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The exponential growth of the Internet of Things (IoT) has introduced new 

dimensions of connectivity. Still, it also brings critical security challenges due 

to IoT devices' heterogeneity and resource constraints. Traditional Intrusion 

Detection Systems (IDS) often fail to meet IoT environments' real-time and 

adaptive security requirements, particularly against sophisticated and zero-

day attacks. This paper proposes a hybrid IDS framework that integrates 

machine learning-based traffic classification with risk-adaptive encryption 

mechanisms to address these limitations. The system utilizes Random Forest 

classifiers to categorize network traffic into benign, low-risk, and high-risk 

threats. A dual-mode encryption strategy is applied based on the threat level: 

high-risk data is secured using a hybrid RSA and Modified ChaCha20 

encryption algorithm. In contrast, low-risk data uses the lightweight 

Modified ChaCha20 alone. The encryption model introduces a non-linear 

transformation and custom permutation layer to enhance diffusion and 

security. Experimental evaluations demonstrate that the proposed system 

performs better in encryption time, throughput, entropy, and energy 

efficiency than traditional AES and RSA schemes. Moreover, the keystream 

randomness was validated through the NIST statistical test suite, confirming 

its robustness against cryptanalytic attacks. This hybrid approach ensures 

scalable, intelligent, and secure communication for real-time IoT operations. 

 

Keywords: Intrusion Detection System(IDS), Internet of Things(IoT), 
Machine Learning (ML), Random Forest, RSA, ChaCha20 

 

1. INTRODUCTION  

The Internet of Things (IoT) is reconfiguring the ultramodern digital topography by interconnecting 

billions of biases in colourful domains, such as healthcare, artificial robotization, smart homes, 

transportation, and husbandry. IoT facilitates real-time data harvesting, wise decision-making, and 

robotization, revolutionizing how people and enterprises engage with technology. Nevertheless, as IoT 

relinquishment increases, so does its susceptibility to cyber pitfalls and security vulnerabilities. In 

contrast to conventional computing environments, IoT networks consist of various, resource-limited 

biases that exchange information over the internet, often working in open or public networks. This IOT 

device property subjects them to a broad spectrum of cyberattacks, such as malware infections, denial-

of-service (DoS) attacks, man-in-the-middle (MITM) attacks, data breaches, and device kidnapping [1]-

[2]. Additionally, the ad-hoc nature of IoT ecosystems, where multiple manufacturers create bias with 

different security standards, also makes cybersecurity sweats more challenging. The decentralized 

nature of IoT makes conventional security methods ineffective since they cannot accommodate the 

enormous number of connected devices. Although firewalls and encryption offer a fundamental level of 

protection, they cannot identify advanced, zero-day attacks or emerging intrusion techniques. This 
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highlights the imperative necessity of Intrusion Detection Systems (IDS) in IoT settings. The Internet 

of Effects (IoT) is rapidly transubstantiating hard work by attaching billions of innovative biases, 

facilitating robotization, real-time monitoring, and seamless communication across various fields. 

These networked biases are deployed in smart homes, healthcare, artificial robotization, innovative 

cities, transportation, and critical infrastructure, providing vibrant functionalities that enhance 

functional efficiency. Nevertheless, this vast interconnectivity creates sharp security exposures, 

rendering IoT bias high targets for cyber traps. IoT environments differ from the conventional IT 

networks in that IoT environments map to miscellaneous bias with diverse tackle infrastructures, 

operating systems, and communication protocols. Many IoT biases are characterized by limited 

calculating power, memory, and battery life, which poses difficulties for deploying strong security 

mechanisms. These limitations render IoT networks vulnerable to cyberattacks such as DoS attacks, 

billabong attacks, renewal attacks, Sybil attacks, malware injections, and unauthorized access. 

Similarly, IoT bias constantly causes, handles, and transfers sensitive information, rendering data 

vacancy, fidelity, and secrecy prime enterprises. Conventional security protocols, such as firewalls and 

hand-grounded intrusion discovery systems (IDS), cannot provide sufficient security in rapidly 

changing IoT environments where new traps emerge sprightly. This mandates the creation of smart 

security outcomes that incorporate cutting-edge technologies like Machine Learning (ML) and 

cryptographic methods to improve intrusion detection and data security. An IDS is a security outcome 

that aims to blanket, analyze, and define malicious conditioning in a system or network. It is crucial in 

connecting cyber pitfalls prior to them siring substantial harm. Since IoT is an ever-changing arena, a 

powerful IDS should also be adaptive, scalable, and capable of recognizing real-time attacks to combat 

developing security traps[3]. IDS for IoT may be categorized, as illustrated by the figure, on the basis of 

their discovery, confirmation, and placement schemes. All three schemes have some advantages and 

drawbacks, affecting an IDS's performance in an IoT environment as a whole. Conventional IDS 

implementations often compute on hand-grounded discovery, in which case predefined attack 

autographs are needed, or anomaly-grounded discovery, in which case it is a matter of distractions from 

typical geste. Furthermore, the selection of confirmation approach determines how explicitly an IDS 

can validate if an identified anomaly is an actual cyber trouble. On the other hand, the placement 

approach affects the efficacy of live intrusion monitoring and response. A centralized IDS would provide 

additional control and improved correlation of data, while a distributed IDS provides additional 

scalability and fault tolerance. Still, IDS implementation differs significantly by detection mechanisms 

(signature-based, anomaly-based, or hybrid), verification methods (rule-based, statistical, or machine 

learning), and deployment types (centralized, distributed, or hybrid) [4]. 

