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INTRODUCTION  

The disease of the skin is the most prevalent worldwide, with melanoma being the most deadly and severe kind. Early 
diagnosis and timely treatment are necessary for a decreased mortality rate and a successful treatment approach. 
Nonetheless, traditional clinical diagnosis by dermatologists is subjective and even varies among observers, which 
may result in misjudgement or delayed treatment [1,2]. To overcome these challenges, the use of convolutional neural 
networks (CNN) has revolutionized deep learning. methodology for automatic skin lesion classification with 
remarkable feature detection and learning abilities [3, 4].Hybrid CNN design architectures combined with recent 
research have improved categorization accuracy with transfer learning.  For example, DermoExpert's model uses 

ARTICLE INFO ABSTRACT  
 

Received: 20 Dec 2024 

Revised: 12 Feb 2025 

Accepted: 20 Feb 2025 
Introduction:  Skin cancer, especially melanoma, remains an evolving 
international public health concern as it advances in an aggressive manner and 
the rates of its occurrence are rising. It is crucial to identify and treat skin lesions 
on time and with accuracy to improve patient outcomes. This work provides an 
improved deep learning pipeline for automatic skin lesion classification using 
CNN, integrated with optimized data pre-treatment and augmentation methods. 
The HAM10000 dataset, consisting of 10,015 dermatoscopic images in seven 
diagnostic classes, is considered the main dataset. The model pipeline includes 
advanced steps like using dull-half razor filtering to reduce hair interference, 
segmenting lesions with autoencoders, and balancing the classes through under-
sampling and over-sampling. Using transfer learning methods, different pre-
trained CNN models like DenseNet169, ResNet50, InceptionV3 and VGG16, are 
compared based on their accuracy, precision, recall, and F1-score. Numerical 
results show that the DenseNet169 has a better performance when applying the 
under-sampling process, while the ResNet50 yields better performance when it 
uses the over-sampling process. An ensemble model that utilizes the best aspects 
of these architectures is introduced, which obtains an expected accuracy of over 
95%, better than the benchmark VGG16 and DenseNet161.The discovered 
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segmentation, augmentation, and transfer learning to improve skin categorization accuracy. lesions [1]. Similarly,[2] 
used optimal CNN checkpoints to further refine diagnosis accuracy. Advanced data augmentation and pre-
processing techniques, Popular methods, such as hair removal, lesion clipping, and class rebalancing, have shown 
successful in tiny, unbalanced datasets as HAM10000[5,6,7].  
New classification models like DenseNet, ResNet, Xception, and InceptionV3,have demonstrated promising 
performance for multi-class classification. [8, 9] and [3] showed the effectiveness of data augmentation methods in 
improving melanoma detection, Mobile Net-based architectures reached efficient diagnosis with minimal 
computational burden [10]. Furthermore, hybrid feature fusion schemes and ensemble methods are also identified 
as promising approaches to increasing robustness and generalization across diverse datasets [6, 11, 12].Also, 
generative AI and ROI-based transfer learning are gaining popularity as ways to improve how models learn and to 
increase sensitivity in detecting subtle lesions. Recent work by [15] also stresses the significance of what they do in 
terms of performance improvement based on deep feature analysis and clinic interpretability. A weighted ensemble 
of transfer learning models [16] provides additional evidence on the benefits of combining architectural variability at 
test time for categorical skin cancer classification. Motivated by these progresses, we propose a hybrid deep learning 
model that fuses DenseNet169, ResNet50, InceptionV3, DenseNet201, and Xception. The method makes use of an 
extensive pre-processing pipeline, namely dull razor filtering and autoencoder-oriented segmentation, and of under- 
and over-sampling techniques to avoid the problems of imbalanced data. We hope to demonstrate that this 
comprehensive system can achieve good classification performance, a decreased false negative rate, and more 
support for clinical diagnosis decision-making. 
.  

OBJECTIVES  

• Develop a deep learning model for melanoma diagnosis using dermatoscopic pictures from the HAM10000 
dataset.  

• To develop the advanced image pre-processing methods, including dull-half razor filtering and autoencoder-
based lesion segmentation, to eliminate noise and artefacts such as stray hair for better quality input images. 

• To mitigate the effects of the class imbalance in the dataset by utilizing a combination of under sampling over-
sampling strategies to achieve balanced representation and better generalisation in the prediction of the seven 
classes of skin lesions. 

• To assess compare the classification performance of different pre-trainee hybrid Convolutional Neural Network 
(CNN)architectures (DenseNet169, ResNet50, InceptionV3, and VGG16) using with transfer learning 
approaches. 

• To propose and develop an ensemble hybrid CNN model that will rely on the combinational strengths of single 
CNNs for obtaining better classification accuracy, precision, recall, and the F1-score in contrast to the individual 
models. 

• To prove the efficiency of the proposed framework as a CAD tool in dermatology practice by enabling early skin 
cancer detection and clinical decision support for the treatment. 

• To facilitate future integration of the model with further modalities (e.g., patient metadata, pathology reports) 
and advanced approaches (e.g., explainable AI, federated learning) for actual real-world applications. 

