
Journal of Information Systems Engineering and Management 
2025, 10(1s) 

e-ISSN: 2468-4376 

 

https://www.jisem-journal.com/ Research Article  

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

The Real Environment Impact of AI: Unveiling the Ecological 

Footprint of Artificial Intelligence 
 

Beena Nawghare1,*, Dr. Nitin Rane2, Soma Kulshrestha3, Santosh Gore4, Prof. Priyanka D. Halle5 Dr. Roshni S. 

Golhar6, Sujata Gore7 

1Department of Chemistry, Dr. D. Y. Patil Institute of Technology, Pimpri, Pune, India, brnawghare@gmail.com  

2 Vice Chancellor, Avantika University, Ujjain, India 

3 Assistant Professor, Symbiosis Centre for Management Studies, Pune, Symbiosis International (Deemed University), Pune, India 

4 Director, Sai Info Solution, Nashik, Maharashtra, India, https://orcid.org/0000-0003-1814-5913 

5 SPPU, Pune, India 

6Assistant Professor, Suman Ramesh Tulsiani Technical Campus, Kamshet, Pune. 

7Director, Sai Info Solution, Nashik, Maharashtra, India 

Email: *brnawghare@gmail.com, vc@avantika.edu.in, soma.kulshrestha@scmspune.ac.in, sai.info2009@gmail.com, 

hallepriyanka2011@gmail.com, roshni.golhar@gmail.com, sujatarpatil21@gmail.com 

 

ARTICLE INFO ABSTRACT 

Received: 04 Oct 2024 

Revised: 30 Nov 2024 

Accepted: 16 Dec 2024 

 

 

Global environmental pollution has a devastating influence on the planet's population and 

jeopardizes humanity's future. The construction business is a major producer of waste and 

hazardous emissions into the atmosphere. It is vital to discover measures to reduce the damage 

done to nature. Currently, artificial intelligence technologies are one of the most promising 

approaches to helping the environment. This research investigates the use of green AI algorithms 

for measuring greenhouse gas (GHG) emissions in the context of ecological footprint assessment. 

Green AI algorithms prioritize sustainability and seek to lower AI systems' carbon footprints while 

monitoring GHG emissions data. These algorithms use environmentally conscious machine 

learning techniques to improve resource allocation, encourage energy-efficient model topologies, 

and prioritize renewable energy sources for AI model training. Carbon-aware optimization 

approaches are used to reduce the environmental impact of AI computations, resulting in a greener 

future. The incorporation of green algorithms into AI systems identifies the potential for emission 

reduction and energy efficiency, promoting environmentally beneficial behaviours across 

industries. The use of green algorithms allows for a full analysis of GHG emissions and ecological 

footprints, permitting a symbiotic interaction between technology and the environment for 

sustainable growth. 

Keywords: Artificial Intelligence (AI), Ecological footprint, GreenHouse Gas (GHG), Natural 

Language Processing (NLP) 

 

INTRODUCTION 

Protecting the Earth's ecology is a critical concern in today's world. The devastation done to the environment has 

disastrous ramifications for humanity. Climate change causes fires, floods, droughts, and other natural disasters. 

Hazardous emissions also hurt human health. To reduce the detrimental impact, suitable environmental safeguards 

must be implemented. Artificial intelligence (AI) is the replication of human intelligence in robots designed to think 

and learn like humans [1]. AI includes a variety of techniques and technologies, such as machine learning, natural 

language processing, computer vision, and robotics. It allows computers to accomplish tasks that would normally 

need human intellect, such as comprehending language, identifying patterns in data, making decisions, and solving 

problems. The implications are mostly measured in the context of energy usage and greenhouse gas emissions. 

However, it's important to note that the environmental impact of these technologies extends beyond only energy use. 

[2] For example, it believes that AI systems will have a significant impact on the environment through their indirect 
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effects on the global digital economy. According to [3], focusing just on profit and job stability without considering 

broader repercussions can have negative consequences for the future generations. 

AI is gaining popularity and being promoted as an environmental solution issue, including Artificial Intelligence 

for Green initiatives [4][5].  

AI's environmental costs are given to break the loop between Green and Green AI. Assessing impacts, both 

positive and negative, is crucial. There is a brief mention of the negative environmental repercussions of AI, including 

rebound effects [4], which can result in increased global GHG emissions. However, no assessment of allt the 

ecological footprint quantifies humanity's influence on Earth's resources, including the land and resources needed to 

support human life. It incorporates food, water, energy, and waste production, demonstrating sustainability. It 

evaluates environmental impact by comparing consumption to available resources, hence encouraging sustainable 

practices. A smaller footprint suggests less strain on ecosystems, which promotes biodiversity and environmental 

health [6]. 