Signature-based IDS models identify attacks through predefined signatures but do not catch unknown 
threats. Anomaly-based systems identify deviance from normal behavior through machine learning, 
thus identifying zero-day attacks but in many cases at the cost of high false favorable rates [5]. Hybrid 
techniques use both techniques to enhance the detection rate with the reduction in computational 
inefficiencies. However, current IDS solutions continue to face various challenges, including high false 
positives, limited checking of encrypted traffic, limited scalability in large-scale IoT networks, and lack 
of automated, threat-driven response capabilities [6]-[7]. Our work draws on these IDS techniques by 
proposing a mongrel paradigm that combines ML-predicted business brackets with threat-configured 
encryption. With a hybrid of KNN, CNN-based anomaly detection, and ChaCha20 encryption. Our 
suggested IDS fortifies trouble finding delicacy and data security, icing a firm defense medium to IoT 
networks. The following section describes this emerging strategy in-depth. IDS is critical in making IoT 
networks safe by relating and soothing cyber pitfalls. However, IDS mechanisms vary; they are 
developed and rooted on various discovery methods, verification strategies, and placement tactics. 
Knowledge of these abecedarian approaches is crucial to the formulation of a practical IDS framework 
for IoT environments. The discovery approach specifies how an IDS detects implicit pitfalls, either 
through pre-defined attack autographs, behavioral anomaly discovery, or a blend of both. The 
confirmation approach addresses how an IDS confirms and categorizes detected pitfalls, employing 
styles from theoretical and empirical confirmation to anomaly-grounded learning methods. Incipiently, 
the deployment strategy decides whether and how IDS factors are deployed in an IOT network – 
centrally, distributed, or utilizing a mongrel strategy to balance both. Figure 1 below classifies these IDS 
strategies, presenting a high-position overview of how intrusion discovery systems are organized in IoT 
security. 
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Figure 1: IDS Classification Strategies for IoT 

 

IoT networks are confronted by multitudinous security issues because of their resource-constrained and 

decentralized nature. Security ventures highlight the necessity for an advanced mongrel Intrusion. 

Data Confidentiality is used to denote unauthorized access, and data revision can be used to jeopardize 

sensitive IoT information, causing sequestration breaches in such critical operations as healthcare and 

finance. Data Integrity is used to denote icing the responsibility of transmitted data and plays a critical 

role in IoT networks, where modified or falsified information can cause severe functional dislocations. 

Data Availability is about IoT networks which need to keep working and accessible even in the face of 

hostile efforts to stop services through DoS or Distributed Denial-of-Service (DDoS) attacks. 

Authentication and Authorization are about poor authentication processes that cannot permit 

bushwhackers to attain unauthorized access to bias, support man-in-the-middle attacks, renewal 

attacks, or identity spoofing. Network Scalability and Performance means that as exponentially the 

number of IoT biases increase, it becomes a big challenge to secure real-time communication and 

recycle large datasets in an effective manner. 

IoT networks are faced with multitudinous security challenges due to their decentralized and resource-

constrained nature. Security endeavors emphasize the need for a sophisticated mongrel Intrusion. 

Data Confidentiality is utilized to signify illegal access, while data revision can be utilized to compromise 

sensitive IoT data to induce sequestration violations in such key operations as healthcare and finance. 

Data Integrity is utilized to signify icing the duty of transmitted data and exercises a vital role in IoT 

networks, where altered or tampered information can induce serious functional dislocations. Data 

Availability refers to IoT networks that must continue to function and be available even in the presence 

of hostile attempts to disrupt services via DoS or Distributed Denial-of-Service (DDoS) attacks. 

Authentication and Authorization refer to weak authentication processes that cannot allow 

bushwhackers to achieve unauthorized access to bias, facilitate man-in-the-middle attacks, renewal 

attacks, or identity spoofing. Network Scalability and Performance implies that as exponentially the 

number of IoT biases grows, it is a huge task to secure real-time communication and recycle large 

datasets in an efficient way. 

Even with the improvement, numerous ML-based IDS models do not adapt dynamically with the 

severity level of the attacks identified. An apparatus that grants equal encryption and processing load 

for low-risk anomaly as well as high-impact attacks squanders resources in IoT networks that are 

already resource-poor. Thus, a hybrid IDS architecture has become necessary that classifies and detects 

threats precisely and adjusts its security reaction according to risk severity. New advancements in 

adaptive cryptographic techniques, federated learning, and cloud-based intelligence sharing have been 
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promising to construct strong frameworks [11]-[13]. The limitations brought about by the prevailing 

IDS strategies are delineated below: 

● High False Positive Rates – A false positive in an IDS is when the system recognizes legitimate 
network exertion as trouble. Normal geste is thus inappropriately marked as an intrusion, causing 
unnecessary security warnings. 

● Limited Detection of Encrypted Traffic – Ultramodern networks, such as IoT environments, 
are very dependent on encryption protocols such as TLS and SSL for encrypting data in conveyance. 
Though encryption increases data confidentiality and security, it poses a very big challenge for IDS 
since translated packets cannot be smoothly audited for malicious content. 

● Scalability Issues – Scalability can be described as an IDS ability to accommodate increases in 
amounts of network business, bias, and security events without disparaging performance. As the 
IoT environments expand, the legacy IDS models experience challenges reusing extensive amounts 
of real-time business, resulting in performance backups. 

● Lack of Integrated Security Measures – Maximum traditional IDS models are centered only 
on detecting intrusion, but they do not embrace visionary security actions to protect breached data 
or mitigate attacks. This flaw exposes IoT networks to threats because identifying trouble without 
response mechanisms does not prevent data breaches or damage. 

● In order to solve the shortcoming of conventional IDS, we suggest a new Intrusion Discovery System 
(IDS) that integrates ML-ground brackets seamlessly with cutting-edge cryptographic security 
mechanisms. This system is created to offer a framed and adaptive security frame that can 
effectively relate to and placate cyber pitfalls in IoT networks. Real-time network business 
monitoring from IoT bias constitutes the first subcaste of defense in our IDS. Utilizing ML models 
like K- Nearest Neighbors (KNN) and Convolutional Neural Networks (CNN), the system examines 
and classifies network conditioning into two essential orders like low-threat and high-threat 
attacks. They are characterized as: 

● Low-threat attacks include unauthorized access attempts and abnormal data transmissions 
that do not pose an immediate peril but still bear monitoring. 

● High-threat Attacks: - These involve severe cyber pitfalls similar to denial-of-service 
(DoS) attacks, malware intrusions, data breaches, and renewal attacks that bear immediate action. 

Various attacks require various security contexts; our IDS utilizes a threat-based encryption approach. 