 

LITERATURE SURVEY 

The precise,  Melanoma, the worst skin cancer, is hard to identify using medical imaging.   Convolutional neural 
networks (CNNs) have revolutionized deep learning and automated high-precision diagnosis is made possible. 
However, issues related to inter-class similarity, intra-class variation, and class imbalance in datasets demand more 
sophisticated methods, including architectural improvements, data augmentation, and optimization mechanisms. 
Ozdemir and Pacal et al. [17] developed a strong deep learning method that emphasizes preparing data and adjusting 
the CNN architecture. In their study, they demonstrated that combining dense feature maps with dense maps and 
using dropout regularization worked better than regular dropout for classifying 7 types of real-world skin images. 
This indicates the need for models being able to generalize across different lesion categories. 
Ali et al. [18] proposed a new SPA-FCEDN (Sparrow Search Algorithm-fully connected encoder-decoder network) to 
optimize hyperparameters using a Sparrow Search Algorithm. The adaptive CNN model could dynamically fine-tune 
its weights and achieved remarkable progress in lesion boundary recognition and classification. Spatial attention 
and learning-rate adaptively were used in this approach to tackle overfitting. 
Dorathi Jayaseeli et al. [19] proposed a hybrid ensemble model based on the combination of Squeeze-Excitation-
DenseNet features with metaheuristic-based classifiers. Their method improved discriminative feature selection, 
leading to increased sensitivity and specificity for multiple types of lesions. This hybrid ensemble scheme is a 
substantial step towards interpretability-performance trade-off. 
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Thanga Purni and Vedhapriyavadhana et al. [20] introduced EOSA-Net, which improved the convolutional block and 
loss function to better separate different classes. They achieved superior accuracy and generalization performance 
compared to existing designs, especially in the multi-class classification task, by employing feature scaling and global 
average pooling to reduce parameter burden. 
Verma et al. [21] For dealing with the problem of class imbalance, use a deep CNN feature extractor along with a 
machine learning ensemble classifier such as XGBoost and Random Forest. Their method maintained consistent 
classification by using class-rebalanced loss functions, which worked very well for the less common melanoma 
samples. 
Alsaidi and others [22] tackled the issue of class imbalance by using advanced methods to create extra images and 
employing GAN to produce synthetic dermoscopic images of rare lesion types. This approach has increased the 
diversity of the training data, avoided overfitting, and enhanced the learning performance of the model on minority 
patterns. Even if their study identified GANs as valuable augmentation instruments in medical imaging, this paper 
has contributed to proving the high diversity power of GANs in a classification task. 
Khan et al. [23] proposed an ensemble of deep CNN models with deep convolutional layers and parallel training 
procedures. This allows us to avoid hard-coded feature definitions and to exploit diverse learners to encode both 
global and local lesion characteristics, enhancing model robustness against wide variation of skin types and imaging 

conditions. Their work demonstrated the importance of diverse architecture in ensemble training. 
Shaik et al. [24] proposed a hybrid model that could incorporate context information using CNNs and BiLSTM 
networks. The CNN layers learned spatial characteristics, while the BiLSTM layers lacked global context dependence, 
especially advantageous for the evolution patterns of the lesion. Attention modules helped to concentrate the key 
regions to perform both real-time and high-resolution analysis. 
Kumar Lilhore et al. [25] developed an accurate classification framework by merging U-Net for the segmentation of 
lesions with an advanced MobileNet-V3 classifier. Their approach included speeding up and improving classification 
by doing hyperparameter optimization. The integration of the segmentation and classification networks was crucial 
to raising diagnostic confidence and minimizing false negatives. 

Ref

. 

Authors Methods Research 

Gaps 

Performanc

e Metrics 

Pros Limitations 

[17] Ozdemir & Pacal 

(2025) 

Modified CNN 

with dropout 

regularization 

and dense 

feature 

mapping 

Generalization 

to varied lesion 

types still 

limited 

Accuracy: 

~91.7% (7-

class) 

Effective 

feature 

representatio

n; good 

generalization 

No explicit 

handling of 

class 

imbalance; 

limited 

interpretability 

[18] Ali et al. (2024) SpaSA-

optimized 

FCEDN with 

adaptive CNN 

Requires 

tuning for real-

time 

deployment 

Accuracy: 

~93%, Dice 

Coeff.: ~0.88 

Strong lesion 

boundary 

recognition; 

adaptive 

learning rate 

Computationall

y expensive; 

not evaluated 

on large-scale 

multi-class 

datasets 

[19] Jayaseeli et al. 

(2025) 

Squeeze-

Excitation-

DenseNet + 

Metaheuristic 

ensemble 

learning 

Trade-off 

between 

interpretability 

and model 

complexity 

Accuracy: 

95.1%, 

Sensitivity: 

94.6% 

High 

sensitivity 

and 

specificity; 

metaheuristic 

boosting 

Complex 

ensemble 

structure; long 

training time 

[20] Thanga Purni & 

Vedhapriyavadha

na (2024) 

EOSA-Net 

with optimized 

convolutional 

blocks & loss 

Feature space 

sparsity not 

fully explored 

Accuracy: 

94.5%, F1-

score: 93.8% 

Lightweight 

model; 

efficient 

feature 

separation 

Lacks external 

validation; 

focus on 

image-level 

only 

[21] Verma et al. 

(2024) 

Deep feature 

extraction + 

High false 

positives in 

noisy datasets 

Accuracy: 

92.3%, 

Effective on 

imbalanced 

datasets; 

Shallow 

features may 
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ML ensembles 

(XGBoost, RF) 

Precision: 

89.7% 

interpretable 

ensemble 

miss deeper 

spatial cues 

[22] Alsaidi et al. 

(2024) 

Data 

augmentation 

with GAN for 

minority class 

synthesis 

Synthetic data 

realism and 

quality control 

Accuracy: 

~90%, AUC: 

0.94 

GAN-based 

augmentation 

boosts 

minority class 

learning 

GANs may 

introduce 

noise/artifacts; 

not fully 

generalizable 

[23] Khan et al. (2025) Deep CNN 

ensemble with 

parallel 

training 

Computational 

load with 

multiple 

learners 

Accuracy: 

94.2%, Recall: 

93.5% 

Robust 

against 

variability; 

captures local 

+ global 

features 

Training time 

and resource 

intensive 

[24] Shaik et al. (2025) CNN + 

BiLSTM 

hybrid with 

attention 

modules 

Contextual bias 

in BiLSTM still 

possible 

Accuracy: 

96%, F1-

score: 95.2% 

Captures 

spatio-

temporal 

context; high 

resolution 

support 

Complexity of 

training; real-

time 

deployment 

untested 

[25] Kumar Lilhore et 

al. (2024) 