Artificial intelligence has advanced so dramatically that it is currently regarded as the preferred method for 

addressing environmental challenges, especially greenhouse gas emissions. Meanwhile, those involved in deep 

learning began to understand that training models with an increasing number of parameters require an enormous 

quantity of energy and, as a result, increases GHG emissions. According to the understanding, no one has directly 

addressed the subject of the total net environment implications of Artificial intelligence for environmental solutions 

(Green AI), including GHG emissions. This essay, recommends investigating the potential detrimental implications 

of AI on Green. First, this discusses the many sorts of AI impacts, followed by the various approaches for assessing 

those impacts and demonstrating how to apply life cycle evaluation to AI services [7]. Finally, this explains how to 

evaluate the environmental utility of a general AI service and highlights the Green algorithm, Concurrently, the data 

centres that run AI technology release considerable amounts of carbon dioxide, exacerbating the environmental 

impact. Despite these obstacles, AI offers prospects for monitoring and mitigating environmental issues like 

deforestation and pollution. However, striking a sustainable balance between technology innovation and 

environmental preservation remains a pressing challenge, necessitating concerted efforts to promote greener AI 

development techniques [8]. 

LITERATURE SURVEY 

This section discusses techniques for evaluating AI's environmental impact and green applications. The paper 

concludes with an overview of the carbon footprint of AI and LCA, a well-established method for evaluating 

environmental effects that is not commonly employed in Artificial Intelligence services. 

2.1. Carbon Footprint of Artificial Intelligence 

Strubell et al. [9] demonstrated the significant impact of NLP algorithms during training, resulting in GHG 

emissions comparable to 300 flights between New York and San Francisco. Premises of this technique were already 

included in [10] for CNN, although with less useful measures (e.g., energy per image or power without indication of 

global time). 

In [11], the authors discover a broad exponential development in deep learning architecture parameters. They 

advocate a "Green AI" that prioritizes energy efficiency with correctness in training models and emphasizes the need 

to disclose floating-point processes. Other writers [12] have studied various strategies for estimating energy usage in 

computer architecture. The authors distinguish between various kinds of explanation, especially software/hardware 

and instruction/application, and explore how these methods could be used to monitor the training and inference 

phases in machine learning [13]. 

Several approaches have been postulated that highlight the influence of training models, building on [9] and [11] 

work. They can be schematically divided as 

• Integrated tools: Python libraries, such as Experiment Impact Tracker 1, Carbon Tracker 2, and 

CodeCarbon 3, report energy use and carbon footprint. 

• Online tools: Green Algorithms 4 and ML CO2 impact 5 require a few parameters, including training length, 

material, and location, but have lower accuracy. 

AI literature focuses on immediate effects and ignores production and end-of-life considerations, resulting in a 
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lack of compliance with suggestions. In [14], the writers highlight. This study addresses methodological limitations 

in earlier studies focused on the usage stage. Manufacturing is responsible for approximately 75% of Apple's or iPhone 

5's total emissions, depending on scale. The study follows a life cycle methodology and uses sustainability reports 

that meet the GHG protocol requirement. [15] lists the carbon emission sources of AI services, providing a complete 

assessment of their direct implications on the carbon footprint. It emphasizes the importance of considering indirect 

implications, such as behavioural or societal changes while evaluating AI services [16][17]. 

Some research focuses on improving artificial intelligence procedures for the runtime, energy consumption, and 

carbon footprint. In [18], the authors update the results from [9] and show a factor of 100 reductions in GHG impact 

by considering the location of the training data centre (low-carbon energy) and the deep network design (sparsity). 

The study focuses solely on GHG emissions from operating computers and data centres, disregarding manufacture 

and end-of-life phases. 

2.2. Life Cycle Assessment (LCA) 

Life Cycle Assessment is a popular method for ecological impact assessment, having ISO standards (ISO 14040 

and 14044) and a specialized ICT approach guideline from ETSI/ITU [19]. It measures environmental standards 

throughout all life cycle stages of an intended system. Decisions should be made with a systems view to avoid problem 

shifting, which occurs when solving one problem leads to the creation of additional and sometimes overlooked 

problems. LCA is frequently utilized in several fields, but it has rarely been used in AI services [20]. 

METHODOLOGY 

1.1. Evaluating the usefulness of Artificial Intelligence for green services. 

When presenting an AI for Green technique, it is important to guarantee that the total ecological influence is 

positive. This means that the helpful gains from the solution should outweigh any negative implications. The AI 

service's first-order implications stem from the lifecycle phases of the equipment used for development and 

deployment, as discussed previously. 