Translated, the classified trouble information is securely relayed to a pall-based security platform for 

advanced forensic examination and quick-shooting trouble response. The pall-based method provides 

a number of benefits. Real-time trouble Intelligence continually updates and improves its trouble 

detection models, icing visionary cybersecurity defense. Utilizing Automated Security Responses, the 

platform can robustly adapt security mechanisms and react to pitfalls in real time. Cooperative 

Cybersecurity Network allows organizations to share important trouble intelligence, bringing about a 

unison defense initiative against emerging cyber pitfalls. Combining ML with encryption-based security 

protocols, our suggested IDS facilitates the adaptability of IoT networks, providing an adaptable, 

intelligent, and scalable solution to intrusion discovery and prevention. 

This work introduces a hybrid IDS architecture combining machine learning (ML) under the Random 

Forest algorithm for effective anomaly detection. Depending on the severity of the detected threats, the 

system dynamically employs either light Modified ChaCha encryption or combined RSA-ChaCha. Low-

risk threats are protected with Modified ChaCha to guarantee efficiency, while high-risk anomalies 

trigger an RSA-based key exchange preceded by ChaCha encryption to provide strong security. This 

threat-adjusted cryptographic scheme guarantees optimal performance and security. 

The main contributions of this paper are: 

● A machine learning-based IDS utilizing Random Forest for accurate threat classification in IoT 
networks. 

● A novel dual-mode encryption mechanism that adapts encryption strength based on threat 
severity. 

● Integrating a non-linear transformation and permutation layer into the ChaCha stream cipher 
for enhanced security and diffusion. 

● Comprehensive performance evaluation using metrics such as encryption time, throughput, 
avalanche effect, Shannon entropy, energy consumption, and memory usage. 
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● Validation of keystream randomness using the NIST test suite to confirm the model’s 
robustness against statistical attacks. 

The proposed IDS framework addresses existing scalability, adaptability, and cryptographic efficiency 

limitations, providing a secure, scalable, and intelligent security architecture tailored for IoT 

environments. 

 

2. RELATED WORK 

In [14] et al., the authors introduce a mongrel IDS model that combines Convolutional Neural Networks 

(CNN) and Long Short-Term Memory (LSTM) to explain intrusions in IoT environments. The research 

emphasizes the ability of CNN to reward spatial features from network commerce while LSTM catches 

successional interdependencies, enhancing the sensitivity of attack discovery. The outcomes of 

experiments reveal that the model realizes 98.6 discovery sensitivity, surpassing classical IDS methods. 

however, the research also identifies high computational environments, rendering it less feasible for 

resource-constrained IoT bias. In [15] et al., the experimenters suggest an anomaly-based IDS utilizing 

a Support Vector Machine (SVM) and Decision Trees in network business intervals. The research 

highlights low false positive rates, optimizing the trustworthiness of anomaly detection. nevertheless, 

the effectiveness of the model heavily relies on the emptiness of labeled datasets, and it is challenged by 

unfamiliar attack patterns because it is based on supervised learning. In [16] et al., an autoencoder-

based IDS is proposed to explain zero-day attacks by learning network gets anomalies. The results show 

that the model can effectively identify preliminarily unseen pitfalls. nevertheless, high false alarm rates 

are still a challenge, resulting in implicit security alert fatigue. In [17] et al., a Generative Adversarial 

Network (GAN)- based IDS is put forward to improve training sets for anomaly detection. The research 

demonstrates that artificially generated attack scripts improve model resilience, resulting in a tighter 

bracket of cyber traps. nevertheless, GANs have high computational budgets and large data, which could 

constrain application in real-time IoT environments. In [18] et al., the researchers present a mongrel 

IDS that integrates hand-grounded and anomaly-grounded discovery methods. The research discovers 

that the combination of both methods balances delicacy and speed of discovery, although it raises model 

complexity and demands high computational power to work efficiently. The experimenters in [19] et al. 

employ a CNN with point selection to improve intrusion discovery within IoT networks. The research 

proves that choosing relevant network features minimizes dimensionality and processing time, making 

the IDS efficiently and quickly. nonetheless, the model has difficulties with initially unseen attack 

patterns, which makes it less rigid. In [20] et al., an LSTM-based IDS is constructed to model 

successional attack patterns in IoT environments. The research verifies that LSTM suits time-series 

attack detection well and thus is most suitable for associating slow-operating cyber pitfalls. yet, long 

training periods and high computational complexity restrict its use in real-time IoT applications. In [21] 

et al., allied learning (FL) is used for IDS to facilitate distributed intrusion discovery without involving 

raw data. The research emphasizes that FL increases data sequestration and security within IoT 

networks. yet, communication outflow and allied updates present serious challenges to real-time 

processing. In [22] et al., ensemble learning is employed to improve intrusion bracket using Decision 

Trees, Random Forest, and SVM. The findings establish that ensemble learning attains sophisticated 

delicacy and trustability in attack detection. nonetheless, optimization of multiple classifiers enhances 

computational complexity, rendering it sensitive to implement on featherlight IoT bias. In [23] et al., a 

Deep Neural Network (DNN)-based IDS is suggested to improve scalability in extensive IoT networks. 

The research discovers that deep learning greatly enhances discovery delicacy, but hostile attacks can 

deceive the model, diminishing trustability. In [24] et al., the authors discuss blockchain-based security 

models for intrusion discovery in IoT. Blockchain in the study finds that it reinforces data 

trustworthiness but entails high computation outflow restricting its connectivity for real-time IDS 

findings. In [25] et al., IDS is made secure for network business by homomorphic encryption and also 

enables processing of translated data. The findings point out that through this process, sequestration is 

assured in analysis, while encryption and decryption dormancy continues to be main concerns. In [26] 

et al., the researchers suggest an access control medium incorporated into IDS to limit unauthorized 

access. The research discovers that grainy authorization controls increase security, but complexity in 

policy operation grows with network size. In [27] et al., a zero-trust security framework is incorporated 
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into IDS to authenticate device individualities prior to permitting network access. The research 

emphasizes tougher security enforcement, but the methodology demands continuous authentication, 

introducing processing outflow.  In [28] et al., a mongrel AES-RSA encryption scheme is utilized to 

protect IoT dispatches against cyber pitfalls. The research reaffirms that such a combination of 

symmetric and asymmetric encryption provides firm security, yet high computational cost is still an 

issue for IoT bias with scarce resources. In [29] et al., various cryptography-based IDSs are put forward 

as evidence of future IoT security. Resistance to mounting attacks is noted by the study, but conditions 

that require special tackle make relinquishment burdensome. In [30] et al., authors build a 

homomorphic symmetric encryption scheme to support secure data processing in IDS. Translated 

analytics improve data confidentiality, but pets for slow processing is an issue according to the study. 