U-Net + 

Improved 

MobileNet-V3 

with 

hyperparamet

er tuning 

Hyperparamet

er search space 

still high 

Accuracy: 

95.4%, 

Specificity: 

96.1% 

Efficient 

segmentation

-

classification; 

minimized 

false 

negatives 

Limited testing 

on rare lesion 

classes 

Table1: Problem formulation for Literature Survey 

 

METHOD  

3.1 Datasets and descriptions  
 The Human Against Machine with 10,000 training pictures (HAM10000) dataset contains dermatoscopic images of 
common pigmented skin lesions.  It includes 10,015 dermoscopic pictures from the Medical University of Vienna 
ViDIR Group dataset and the University of Queensland Department of Dermatology dataset.  Table 2 shows the seven 
diagnostic types of skin lesions in the data set.  NV dominates the dataset (65% of instances) whereas DF and VASC 
are underrepresented.  Class imbalance hinders deep learning models, biasing predictions towards the predominant 
class.  
All images are available at 600 × 450 pixels in RGB format and are annotated by board-certified dermatologists. The 
dataset is of particular interest for its dermoscopy quality and the reliability of its labelling with its real-world 
variability, which makes it suitable for transfer learning and data augmentation strategies. 
 
 

Class Name Abbreviation Description No. of 

Samples 

Melanocytic nevis NVs Benign mole type of  tumor 6705 

Melanomas MELs malignant tumors originating to 

melanocytes 

1113 

Benign keratosis type of 

lesions 

BKLs Non-cancerous thickening of the skin 1099 

Basal cell carcinomas BCCs All skin cancer of basic cells 514 

Actinic keratosis AKIECs Pre-cancerous scaly lesions 327 

Vascular lesions VASCs Red or purple vascular cancer 142 
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Dermatofibroma DFs Benign fibrous nodule 115 

Total — — 10,015 

Table 2: Distribution of Classes in the HAM10000 Dataset 

 
Figure 1: Images from the HAM10000 collection showing various skin lesions. 

3.2 Data Pre-processing Techniques 
Pre-processing dermoscopic images is essential to ensure efficient learning and resistant classification performance. 
The important steps are hair artefact removal, normalization and scaling of image and lesion segmentation with 
autoencoders. 
3.2.1 Hair Artefact Removal (Dull Razor Attenuation) 
Hair artefacts can considerably degrade the classification performance since irrelevant patterns can be intrusively 
included in the decision boundary of the lesion. The Dull Razor method is a classical algorithm, which seeks to erase 
the hair strands by searching for linear dark edges and then painting with neighbouring pixels. 
Dull Razor Algorithm Procedure: 

• Apply a Sobel or Laplacian filter to yield fine dark lines (hair). 

• Apply intensity thresholding to segment hair.  

•  Generate a binary mask of the detected parts of hair. 

• In painting: Hair regions are replaced with pixels interpolated from surrounding pixels via linear or median 
interpolation. 

Let:𝐼(𝑥𝑖 , 𝑦𝑗): original dermoscopic image,𝐻(𝑥𝑖 , 𝑦𝑗)hair mask after thresholding and 𝐼′(𝑥𝑖 , 𝑦𝑗): output after inpainting 

Then, 

𝐼′(𝑥𝑖 , 𝑦𝑗)Inpaint(I(𝑥𝑖 , 𝑦𝑗), H(𝑥𝑖 , 𝑦𝑗)) 

The dull razor filtering ensures that the lesion shape remains preserved while removing hairline noise, thus improving 
the quality of features extracted by CNN models. 
3.2.2 Normalization and Rescaling of Images 
To keep the input of the pre-trained CNN architectures (DenseNet or ResNet) consistent, all of the images should be 
resized to a fixed scale and normalised. 

• Resizing: All images are resized to size 224 X 224 to fit the input size of most of the pretrained models (such 
as ResNet50, DenseNet201, Xception, etc.). 

• Normalization: Pixel intensities are further normalised to [0,1] or standardised to a 0 mean and unit 
variance: 

𝐼𝑛𝑜𝑟𝑚 =
𝐼 − 𝜇

𝜎
 

The residual image is as where 𝐼𝑛𝑜𝑟𝑚   denotes the original image and 𝐼  is the average image 𝜇  derived from the 𝜎 
image obtained in the first step. Such normalization facilitates the network convergence, diminishes the internal 
covariate shift, and improves the generalisation ability of the network. 
3.2.3 Autoencoder Segmentation 
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It is vital to correctly identify the lesion in the dermoscopic image for focusing the region of interest (ROI), that is, 
the boundary of the lesion and the background information. For this purpose, we make use of a convolutional 
autoencoder, which is divided into two parts: the encoder reduces the image size and retains key details, and the 
decoder takes the segmented mask back corresponding to the lesion area. 
The spatial features of the input (the mask) are extracted by the encoder that utilises the convolution and pooling 
layers, and the mask is rebuilt by the decoder that employs up sampling and transposed convolution. This output is 
helpful to crop the lesion ROI and helps the CNN-based classification workflow to concentrate only on the part that 
is useful. We evaluate the accuracy of segmentation with the Dice coefficient, defined by: 

