

Augmentation Type Embedding Similarity (Cosine 

Similarity) 

Contrastive 

Loss 

Robustness 

Metric 

Time-Shift Augment 0.98 0.12 0.97 

Noise Injection 0.95 0.18 0.93 

Random Cropping 0.96 0.15 0.94 

In essence, SimCLR embeddings are cosine similar with high values above 0.95 and low values below 0.18 regarding 

contrastive loss, denoting robust representation learning under augmentation operations. 

Table 11: Outputs of Deep Q-Learning (DQN) 

State Action Taken Reward Latency Reduction 

(%) 

Packet Loss Reduction 

(%) 

High Traffic Load Flow Rerouting 15.8 42 38 

DDoS Attack Detected Rate Limiting 18.5 35 40 

Normal Traffic No Action 0.0 0 0 

Deep Q-Learning learns effective mitigation actions, realizing up to 42 percent latency reduction and up to 40 percent 

packet-loss in critical scenarios. 
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Table 12: Outputs of Tiny-YOLO for Anomaly Detection 

Sample ID Inference Latency (ms) Detection Accuracy (%) False Positive Rate (%) 

1 9.8 92.4 3.2 

2 8.7 91.8 3.5 

3 10.3 93.1 3.0 

4 9.5 92.7 3.1 

Tiny-YOLO realizes inference latency while maintaining a detection accuracy more than 91.8 percent with fewer false 

positives, below 10.5 ms. 

Table 13: Outputs of Autoencoder for Anomaly Detection + XGBoost for Classification 

Anomaly 

Type 

Reconstruction Loss 

(Autoencoder) 

Classification 

Accuracy (XGBoost) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Novel 

Anomalies 

0.08 94.2 93.7 94.5 94.1 

Known 

Signatures 

0.06 95.7 95.0 96.2 95.6 

The hybrid mechanism of Autoencoder-XGBoost achieves excellent classification accuracies (>94%) and balanced 

precision, recall, and F1-scores, which further indicates strong anomaly detection and classifications. 

Table 14: Final Outputs 

Metric Value 

Overall Detection Accuracy 96.8% 

False Positive Rate 2.7% 

Adaptation Time 8.7 minutes 

Detection Latency 14.8 ms 

Mitigation Latency 19.3 ms 

Scalability (Nodes Supported) 12,000 

Retained Accuracy (EWC) 95.6% 

The final outputs reflect the results aggregated coming from all sides, yet an overall detection accuracy touches 96.8%, 

with a false positive rate of 2.7% and very low latencies and high scalability ensuring in all the ways that large-scale, 

real-time applications of IIoT achieve their requirements. The depicted tables well summarize the effectiveness of 

each process inside this proposed framework in order to show robustness, flexibility, and efficiency. From feature 

extraction to final outputs, the framework reliably produces high accuracy, low latency, and effective mitigation, 

making it a sound solution for securing SDN-based IIoT environments from emerging cyber threats. 

5. CONCLUSION & FUTURE SCOPES 

Excellent performance can be seen in the proposed framework for intrusion detection and mitigation in SDN-based 

IIoT environments, which have been vindicated by experiments. The framework achieved tremendous balance 

between accuracy, scalability, and adaptability since it used domain-adapted feature extraction with the EfficientNet-

B0 method, incremental learning with EWC, robust embeddings developed using SimCLR, anomaly detection with 

autoencoders or the Hybrid way in combination with XGBoost, and real-time strategies for mitigation with Deep Q-

Learning (DQN). On the CICIDS2017 dataset, it outperformed the classical methods at a detection accuracy of 96.8% 

and 92.5%, 90.3%, and 88.7% that were obtained by Method [3], Method [8], and Method [18], respectively. 

Furthermore, it presented excellent precision at 95.4%, recall at 94.7%, and F1-score at 95.0% on the Bot-IoT dataset 

along with its robustness over highly imbalanced datasets & samples. It holds on an AUC of 97.5% with the lowest 

false positive rate being at 2.7%. It, therefore, ensures a very high reliability level and thus reduces the operators' 

workload and unnecessary mitigation action. It has a real-time performance with around 14.8 ms for detection 

latency and 19.3 ms for mitigation latency, which will prove appropriate for time-critical applications, especially 
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within the scope of IIoT, such as smart transportation systems, connected health care, and automated manufacturing. 

Scalability testing shows that it can even handle up to 12,000 edge nodes with average latency of just 16.5 ms, 

therefore very suitable for large scale deployment such as smart city sets. The adaptability of the framework, with 

adaptation time of 8.7 minutes and retained accuracy of 95.6%, shows its ability in effectively handling changing 

threats in a dynamic environment for the process. 

Future Scope: 

Although the proposed framework establishes a novel benchmarking for intrusion detection and mitigation in SDN-

based IIoT networks, there still exist a good number of avenues to pursue further study. For example, in federated 

learning paradigms, extensions to extend the framework in this type of paradigms, enhance the capacity for the 

privacy preservation mode, decentralized training on a distributed IIoT node; hence, some data-sharing restraints 

characterizing industrial application. Integration with more advanced generative models, such as VAEs or GANs, can 

further enhance the anomaly detection capability by synthesizing more realistic attack patterns during training. This 

scope would provide the opportunity to extend the DQN component into the field of multi-agent reinforcement 

learning that, in turn can make further decisions between other SDN controllers for achieving better resilience against 

large and distributed attacks. Last, using GPUs or TPUs to create hardware acceleration for edge devices will ensure 

the system continues to make improvements toward below-threshold latencies in detection and mitigation: a little as 

14.8 ms and 19.3 ms to enhance the overall response time in ultra-low-latency applications including autonomous 

vehicle process. 
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