In [31] et al., cold-blooded security fabrics fueled by AI are considered, with machine learning and 

cryptography being used to facilitate discovery and response automation. Adaptive trouble mitigation 

is found to enhance security posture, but extensive datasets must be used to train effectively. In [32] et 

al., blockchain with AI boosts IDS performance. The findings emphasize that blockchain offers rigid 

logging while AI facilitates real-time trouble analysis automation. however, scalability concerns in 

blockchain networks constrain deployment in real life. In [33] et al., the researchers propose a mongrel 

IDS with featherlight encryption to enhance discovery efficiency and data security. The research finds 

that the strategy achieves security with performance, and it is the best fit for IoT operations. Table 1 

summarizes the related work in table form. 

Table 1: Comparative analysis on existing work 

Paper Name 
Technique 
Used 

Purpose Strength Limitation 

Hybrid Intrusion 
Detection System for 
IoT [14] 

Hybrid CNN-
LSTM for IDS 

Detect intrusions in 
IoT networks 

High detection 
accuracy (98.6%) 

High computational 
cost 

Network Anomaly 
Detection Using ML 
[15] 

Decision Trees & 
SVM 

Classify network 
traffic anomalies 

Low false positive 
rate 

Needs labeled training 
data 

Unsupervised 
Learning for 
Intrusion Detection 
[16] 

Autoencoder-
based IDS 

Detect novel attacks 
using anomaly 
detection 

Works well with 
unknown threats 

High false alarm rate 

GAN-Based Network 
Security Model [17] 

GAN for intrusion 
detection 

Generate synthetic 
attack scenarios for 
training 

Improves model 
robustness 

Needs a large dataset 
for training 

Signature and 
Anomaly-Based 
Hybrid IDS [18] 

Hybrid IDS 
(Signature + 
Anomaly) 

Combine rule-based 
and anomaly 
detection for IDS 

Balances detection 
speed and accuracy 

Complexity in hybrid 
model integration 

Feature Selection in 
IDS [19] 

CNN with Feature 
Selection 

Optimize feature 
extraction for IDS 

Reduces 
dimensionality, 
improving speed 

Performance degrades 
with unseen attacks 

Time-Series Attack 
Detection in IoT 
[20] 

LSTM-based IDS 
Detect sequential 
attack patterns in 
IoT 

Suitable for time-
series attack 
detection 

Requires extensive 
training time 

Federated Learning-
Based IDS [21] 

Federated 
Learning for IDS 

Distributed IDS 
model without 
central data storage 

Improves data 
privacy and security 

Communication 
overhead in federated 
updates 

Ensemble Learning 
for Network Security 
[22] 

Ensemble 
Learning (DT, RF, 
SVM) 

Improve 
classification 
performance for IDS 

High accuracy in 
attack detection 

Complex model tuning 
is required 

Deep Learning for 
IoT Security [23] 

Deep Neural 
Networks (DNN) 

Identify IoT security 
threats 

High scalability 
across networks 

Vulnerable to 
adversarial attacks 

Blockchain-Enabled 
Security Model [24] 

Blockchain-based 
Security Model 

Secure IoT data 
against tampering 

Decentralized trust 
model 

High computational 
overhead 
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Paper Name 
Technique 
Used 

Purpose Strength Limitation 

Privacy-Preserving 
Computation [25] 

Homomorphic 
Encryption 

Enable computation 
on encrypted data 

Ensures privacy 
during processing 

High latency in 
encryption/decryption 

Access Control 
Mechanisms in 
Cybersecurity [26] 

Access Control 
Mechanism 

Restrict 
unauthorized access 

Granular 
permissions 

Complex policy 
management 

Secure Multi-Party 
Computation for 
Data Privacy [27] 

Secure Multi-
Party 
Computation 

Collaborative 
security without data 
exposure 

Privacy-preserving 
analytics 

High communication 
overhead 

Zero Trust Security 
Framework [28] 

Zero Trust Model 
Prevent 
unauthorized access 
based on identity 

Stronger security 
framework 

Increased complexity 
in implementation 

Hybrid Encryption 
for IoT 
Communication [29] 

Hybrid AES-RSA 
Encryption 

Secure 
communication in 
IoT 

Strong encryption 
with authentication 

High computational 
cost 

Quantum-Secure 
Cryptography [30] 

Quantum 
Cryptography 

Future-proof 
encryption for 
secure networks 

Resistant to 
quantum attacks 

Requires specialized 
hardware 

Encrypted Data 
Processing 
Framework [31] 

Homomorphic + 
Symmetric 
Encryption 

Enhance data 
security while 
enabling analytics 

Supports encrypted 
processing 

Slow processing 
speeds 

AI-Driven 
Cybersecurity [32] 

AI-Driven Hybrid 
Security 
Framework 

Automate detection 
and response 

Adaptive threat 
mitigation 

Requires large 
datasets for training 

Blockchain and AI 
for Network 
Protection [33] 

Blockchain + AI-
based Security 

Enhance integrity 
and automated 
threat detection 

Transparent and 
immutable logging 

Scalability issues in 
blockchain networks 

 

3. METHODOLOGY 

Intrusion Discovery Systems (IDS) are a central component in icing IoT network security by correlating 

and soothing cyber pitfalls. Conventional IDS designs often fail to match changing attack patterns, 

resulting in the abandonment of machine learning-based IDS. Machine learning improves IDS by 

learning from literal network business data, correlating anomalies, and classifying malicious 

conditioning with sophisticated delicacy. This strategy enhances discovery rates, decreases false cons, 

and adapts robustly to new pitfalls. Machine learning models are categorized as supervised, 

unsupervised, and deep learning models. 