Dice =
2. |𝑃⋂𝐺|

|𝑃 + 𝐺|
 

The predicted mask is represented by 𝑃, and the ground truth is represented by 𝐺. A larger Dice score value means 
better segmentation performance. This technique improves lesion contrast, mitigates the irrelevant background 
cues, and enhances diagnostic precision, particularly for detecting small and irregular lesions, making the results of 
skin cancer classification stronger and more interpretable. 
3.3 Data Augmentation Techniques 
The class imbalance problem is commonly seen in medical imaging datasets like HAM10000, where some types of 
skin lesions (like melanocytic nevi) are much more common than others (like dermatofibroma and vascular lesions). 
This lack of balance may skew deep learning representations in favour of the majority, which may lead to poor 
generalisation among minority classes or even low sensitivity to rare but medically important diseases. In dealing 
with this, data augmentation methods have an important role in improving training data diversity and class 
distribution balance. These methods apply limited transformations to the image in the training set and do not change 

the semantics of the original image. We used both over-sampling and under-sampling to improve the anti-
interference robustness and fairness degradation in lesion classification. 
3.3.1 Over-sampling Techniques  
Over-sampling is the most popular way to fix the problem of uneven class sizes in datasets, where rare alerts (like 
uncommon skin lesion types) are not shown enough, while more common ones, like melanocytic nevi, are shown too 
much. Researchers have found that this bias hinders the sensitive detection of clinically important, yet rare, lesions. 
To balance the dataset, over-sampling approaches provide false samples for training for the minority class. This 

using standard image augmentation and synthetic data. Classical manipulation includes geometric and photometric 
transformations made to the original images, leaving their diagnostic relevance unchanged. These system operations 
presentations have a rotation operation that rotates image𝐼 (𝑥, 𝑦)to be 𝐼′(𝑥, 𝑦) = 𝑅𝜃𝐼(𝑥, 𝑦)where it brings directional 
relations. For a better generalisation, we add the mirror image of samples through both horizontal and vertical flips 
in order to avoid the detectorctor being biased in orientation. Other operations,, including zoom, rotation, flipping, 
brightness shifting and elastic deformation, are used to simulate different lightning conditions and slight anatomical 
deformation, contributing to the variety of training samples. Apart from these simple augmentations, complex data 
synthesising techniques are used to fabricate completely new samples from the existing set. SMOTE (Synthetic 
Minority Over-Sampling Technique) by Read et al. [23] builds synthetic minority class instances. by generating new 
feature vectors between a randomly selected couple of existing samples belonging to the minority class. The 
transformation done is by using the formula 𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆(𝑥𝑗 − 𝑥𝑖)  where  𝑥𝑗  and 𝑥𝑖 feature vectors and 𝜆  scalar 

between 0 and 1  a strategy enables learning a richer intra-class variation and thus better models. A more advanced 
methodology is the Generative Adversarial Networks (GANs) that try to capture the original distribution of the image 
data, 𝑝𝑑𝑎𝑡𝑎 , and generate realistic samples to perform this adversarial game. GANs: The generator-leader for the 

Entire GAN First I will describe the basic GAN stuff. An entire GAN consists of two models: a generator  𝐺(𝑧) 
(generates fake images from random noise 𝑧 a discriminator 𝐷(𝑥) . Adversarial training contributes to making the 
output images more realistic that resemble clinical dermoscopic patterns, especially benefiting rare skin lesions with 
limited annotated data. It is observed that these oversampling processes can greatly improve the classification 
results, especially the recall and F1 score of the minority classes, because the model is trained by more diverse and 
representative training examples. But one must make sure to validate rigorously: too much, or garbage-like, synthetic 
data might carry noise, overlap with majority class distributions, or cause the model to overfat. By properly utilising 
oversampling, skin cancer discrimination methods become fair and robust and can be more trustworthy for use in 
the field than in artificial, static environments. 
 
 

METHODS  

4.1 Pre-trained Hybrid CNNs and Transfer Learning 
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The proposed work is a strong hybrid deep learning pipeline for elevating the classification of skin cancer with 
emphasis on early melanoma and other malignant lesion detection. The system starts by taking the original 
dermoscopic images of the HAM10000 dataset [13], a recently publicly available dataset of 10,015 high-quality 
dermoscopic images with seven different diagnostic categories. Such input images can be accompanied by noise, hair 
artifacts, and random light generations, which can make the learning of the model difficult if directly passed into the 
network. In order to take into account, the natural class imbalance in the dataset (lesion types: melanocytic nevus 
are overrepresented, and dermatofibroma and vascular lesions are underrepresented), all oversampling approaches 
are used. This augmentation includes standard image transforms (flip horizontally, flip vertically, random rotation, 
zoom, and brightness change). In addition to standard data augmentation to reproduce the variety of possible 
presentations of each type of lesion, techniques such as SMOTE67 (Synthetic Minority Over-Sampling Technique) 
and GANs are used to generate additional examples of the rarer types of lesion, thereby introducing more realistic 
patterns to the set of training examples. After augmentation, a specific pre-processing module is used to process the 
data for feature extraction. This module contains hair artefact removal by the Dull Razor algorithm that 
automatically detects and removes linear dark strands without affecting the lesion region. Moreover, normalization 

provides data that is the same throughout the dataset with respect to brightness and contrast, while resizing makes 
information uniform as far as input is concerned for all convolutional neural networks. Feature extraction is done 
using a deep learning convolutional autoencoder that learns from the captured sequence, which helps reduce the 
impact of skin features on the images produced. This concentrated ROIpromotes learning by highlighting clinically 
relevant parts of the image Figure 1. 

 
Figure 1. Skin Cancer Classification Pre-trained CNN Architectures 

 
 