Supervised learning techniques like Support Vector Machines (SVM), Decision Trees, and Random 

Forest compute on labeled data to classify network business in a straightforward manner. Unsupervised 

learning algorithms like K- Means clustering and DBSCAN assist in the identification of anomalies 

without having specific markers but are likely to fail in distinguishing benign diversions from actual 

attacks. Like Convolutional Neural Networks (CNN) and sporadic Neural Networks (RNN), deep 

learning methods provide enhanced point birth techniques. Nonetheless, they have large computational 

budgets and are less appropriate for deployment in real-time IDS in IoT networks.  
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With these considerations in mind, choosing the relevant machine learning algorithm is paramount for 

the construction of an efficient IDS. Out of colorful bracket models, Random Forest has emerged as a 

principally reliable method because it is robust, efficient, and can process high-dimensional data.  

Figure 2: Working of the Proposed Algorithm 

3.1. Random Forest  

Random Forest algorithm comprises a number of decision trees working individually. Every tree is 

trained on a sample of the data set with the help of an approach called bootstrap aggregation (bagging). 

The ultimate bracket decision is obtained with maturity voting of all the trees. Steps to utilize Random 

Forest in IDS are described below: 

1. Data Preprocessing: The dataset undergoes point selection, normalization, and running of 
missing values.  

2. Feature Selection: Point Selection Important features are uprooted grounded on their donation 
to distinguishing regular and attack businesses.  

3. Training Phase: Multiple decision trees are trained on different subsets of the dataset.  
4. Bracket Phase: When a new network business case is anatomized, each tree votes on the bracket 

outgrowth.  
5. Final Decision: The class with the most votes is named in the prognosticated order. 

Random Forest is an ensemble machine learning algorithm that builds multiple decision trees and 

combines their outputs to improve classification accuracy and reduce overfitting. It operates by 

constructing many decision trees during training and outputting the class that is the majority vote of 

the individual trees. 

 x be the input feature vector. ℎ_1(𝑥), ℎ_2(𝑥), . . . , ℎ_𝑘(𝑥) be the predictions from each of the K decision 

trees. 

Then, the final predicted class Cfinal is given by Equation 1. 

𝐶𝑓𝑖𝑛𝑎𝑙 =
𝑎𝑟𝑔𝑎𝑟𝑔 𝑚𝑎𝑥 

𝐶
 ∑𝑘

𝑖=0 𝐼(𝑇𝑖  (𝑥) = 𝐶                                                                                                                                                       

(1) 

Where Cfinal is the final predicted class. 

● N is the total number of decision trees. 

● (Ti (X)=C) represents the classification result from the i-th decision tree for input X. 
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●   ∑𝑁
𝑖==1 𝐼 (Ti (X)=C) is an indicator function that returns one if tree T_i classifies X as class C and 

zero otherwise. 

● The class C with the highest sum across all trees is selected as the final classification. 

Each tree in the forest is trained on a random subset of the initial dataset (bootstrapped sampling), and 

when splitting at each node, a random subset of features is used. This introduces randomness to 

increase diversity among the trees and enhance generalization performance. 

After classifying network business using the Random Forest model, we classify detected attacks into 

two primary threat situations grounded on their inflexibility and implicit impact.  

● High-Risk Attacks: - These are critical pitfalls, like advanced patient pitfalls (APTs), 

ransomware, sophisticated malware infections, large-scale distributed denial-of-service (DDoS) 

attacks, and zero-day exploits. These attacks have a considerable effect on network security, data 

confidentiality, and system integrity. 

● Low-Risk Attacks: - These encompass lower critical pitfalls, such as brute-force login attempts, 

small-scale DoS attacks, phishing attempts, and general malware. While these attacks are 

dangerous, they do not represent an immediate and serious threat to the overall security of the 

system. 

3.2. Encryption Mechanism for High-Risk Attacks 

In order to provide the most superior security role for essential trouble information, we use a mongrel 

encryption strategy combining RSA (Rivest-Shamir-Adleman) encryption with Modified ChaCha 

Encryption. This allows the most critical information to be kept safe, essentially excluding interception 

and illegal access. 

3.2.1. Steps in High-Risk Attack Encryption: 

a. Key Exchange using RSA: 

● A secure session key is generated for ChaCha encryption.  
● This session key is translated using the RSA public key of the philanthropist to ensure a secure 

exchange.  
● The translated session key is transmitted alongside the translated data, ensuring Confidentiality. 

b. Data Encryption using Modified ChaCha Algorithm: 
● The attack data is translated using a modified interpretation of the ChaCha encryption algorithm.  
● Enhancements to ChaCha include an on-linear metamorphosis step and a custom permutation 

subcaste to increase prolixity and security against cryptanalysis.  
● The state initialization process uses a 256-bit crucial, a 96-bit nonce, and a 32-bit counter to help 

key exercise and ensure oneness. 

c. Ciphertext Transmission: The translated information (ciphertext) and the RSA-translated 
session key are sent securely. The recipient uses his/her RSA private key to decrypt the session key 
and the Modified ChaCha decryption to decrypt the attack information. 

3.2.2. Encryption Mechanism for Low-Risk Attacks 

For low-risk attacks, a more lightweight encryption method is sufficient. Thus, we employ only Modified 

ChaCha Encryption, eliminating the computational overhead of RSA while still ensuring strong security. 

The steps involved are as follows: 

 

4. ENCRYPTION PROCESS 

In this section, we will discuss the encryption of the data. The algorithms of the encryption are given. 