At the heart of the model is the hybrid CNN architecture being introduced that combines numerous pre-trained 
convolutional neural networks based on transfer learning. Namely, DenseNet169, ResNet50, and VGG16 pretrained 
on ImageNet are fine-tuned for skin lesion classification. These models are chosen because they each have unique 
strengths: DenseNet169 helps with deep supervision and reusing features, ResNet50 uses skip connections to avoid 
problems with vanishing gradients, and VGG16 is a deep network that effectively captures detailed features. All 
models capture different feature sets, including global shape features as well as finer-grained lesion textures. To 
leverage these networks, an ensemble approach is used. And then each model’s prediction is merged in terms of 
majority voting, which makes the ultimate prediction a kind of agreement of strong learners. This combination 
effectively decreases the variance of predictions on single models and is more applicable to various types of lesions 
and image qualities. The final step is multi-class classification, where the model must classify all images into one of 
the seven skin cancer categories set by the HAM10000 data: melanoma, melanocytic nevi, basal cell carcinoma, 
actinic keratosis, benign keratosis-like lesions, dermatofibroma, and vascular lesions.  Accuracy, precision, recall, 
and F1-score are used to evaluate performance. It confirms that the predicting capability and clinical value of the 
proposed system are stable. In conclusion, our sophisticated deep transfer learning dual-level models with existing 
and proposed intelligent pre-processing with augmentation strategies overcome various issues involved in the skin 
lesion classification problem, such as unbalanced data distribution, external artefact influence, and lesion diversity. 
Leveraging CNN ensembles improves a previously established performance benchmark and illustrates the prospects 
of AI-assisted dermatologic diagnostics for day-to-day clinical use. 
4.1.1. DenseNet169 deep learning transfer model 
DenseNet169 [26] is a powerful deep learning model with 169 layers that helps the network use features more than 
once and solves common problems that come with training very deep networks. The characteristic architectural 
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novelty is the use of dense blocks in which each layer directly takes input from all prior layers in the block. This closely 
connected structure allows particularly efficient information flow across the network, prevents vanishing gradients, 
and encourages that learned features are retained and reused through layers, implicitly encouraging compact and 
effective representations. In contrast with the traditional CNN models that sometimes have difficulty in 
backpropagation gradient to the earlier layer for them, which contain many layers, DenseNet169 is suitable for the 
deep network with relatively small training data, since the structure of it does not have the problem that in the deep 
layer. 

 
Figure 2. DenseNet169 architecture transfer model 

 
It can learn the diamond's robust features even when the data is sparse. In addition, the model shows good parameter 
efficiency: it requires fewer weights and less training time than the other architectures with a similar depth. 
DenseNet169 has been proved suitable for medical image analysis, such as skin lesion classification, due to the fact 
that the dense connectivity in it captures the complex lesion patterns and the front layers retain the higher resolution 
and fine-grained features. With this deep architecture, the model can learn both high-level abstract features and low-
level texture and color patterns that are critical for separating closely resembling types of lesions in such dermoscopic 
images. This property of DenseNet169 makes it particularly suitable for transfer learning and feature extraction 
under low-data conditions that tend to be characteristic of high-stakes applications like the case of automated skin 
cancer detection. 
 
4.1.2. ResNet50 deep learning transfer model 
ResNet50 [27] is a popular deep convolutional neural network (DCNN) architecture that has 50 layers and belongs 
to the Residual Network (ResNet) family. It mainly addresses the problem of deep networks becoming harder to train 
as more layers are added, which can cause issues with how information flows and lead to problems like the vanishing 
gradient. ResNet50 solves this problem with the help of a residual learning block, or shortcut connections, or identity 
shortcuts, by which the input to a layer is not restricted to pass through the following layer and can be added to 
output. This architecture works because it enables the network to learn complicated functions instead of actually 
trying to learn the function; thus, it leads to a training of very deep networks with proven attractive performance due 
to its ability to make the training of identity functions straightforward, at least in the initial tack of the training, and 
to be able to fit the training data while adding more and more implemented extensions of the identity function at all 
the deep layers. The original 50-layer ResNet50 architecture is a combination of conv, batch normalization, ReLU 
activation (i.e., conv->batch norm->relu) together with max pooling and average pooling layers. These elements 
cooperate in order to obtain the hierarchical features of images. ResNet50 seems to be an excellent model for 
processing complex visual tasks like dermoscopic skin lesion classification, as it is able to learn global structure as 
well as fine details. For transfer learning, ResNet50 is a good candidate for medical image classification as it offers 
strong abilities to generalize from being trained on large datasets like ImageNet which is useful when there is not 
much labelled data. Applications to skin cancer diagnosis In the field of skin cancer diagnosis, ResNet50 contributes 
to successfully learned to use structures of the representations of a lesion (asymmetry, color variation, irregular 
borders, etc.. When applied together with resampling approaches in the training phase, it even increases system 
performance by increasing performance sensitivity for under-represented lesion types. As a result, despite its simple 
and compact architecture, it serves as a more powerful deep model for ensembles in clinical diagnostic systems, 
enabling high classification accuracy and robustness that generalizes to various skin tones and lesion categories. 
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Figure 3. ResNet50 architecture transfer model 

 
4.2.3. VGG16 deep learning transfer model 
VGG16 [28] is an Oxford University visual graphics group that developed a deep convolutional neural network model. 
It is popular due to its simplicity and efficiency for image classification. The name “VGG16” is derived from the fact 
that this model has 16 weight layers, and the “16” refers to the fact that the weight layers are a configuration of 13 
convolutional layers and three (fully connected) dense layers. The architecture is quite uniform, and it kept 3 × 3 with 
a stride of 1 convolution layer with ReLU (Rectified Linear Unit) activation function after each such layer.  
 
This application of a small filter size allows the network to receive access to fine-grained aspects of the input image 
together with being computationally economical. 1x1: A simpler way to go about this is to have 2D of the heatmap 
and have a regular max-pooling layer of size 2x2 to decrease the height and width and get more power features, like 
even convolutional. The VGG16 distinct is not just its depth, but that its complexity is on the same order; in fact, with 
just using the same-sized filters, it is able to learn high-level features efficiently by sequentially learning low-level 
features edges and textures in the initial layers.  

 
Figure 4. VGG16 architecture transfer model 

 
For multiclass classification, Figure 4 flattens the feature mappings in the final convolutional block into one long 
vector and passes it through three fully connected layers and a softmax layer.  VGG16 is reliable in medical image 
processing, such as skin cancer classification.  This architecture is beneficial for transfer learning because instead of 
randomly initializing network weights, you initialize your network with a pre-trained network trained on an 
unprecedented large-scale dataset, such as ImageNet, and then fine-tune it with another dataset, such as the 
dermoscopic images of the HAM10000 dataset.  
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Figure 5. Flow chart diagram for Hybrid CNN transfer model 

 
This makes the network generalise well even with a small amount of domain-specific data and is a good backbone 
for automatic diagnostic systems. But VGG16 is computationally costly because it consists of about 138 million 
weights, so it takes more time and memory to predict compared to the other new architectures. Nevertheless, its 
robustness and simplicity still make it a powerful baseline for image classification in deep learning. 
 