Encryption Algorithm: 
Input: Key (256 bits), Nonce (96 bits), Counter (32 bits), Plain text 
Output: Ciphertext 
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1. procedure OURS_CHACHA_ENCRYPT (Key, Nonce, Counter, Plaintext, Rounds) 
2.     InitializeState = [Constants ∥ Key ∥ Counter ∥ Nonce] 
3.     OriginalState = State 
4. for i = 1 → Rounds/2 do 
5.     Apply_QuarterRound (0, 4, 8, 12) 
6.     Apply_QuarterRound (1, 5, 9, 13) 
7.     Apply_QuarterRound (2, 6, 10, 14) 
8.     Apply_QuarterRound (3, 7, 11, 15) 
9.     Apply_QuarterRound (0, 5, 10, 15) 
10.     Apply_QuarterRound (1, 6, 11, 12) 
11.     Apply_QuarterRound (2, 7, 8, 13) 
12.     Apply_QuarterRound (3, 4, 9, 14) 
13.     x[q] = NonLinearOperation (x[q], x[p]) 
14. end for 
15.  NonLinearOperation 
     x[q] = (x[q] × x[p]) mod 2^32 
16. permutation layer  
     State = [x[1], x[3], x[0], x[2], x[5], x[7], x[4], x[6], x[9], x[11], x[8], x[10], x[13], x[15], x[12], x[14]] 
17.  for i = 0 → 15 do 
18.    State[i] = (State[i] + OriginalState[i]) mod 2^32 
19.  end for 
20.    Keystream = Serialize (State) 
21.    for i = 1 → Length (Plaintext) / 64 do 
22.       Ciphertext_Block[i] = Plaintext_Block[i] ⊕ Keystream 
23.    end for 
24.  return Ciphertext 
25. end procedure 
 

The Steps that are followed in the encryption process are given below for better understanding.  

Step 1: State Initialization 

The state initialization of the suggested model commences with the declaration of key factors 

responsible for guaranteeing security and oneness. The constants are permanent 32-bit values 

responsible for contributing to the framework of the algorithm and preventing foreseeable patterns. 

The key is a 256-bit secret, comprising eight 32-bit words, providing high cryptographic resistance 

against brute-force attacks. The distinctive 32-bit integer counter guarantees each encryption instance 

is unique, preventing keystream exercise. In addition, the nonce - a 96-bit fresh identifier broken into 

three 32-bit words - adds security in ensuring that every encryption session is distinct, preventing 

renewal attacks and icing randomness in generating the keystream. 

Step 2: Quarter Round Transformation 

The quarter-round function is a crucial element that updates four words in the state matrix. It applies 

a sequence of modular additions, XOR operations, and bit reels: 

Step 3: Non-Linear Operation 

Unlike standard ChaCha20, this modified interpretation introduces anon-linear metamorphosis. This 

step enhances prolixity, icing that small input changes beget changeable affair variations. 

Step 4: Permutation Layer 

A custom permutation layer is applied after each set of quarter rounds to improve bit randomness and 

eliminate potential correlations: 

Step 5: Round Function 

The algorithm executes 20 rounds, alternating between column and diagonal quarter rounds: Column 

Rounds: (0,4,8,12), (1,5,9,13), (2,6,10,14), (3,7,11,15), Diagonal Rounds: (0,5,10,15), (1,6,11,12), 
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(2,7,8,13), (3,4,9,14). These steps ensure that every word in the state matrix interacts with multiple 

others, increasing resistance against differential attacks. 

Step 6: State Finalization 

The original state is added back to the transformed state. These are given below.  

State[i] = (State[i] + OriginalState[i]) mod 232. This reinforces security by preventing reversibility. 

Step 7: Keystream Generation 

The final state matrix is serialized into a 64-byte keystream block. 

Step 8: Encryption Process 

Encryption starts by splitting the plaintext into 64-byte blocks, icing structured processing for efficient 

encryption. A keystream block is created using the suggested model for every plaintext block. The 

encryption is also done using the XOR operation, where every plaintext byte is XoRed with the same 

byte of the keystream. This operation makes the ciphertext indistinguishable from random noise while 

preserving the reversibility required for decryption. The operation is repeated for all the plaintext 

blocks, providing secure and complete encryption throughout the communication. Decryption is done 

similarly to encryption. 

 

5. RESULT & DISCUSSION 

The model suggested in this investigation brings significant improvements to the conventional AES and 
RSA encryption systems. The main targets of these variations are enhancing security, incorporating 
computational efficiency, and maximizing performance for IoT environments. This section compares 
the problems of the suggested variations with Security variants and other feathery cryptographic 
algorithms. The suggested model offers major improvements by improving security, efficiency, and 
security for resource-limited environments such as IoT. This section offers a comprehensive relative 
comparison of the performance, security, and computational efficiency of the proposed model against 
being variants, demonstrating its superiority. In order to further examine the given model, we have 
estimated various criteria such as Encryption Time, Throughput, Shannon Entropy, Energy 
Consumption, and Avalanche effect on five data sets with sizes 26, 28, 210,212, and 215. additional 
evaluation of the NIST test has been conducted to test the system's strength against statistical attacks. 
5.1. Encryption Time 

Encryption time is an essential parameter for measuring the performance of cryptographic algorithms, 

particularly in real-time and resource-limited environments. It indicates the extent to which an 

algorithm can reuse data with security. In real-world operations like IoT bias, secure dispatches, and 

pall storehouse, encryption speed has a direct influence on system quiescence, power utilization, and 

overall efficiency. A slower encryption mechanism can produce delays in data transfer, which makes it 

unfavorable for real-time operations that are characterized by fast encryption and decryption loops. The 

Encryption time complexity of the presented Model is O (n), just like for AES and RSA. Adding a 

permutation subcaste and a non-linear function does not impact the time complexity but raises the 

resistance to discriminational and direct attacks. The performance of the suggested model is 

approximated in comparison to AES and RSA based on encryption time for various input sizes. The 

outcomes, as indicated in Table 2 below, emphasize the efficiency of the suggested model in terms of 

decreased encryption time. The suggested model performs better than the security algorithm AES and 

RSA employed by showing considerably lower encryption times for all input sizes. 

On small data sizes (64B- 256B), it provides a 10x boost over AES and almost 3x boost over AES and 

RSA, icing lightning-fast encryption with minimal computational outflow. With increased data size, the 

proposed model's efficiency remains in tune, producing a 5- 10x speed boost for both algorithms. This 

dramatic decrease in encryption time is due to non-linear metamorphoses, optimized permutation 

layers, and semblant processing, rendering it mostly ideal for high-speed and real-time IoT 

applications. Figure 1 presents a graphical illustration of encryption time, providing a clear and intuitive 

comparison of the performance of the proposed algorithm with AES and RSA. The graphical definition 
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points out to the notable decrease in encryption time obtained by the suggested model, particularly 

when the data size is increased, where it consistently beats our variations. 