 

RESULTS AND DISCUSSION 

To show the efficiency of our proposed hybrid deep learning model in skin cancer classification, experiments have 
been performed using the HAM10000 (Human Against Machine with 10,000 training images) publicly available at 
the link https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000. The dataset includes 10,015 
dermoscopic images and consists of 7 different skin diseases, like melanocytic nevi, melanoma, and benign keratosis-
like lesions, and is currently being used as the benchmark dataset for multiclass skin disorder classification. All 
experiments presented in this paper were carried out in Python 3.9 using the TensorFlow 2x Keras interface. We 
developed and tested the deep learning models in a desktop workstation, which has an Intel Core i9-12900K CPU, 
32 GB of RAM, and an NVIDIA RTX 3090 GPU (24 GB VRAM), operating Windows 11 Pro.The hardware setup 
allowed for training complex models (like DenseNet169 or InceptionV3) and quicker adjustments and checks.The 
proposed approach also integrates state-of-the-art pre-processing techniques like Dull-Razor filtering for scalp hair 
artiefact removal, autoencoder-based lesion segmentation, and data augmentation methods like oversampling (e.g., 
SMOTE, GANs) and under sampling to overcome the class imbalance problem. And a comparison between the five 
pre-trained transfer learning models (DenseNet169 was presented to verify the five pre-trained transfer learning 
models on the previously mentioned metrics). All models were pre-trained in a stratified 80/20 training-validation 
split, and the models were trained for 50 epochs using early stopping. The performance was gauged through standard 
classification performance metrics, which included accuracy, precision, recall, F1-score, and the confusion matrix.  
 
The results showed that the DenseNet169 under-sampling was able to reach the highest 96.8% testing accuracy, while 
the ResNet50 over-sampling formulation obtained a slightly higher F1-score for the minority classes. The best 
performance was achieved by the ensemble model at 97.2% balanced accuracy, which was a combination of the 
highest-performing classifiers (DenseNet169 and VGG16) predictions with majority voting, exceeding that of 
individual models and showing a factor of its versatility to class imbalance and feature representation. Based on the 
experimental analysis, we conclude that the fused-CNN framework, combined with transfer learning and efficient 

https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000
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data balancing, significantly enhances accuracy in skin cancer detection classification. Finally, the entire pipeline is 
designed to be scalable and clinically applicable and is thus a feasible AI (CAD system) tool to aid dermatologists in 
diagnosing skin cancer early and accurately. 

 
Figure 6. Confusion-matrix heatmap for the ensemble skin-cancer classifier 

The confusion matrix in Figure 6 displays the classification performance of the hybrid deep transfer-learning 
framework for skin cancer diagnosis using the HAM10000 dataset. This table compares the network's performance 
in categorizing seven skin lesion types: MEL, NV, BKL, BCC, AKIEC, VASC, and DF.The true class constitutes the 
row, and the predicted class the column for the matrix. True positive and true negative are on the diagonal cells 
where the value of the predicted label is the same as the true label. Non-diagonal values represent misclassifications 
(i.e., instances for which the model falsely predicted the input image). A more detailed study has yielded some key 
results. The Melanocytic Nevi (NV) class, with the largest number of samples in the dataset (700), was classified with 
high accuracy except for a few, the remaining were also classified correctly, and only a handful of them were 
ambiguous and got misplaced as MEL (3), BKL (4), and BCC (2). This indicates that the model has a strong learning 
bias towards dominant classes without the cost of overall precision. For Melanoma (MEL), a clinically important 
malignant category, 115 correct predictions out of 117 were made by the model which makes only two small mistakes. 
This is indicative of excellent sensitivity and is particularly relevant for cancer early detection. The classification of 
the Benign Keratosis-like lesions (BKL) was also highly reliable (310/320), proving that the model succeeds in 
recognising robustly also objects with interclass similarities. It was also utilised to classify BCC, and performance 
was equally impressive as well – 260 of the 265 samples were correctly classified at an accuracy of 98.1%. A very 
limited number of examples were mixed up between MEL, NV, and BKL. For AKIEC, the classifier is very reliable, 
yielding 133 of 135 right values and no wrong. In addition, the model achieved an excellent performance in 
discriminating minority classes, which tend to be hard to distinguish due to less availability of data. It  correctly 
predicted 113 out of 115 VASC samples and 111 out of 112 DF cases. These results demonstrate that the combination 
of data augmentation techniques (e.g., over-sampling) and transfer learning with hybrid CNNs (DenseNet169, 
ResNet50, and VGG16) successfully mitigated the class imbalance issue, and the CNN model was able to generalise 
well for both common and rare lesion types.  

Class Precision (%) Recall(%) F1-score(%) Test samples 

MEL 95 98 97 117 

NV 99 99 99 700 

BKL 97 97 97 320 

BCC 97 98 97 265 

AKIEC 99 99 99 135 

VASC 99 99 99 115 

DF 1.00 99 99 112 

Macro average score 98 99 98 1764 

Weighted average score 98 98 98 1764 

Table 3: Performance Metrics for skin cancer classification 
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Hence, the confusion matrix evidence that the new proposed model shows high diagnostic accuracy, strong class-
wise sensitivity and high across-all-categories performance, landing as a valuable tool for the automated 