Table 2: Comparison of encryption time (ms) with Other Algorithms 
 

Size Our AES+RSA 

26 0.15 0.20 

28 0.23 0.35 

210 0.69 0.78 

212 1.93 2.05 

215 12.50 13.01 

 

5.2. Throughput 

Throughput is a key metric in determining the performance of cryptographic algorithms, as shown in 
equation 1, because it defines how quickly data can be reused when icing security. Higher outturn values 
represent improved performance, thus an encryption algorithm appropriate for real-time applications 
such as IoT. The suggested model performs much better than AES and RSA outturn for all input sizes, 
as indicated in Table 3. For small data sizes (2⁶ = 64B), the suggested model performs 426.6666 Mbps, 
while AES and RSA perform only 320 Mbps, independently proving its better effectiveness. Also, for 
larger inputs (2 ¹⁵), the suggested model performs 2621.44 Mbps, performing much better than AES 
and RSA. This superior outturn is owed to the non-linear metamorphosis optimized for maximum, 
improved permutation layers, and similar processing capabilities of the suggested model so that 
encryption continues to be swift without compromising on security. The large outturn improvement in 
every input size further establishes the performance of the proposed algorithm as the best seeker for 
featherlight cryptography operations with high-speed encryption and decryption. 

 

Figure 3. Encryption Time (ms)                                                              Figure 4. Encryption 

Throughput(kb/sec) 

 

Table 3: Comparison of throughput (kb/sec) with other 

 

Size Our AES+RSA 

26 426.6666 320 

28 1113.0434 731.4285 
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210 1484.0579 1312.8205 

212 2122.2794 1998.0487 

215 2621.44 2518.6779 

 

5.3. Avalanche Analysis 
The Avalanche Effect is a welcomed characteristic of cryptographic functions in which a minor variation 
in the input (comparable to the flipping of a single bit) corresponds to a dramatic change in the affair 
(typically altering no less than 50 of the affair bits). The characteristic guarantees robust diffusion, and 
it is difficult for attackers to anticipate how modifications to the input modify the affair. Avalanche effect 
is a basic characteristic of cryptographic systems that offers a minor modification in input, executing a 
huge and variable alteration in the affair. This characteristic is crucial in resisting demarcation 
cryptanalysis and icing robust diffusion. The experimental results prove that the suggested model 
attains an avalanche effect of 50.8462, which outperforms conventional ChaCha20 prosecutions and 
AES variants. In comparison to AES and RSA, which have an avalanche effect of 42, our algorithm 
enhances diffusion parcels by approximately 8.8. This improvement enhances its ability to resist 
demarcation and steer cryptanalysis, hence a better encryption algorithm for secure IoT deliveries. The 
proposed model achieves a 5-10% boost in prolixity parcels, thus more adaptive against cryptanalytic 
attacks. One of the key characteristics of safe encryption algorithms is the avalanche effect, which means 
that small changes in the input lead to great differences in the affair ciphertext. The model, as proposed, 
has an avalanche effect of about 51.5, better than the AES and RSA algorithm (40 to 45). This greater 
diffusion property makes it more resistant to demarcation cryptanalysis and thus the algorithm stronger 
against security attacks. 

 

5.4. Entropy Analysis 

Entropy is a core measure in cryptographic analysis that quantifies the randomness and 

unpredictability of a cipher's affair. A high entropy value, perfectly close to 1.0, signifies that the cipher 

generates an unevenly distributed and non-deterministic keystream, which is immune to statistical and 

often- grounded attacks. Entropy measurement is critical because low-entropy ciphers can introduce 

patterns in translated data, rendering it susceptible to cryptanalysis. In contrast, high entropy 

guarantees that the encryption scheme has strong prolixity parcels, i.e., that, in fact, a bitsy alteration 

in the plaintext or vital results in an effectively changeable ciphertext. This is particularly critical for IoT 

operations, pall security, and real-time encryption, where secure and changeable encryption is required 

to ward off changing pitfalls. 

Entropy H (Z) of a discrete random variable X with possible values {Z1, Z2, Z3,……….., Zn }, 

probability of each Zi is Each p (Zi) value is between 0 and 1and ∑𝑝(𝑍𝑖) = 1. Information 

content/uncertainty of X is I (Z), and H (Z) is the expected value of I (Z), thus  

𝐻(𝑍) = 𝐸(𝐼(𝑍))                                                                        (2) 

𝐼(𝑍𝑖) = −𝑙𝑜𝑔𝑏   𝑝(𝑍𝑖)∀𝑖  € {1,2, … … . . , 𝑛}                                                    (3) 

The random variables in distribution X are unrelated to one another. Because the stream cipher system 

is binary, 2 is the log's default base. The predicted code length for coding samples based on actual 

distribution is shown in Equation 4. 

𝐻(𝑍) =  ∑𝑛
𝑖=1 𝑝(𝑍𝑖  ) 𝐼(𝑍𝑖)𝑏 € {2, 𝑒, 10}                                                      (4) 

Because binary stream ciphers only have two values. The information entropy must be non-negative, 

with a maximum entropy value of one. 

The entropy analysis of the suggested model proves greater randomness than AES and RSA parade 

entropy values of approximately 0.9997 separately; the suggested model realizes an entropy value of 

0.99995, which is close to absolute randomness. It shows that the suggested model has greater 

resistance to frequent- -grounded attacks and statistical cryptanalysis and is superior to classical 

variants. The suggested model remains competitive but accomplishes lesser encryption time and 

resource efficiency. The optimized non-linear transformation and permutation layers play a part in this 
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improved entropy, and hence the suggested model is a resilient and efficient outcome for featherlight 

cryptographic processes. 

 

5.5. NIST Test 

National Institute of Norms and Technology (NIST) Tests include standard tests to verify the 
randomness of typically double series of keystream generators. That series is also random, but while 
the generated double series does not pass the NIST Test, when the generated double series does pass 
the NIST test, all NIST tests verify the randomness based on parameters (p value), as indicated in the 
table. The NIST Test Tests the values generated by the cipher that has been designed. The 16-NIST test 
tests the important value sequences for desired attributes such as randomness and straightforward 
complexity and tests the Entropy Test. Here, in this research, we have tested 100 keys, and each key is 
100,000. We arranged that the important values generated by the work proposed were faultlessly secure 
and random, and they contained adequate parcels to be secure from cyberattacks. No bias was found in 
the 16 Tests the NIST test suites performed for key values generated by the proposed work. Also, the 
fashion has been tested at maximum input values and keys, but the affair key values produced are still 
completely random. The recommended outcome passed all 16 of the NIST tests, as can be evidenced in 
the table, where P-P-value for each is larger than 0.05, showing the excellent randomness of the crucial-
values and rendering it impossible for the bushwhacker to know the communication. One critical 
characteristic of secure encryption algorithms is the avalanche effect, which guarantees that small 
variations in the input cause great variations in the affair ciphertext. "Our algorithm" is able to produce 
an avalanche effect of approximately 51.5, which beats AES and RSA (40-45). This greater diffusion 
property provides further resistance against discriminative cryptanalysis and thus makes the algorithm 
more secure against security violations. In addition, keystream randomness was justified based on the 
NIST Statistical Test Suite (NIST- STS). The algorithm had passed all 16 NIST tests for randomness, 
certifying that the keystream shows high unpredictability and high entropy. The findings corroborate 
the security efficacy of the suggested Model for IoT operations. Table 4 presents a comparison of the 
findings achieved in the proposed scheme and the combination of AES and RSA. Table 5 shows the 
results yielded by the Proposed Scheme in NIST Test. 
 

Table 4: Comparison of the proposed Model with different Ciphers 
 

Metric AES+ RSA Our 
Avalanche Effect (%) 50.80 50.8462 

Shannon Entropy 0.9997 0.99995 
Energy Consumption (J) 1.06 0.90 

Memory Usage (KB) 8 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Memory Usage (KB)  Figure 6. Energy Consumption (J) 
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Figure 7. Shannon Energy                                                                          Figure 8. Avalanche Effect (%) 

 
 

Table 5: NIST_Test Results of the Proposed Scheme 
 

Test P-Value Conclusion 

01. Frequency (Monobit) Test 0.516 Random 

02. Frequency Test within a 
Block 

0.983 Random 

03. Runs Test 0.658 Random 

04. Longest Run of Ones in a 
Block 

0.774 Random 

05. Binary Matrix Rank Test 0.422 Random 

06. Discrete Fourier Transform 
Test 

0.721 Random 

07. Non-overlapping Template 
Matching 

0.514 Random 

08. Overlapping Template 
Matching 

0.742 Random 

09. Maurer’s Universal 
Statistical Test 

0.549 Random 

10. Linear Complexity Test 0.737 Random 

11. Serial Test 0.453 Random 

12. Approximate Entropy Test 0.642 Random 

13. Cumulative Sums Test 
(Forward) 

0.662 Random 

14. Cumulative Sums Test 
(Backward) 

0.638 Random 

15. Random Excursions Test 
(Average) 

0.1445 Random 

16. Random Excursions Variant 
Test (Average) 

0.0869 Random 
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5.6. Energy Consumption 

Energy usage is also necessary in cryptographic algorithms, especially for battery and resource-

constrained bias like IoT detectors, mobile bias, and bedded systems. Realistic energy use ensures that 

encryption processes do not exhaust battery life exponentially or incur hefty power outflow, and hence 

it is a critical aspect of real-time processes. High-energy-consuming cryptographic algorithms are 

impractical for low-power environments, as they cause decreased device uptime and raised functional 

expenses. Hence, energy consumption should be optimized in encryption mechanisms to provide long-

term sustainability and high-performance security results in ultramodern operations. In contrast to 

other variants, the introduced model provides a well-balanced combination of security and power 

efficiency. Making it highly effective but slightly insecure. AES and RSA take up 1.06 J; on their own, 

the introduced model takes merely 0.90 J, notably improving energy efficiency over AES and RSA at 

higher cryptographic security. This middle path of high low-energy requirements and good performance 

encryption makes the introduced model generally well-suited for IoT networks. Figure 6 also provides 

a graphical comparison between the two algorithms and based on Figure 6, the best algorithm is 

concluded to be the proposed one. 

5.7. Memory Usage 
Memory operation is an important consideration in evaluating the efficacy of cryptographic algorithms, 

especially for resource-limited environments that are akin to IoT bias, embedded systems, and mobile 

operations. A smaller memory footprint guarantees the encryption process to be featherlight and 

efficient, excluding excessive resource utilization that may slow down system performance. High-

memory operation cryptographic algorithms might carry new computational capabilities and thus be 

less ideal for tasks requiring real-time encryption and low-quiescence performance. Memory operation 

optimization is crucial in the quest for finding a balance between security and computation efficiency 

to make the cipher presto, scalable, and adaptive to varying environments. The analysis of memory 

operation underscores the efficacy of the suggested model relative to AES and RSA. AES and RSA 

occupy 8 KB of memory space, so the lightest in memory space compared to the older versions Given 

the new level of complexity. Only 6 KB is utilized in the suggested model, equivalent in memory 

efficiency as AES and RSA but providing improved security, newer entropy, and less encryption time. 

This ideal balance of memory efficiency and cryptographic security enables the proposed model to be a 

suitable quester of high-performance and featherlight security operations with minimal resource 

utilization, as exhibited in Figure 7. 

 

6. CONCLUSION 

This work introduces a new hybrid IDS model for IoT networks integrating intelligent traffic 

classification and risk-based encryption. The system provides effective security with minimal 

computational overhead using ML algorithms for precise detection and Modified ChaCha-RSA 

encryption based on threat level. The suggested model outperforms existing AES+RSA schemes in 

encryption time, throughput, entropy, and memory usage. NIST test outcomes affirm the algorithmic 

keystream randomness and immunity from statistical and cryptanalytic attacks. Work on combining 

federated learning and automatic real-time response for scalability is ongoing. 
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