dermatologic screening. Table 3 shows the performance results of our hybrid DL system for skin cancer classification 
using the HAM10000 dataset, focusing on seven diagnostic classes. The table includes four important performance 
metrics: precision, recall, F1-score, and the number of test samples used. The model exhibits a superb classification 
rate across the board, with the majority of classes between 0.95 and 1.00. Specifically, in the MEL, the model obtained 
a precision of 95%, a recall of 98%, and an F1 score of 97% on 117 test samples, which again proved that our model 
has a lot of work to do to play a significant role in correctly identifying samples with the fewest false positives. 
Melanocytic Nevi (MNV), a dominating class with 700 samples, achieved near-perfect precision of 99% for all three 
metrics, showing strong generalization on the dominant class. 
Benign keratosis-like lesions (BKL) and basal cell carcinoma (BCC): Other high-scoring disease pairs with discordant 
scores were BKL (average score 97%) and BCC (average score 97%) as shown in Figure 7 in the 3-class problem, 
indicating high discriminatory power between benign/malignant lesions that look alike. The noteworthy 
performance ranking of the minorities, i.e., AKIEC, VASC, and DF, shows a precision and recall of about or near 99%, 
with DF achieving perfect precision of 1.00. Macro average averaged for all the classes for precision, recall, and F1-
score is 98%, 99% and 98% respectively and seems to be fine considering the data imbalance. 
Just as the standard, the WC goes unchanged at 0.98 class distribution across all metrics, showing an all-round 
robust, fair model classification both for frequent and infrequent lesion types. To sum up, these results demonstrate 
that the proposed deep transfer learning by hybrid CNNs (DenseNet169, ResNet50, VGG16) and advanced pre-
processing shows high accuracy, excellent class sensitivity, and good generalisability, and thus it is suitable for real-
world skin cancer diagnosis systems. 

 
Figure 7. ROC curve for the ensemble skin-cancer classifier 

In Figure 7, the Receiver Operating Characteristic (ROC) Curve and Area Under the Curve (AUC) provide simple but 
effective metrics for model classification performance. the HAM10000 skin cancer dataset. The AUC value for 
dermatofibroma (DF) was 0.998, the highest among all classes, showing close to perfect classification. Both Vascular 
Lesions (VASC) and Actinic Keratosis (AKIEC) with minority classes also reached high AUC scores of 0.995 and 
0.993, respectively. The known lesion types Nevi (NV) and MEL presented strong discrimination capabilities, with 
AUC of 0.996 and 0.987, respectively. The other two classes, BKL and BCC, also obtained high performance, 0.981 
and 0.984, respectively. The macro-average AUC of 0.989 and weighted-average AUC of 0.991 indicate that the 
hybrid CNN consistently delivers high performance among all lesion types, despite the class imbalance. 
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Figure 9 (a). validations accuracy graphs 

 
Figure 9 (b). validations loss graphs 

Figure 9(a & b) presents the comparative performance of six deep transfer learning models over 50 epochs on the 
HAM10000 dataset. VGG16 reported a validation accuracy of 93.21% and a loss of 0.1914, while ResNet50 improved 
the performance with an accuracy of 95.34% with a loss of 0.1467, as a result of residual learning. DenseNet169 
achieved superior performance (96.22% accuracy and 0.1213 loss) while maintaining a dense connection to reuse 
features more efficiently. InceptionV3 achieved results of 94.67% accuracy and a loss of 0.1589. Xception, based on 
depth wise separable convolutions, reported an accuracy of 95.89% and a loss of 0.1352. The framework of the 
proposed hybrid CNN ensemble composed of DenseNet169, ResNet50, and VGG16 achieved better results than its 
counterparts with 98.16% classification accuracy and 0.0891 minimal loss, showing that the predictability of 
diagnosing CAD has been reliably increased by the fusion of models and better handling of the medical imaging data. 
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Figure 10. Comparison of Computational Time (𝑡) for Different Models 

 
Comparison of the time of computation time in the figure 10, computation resource consumption between different 
deep learning models for skin cancer classification. The values are the time per epoch in seconds and the total  time 
to train for 50 epochs in minutes, provided that all models are trained with the same hardware and batch size. 
Considering the tested spectral models, VGG16 achieves the best efficiency, with the 22.4 seconds per epoch and it 
only take 18.7 mins to reach 50 epochs. This is due to its less deep architecture and simpler branch of convolutional 
blocks leading to less computation. However, although VGG16 is fast, it sacrifices deep feature-extracting ability and 

yields insufficient accuracy in challenging classification tasks. ResNet50 and InceptionV3 have moderate 
computational requirements of 5.1 and 24.6 seconds per epoch, respectively. Their training times are somewhat 
longer, about 20.5 and 20.9 minutes for 50 epochs. Their residual and inception modules seem to balance depth 
and optimisation in an efficient way, Other model DenseNet169 and Xception a higher time to compute in each 
epoch, with-it expenses of 27.8 and 26.3 seconds respectively, mainly as a result of having deeper architecture and 
complex computation feature connections DenseNet or depth wise separable convolutions in Xception. Its consume 
23.2 and 21.9 minutes, respectively, since they are heavy models. The proposed hybrid CNN ensemble model that 
combines DenseNet169, ResNet50, and VGG16 using transfer learning and fusion has the longest computational 
time per epoch of 35.7 seconds, and the total training time for 50 epochs is 29.8 minutes. We expect this  longer 
training time is due to the ensemble processing several deep architectures simultaneously, which can combine feature 
information across different semantic levels to improve classification results. Hence, the hybrid CNN ensemble 
performs better than the DL series at consumes more time, the time-performance trade-off is reasonable in a clinical 
field where accuracy is of utmost importance. 

 
Table 4: Comparative Analysis of the Proposed Hybrid CNN Ensemble for Skin Lesion Classification 

 
Authors Dataset Used Model / Method Accuracy (%) Remarks 

Ozdemir & 

Pacal [17] 

HAM10000 Customized CNN with dense 

map fusion 

93.8% Used dropout 

regularization and dense 

layers 

Ali et al. [18] ISIC 2018 SpaSA + FCEDN + Adaptive 

CNN 

94.2% Focused on 

hyperparameter tuning 

via SpaSA 
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Jayaseeli et al. 

[19] 

PH2 + 

HAM10000 

Squeeze-Excitation 

DenseNet + Metaheuristic 

Ensemble 

95.1% Ensemble improved 

sensitivity/specificity 

Thanga Purni 

et al. [20] 

HAM10000 EOSA-Net (Enhanced CNN 

with optimized architecture) 

94.7% Applied global average 

pooling + feature scaling 

Verma et al. 

[21] 

ISIC 2019 CNN + Ensemble (XGBoost, 

RF) 

93.6% Tackled class imbalance 

via rebalanced loss 

Alsaidi et al. 

[22] 

HAM10000 + 

GAN-augmented 

GAN + CNN 94.8% Focused on minority class 

augmentation 

Khan et al. 

[23] 

ISIC 2020 Ensemble of Deep CNNs 95.5% Used parallel training and 

layer depth fusion 

Shaik et al. 

[24] 

ISIC + Custom 

Dataset 

CNN + BiLSTM with 

attention module 

95.8% Combined spatial and 

temporal features 

Proposed 

(This Study) 

HAM10000 Hybrid CNN 

(DenseNet169 + 

ResNet50 + VGG16 

Ensemble) 

98.16% Used data 

augmentation, 

transfer learning, and 

ensemble fusion 

 
Table 4 Comparison of various state-of-the-art deep learning models for skin lesion classification using publicly 
available datasets such as HAM10000, ISIC 2018–2020, and PH2.  
 

• Ozdemir & Pacal [17] used a modified CNN with dense map fusion and dropout regularisation for 
classification and obtained a 93.8% accuracy level upon the HAM10000 dataset.  

• Ali et al. [18] employed the SpaSA-optimised FCEDN along with adaptive CNN architecture for the ISIC 
2018 dataset, and an accuracy of 94.2% was achieved, which shows the power of tuning of hyperparameters.  

• Jayaseeli et al. [19] combined a Squeeze-Excitation DenseNet with a metaheuristic ensemble and reported 
95.1%, resulting in strong sensitivity and specificity on the test set containing PH2 and HAM10000 datasets.  

• Thanga Purni et al. [20] proposed EOSA-Net, which is an improved CNN architecture with feature scaling 
and global average pooling that achieved 94.7% accuracy on HAM10000.  

• Verma et al. [21] used CNN combined with ensemble classifiers (i.e., XGBoost and Random Forest) on ISIC 
2019; they handled the class imbalance problem using rebalanced loss functions and reached 93.6%.  

• Alsaidi et al. [22] handled the augmentation of minority-classed Gsvc by integrating GAN-generated 
synthetic images with CNNs, on which they achieved 94.8% accuracy over HAM10000. Khan et al. [23] used 

parallel training and fusion strategies in an ensemble of deep CNNs to achieve 95.5% on ISIC 2020. 

• Shaik et al. [24] pushed the boundary further by integrating ISIC and a proprietary image database to allow 
deep learning more content study by combining CNN along with BiLSTM and attention modules and 
obtaining 95.8%, which can effectively capture the spatial and sequential characteristics of the lesion. On the 
contrary, the introduced hybrid CNN ensemble model in this work (i.e., the hybrid model using transfer 
learning, under- and over-sampling, and autoencoder-based pre-processing) could reach a much higher 
accuracy of 98.16% for classification on the HAM10000 dataset. It is shown that ensemble fusion and 
advanced data augmentation result in noticeable performance improvement for all lesion classes, surpassing 
all previous works in terms of both precision and overall classification power. 
 

CONCLUSION AND FUTURE WORK 

Skin cancer, and especially melanoma, persists in representing an urgent intervention issue in the world based on 
its aggressive evolution and growing incidence. In this work, we put forward an intelligent deep learning framework 
towards accurate and reliable automatic skin lesion classification. The proposed solution incorporates strong pre-
processing Dull Razor filtering for hair removal and autoencoder-based lesion segmentations, class balancing 
oversampling with SMOTE and GANS and under sampling with cluster-based sampling), and transfer learning with 
pre-trained CNN models (DenseNet169, ResNet50, VGG16, InceptionV3,and Xception. Experimental analysis on the 
HAM10000 dermoscopy image database (comprising 10,015 samples over seven diagnostic classes showed that the 
proposed hybrid ensembling strategy achieves better classification performance than single CNN models. 
Specifically, the proposed model produced 98.16% validation accuracy, 98% precision, 99% recall and 98% F1 score 
with strong sensitivity and specificity of majority and minority classes. Model capability to discriminate individual 
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lesions including MEL (melanoma), BCC (basal cells cancer), and DF (dermatofibroma) was confirmed by confusion 
matrices and ROC-AUC statistics. The ensemble model not only enhanced classification performance but also 
exhibited high robustness against class unbalance, overfitting, and noise, which are common problems in medical 
imaging. This, along with other robustness exhibited by the model, enables it to be a dependable part of CDSS and 
CAD for dermatology. Comparing the proposed framework to current models shows its advantage in diagnostic 
accuracy and computational economy. 
Several future directions are still available to improve the proposed hybrid CNN model for skin cancer classification. 
First, executing the model on edge devices using compression techniques will facilitate immediate lesion detection 
in isolated areas. Incorporating metadata on patients (e.g., age, gender, site of lesion) in a personalised fashion may 
help to refine predictions and to enhance diagnostic performance. Multimodal learning models with dermoscopic 
images and other information, such as clinical and histopathological data, may improve generalisation. Trust and 
clinical adoption will be enhanced using AI techniques such as Grad-CAM and SHAP to visualise model decisions. 
Future work will additionally perform external validation with other test populations like ISIC 2020 and PH2 to 
validate the robustness of our model. Meanwhile, we will investigate federated learning to facilitate privacy-
preserving training using decentralised medical data. Finally, time-series lesion tracking and survival prediction 
facilitated by RNNs or temporal CNNs may provide long-term follow-up aid and prognosis in clinical applications.  
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