Second-order impacts refer to the effects of Artificial Intelligence. AI can improve or replace existing systems, 

such as optimizing energy use in buildings through habitation or behaviour recognition, energy profiling, and more.  

Third-order consequences are modifications to technology or society caused by AI solutions. These effects may 

range from distinct behavioural reactions to systematic and social alterations and can be short-term or long-term. 

Rebound properties refer to when an improvement in effectiveness may not always result in a decrease of equal 

magnitude of impacts, and may instead enhance them. Rebound effects arise when potential savings e.g., money, 

time, and resources are converted into increased consumption. Smart occupants of buildings may choose to increase 

the heating temperature for convenience or purchase extra aeroplane tickets after achieving higher energy efficiency. 

Assessing the utility of AI for green services requires a thorough examination of its effectiveness, efficiency, and 

impact on environmental sustainability. This evaluation examines if the service meets its intended objectives, such 

as optimizing resource utilization, lowering carbon emissions, and improving conservation efforts. Efficiency 

considerations include assessing resource use, time savings, and cost-effectiveness. Furthermore, analyzing the 

actual environmental impact entails calculating carbon emission reductions, energy efficiency gains, and 

conservation outcomes. Furthermore, user experience, long-term viability, and ethical implications all play 

important roles in determining the service's utility. By carefully examining these criteria, stakeholders may make 

better-informed decisions on the adoption and implementation of AI for Green services, resulting in a more 

sustainable and eco-friendly future. 

1.2. Greenhouse Gas 

Greenhouse gases (GHGs) are gases in the Earth's atmosphere that trap heat, causing the greenhouse effect and 

global warming. These gases are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated gases. 

When sunlight strikes the Earth's surface, some of it is absorbed and heats the globe, while the remainder is reflected 

into space as infrared radiation.  
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Figure 1: Greenhouse Gas 

Greenhouse gases in the atmosphere absorb infrared light, preventing it from escaping into space and increasing 

the Earth's surface temperature. Human activities including fossil fuel combustion, deforestation, agriculture, and 

industrial processes have greatly boosted greenhouse gas concentrations in the atmosphere since the Industrial 

Revolution. This heightened greenhouse effect accelerates global warming, leading to climate change and its 

consequences such as rising temperatures, sea-level rise, and extreme weather events. Measuring and lowering 

greenhouse gas emissions is critical for combating climate change and maintaining the planet's health. Efforts to 

minimize emissions include switching to renewable energy, increasing energy efficiency, implementing sustainable 

agriculture methods, and safeguarding forests and other carbon sinks. By lowering greenhouse gas emissions, they 

may alleviate the effects of climate change and move toward a more sustainable future. 

1.3. Using a Green algorithm for GHG emission 

Using green AI algorithms to assess greenhouse gas (GHG) emissions in the context of ecological footprint 

requires the application of environmentally conscious machine learning approaches. These algorithms are intended 

to emphasize sustainability and lower AI systems' carbon footprint while assessing GHG emissions data. Green 

algorithms aim to reduce energy consumption during computation by optimizing resource allocation and 

encouraging environmentally friendly behaviours throughout the AI lifecycle. This emphasis on sustainability 

ensures that AI processes have a positive impact on the environment. These algorithms include ideas like energy-

efficient model structures, which aim to save energy during model training and inference. For example, using sparse 

models or pruning approaches can reduce the processing resources required for AI activities, resulting in lower 

energy use.  

Furthermore, green algorithms prefer renewable energy sources while training AI models. AI systems that use 

solar, wind or hydroelectric power for model training can reduce dependency on fossil fuels and the carbon emissions 

associated with energy generation. 

Also, carbon-aware optimization techniques are used to reduce the carbon footprint of AI computations. These 

approaches analyze the environmental impact of various computational activities and select low-emission strategies 

to get the required results. By incorporating green algorithms into AI systems, opportunities for emission reduction 

and energy optimization are recognized. For example, AI can improve energy-intensive tasks like data processing or 

model training to reduce carbon emissions while preserving performance. Furthermore, green algorithms encourage 

ecologically friendly practices in a variety of businesses by giving insights and recommendations for sustainable 

operations. AI-driven energy management systems, for example, can optimize energy usage in buildings or industrial 

operations, resulting in lower GHG emissions. 

1.4. Tools 

1.4.1. Code-Based tools 

Tools for measuring and computing the environmental impact of AI. 

• CodeCarbon: Track and Compute emissions and make recommendations on how to lessen their 

environmental impact. 

• CarbonTracker: Keep track of and anticipate the energy usage and carbon footprint associated with deep 

learning model training. 
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• Eco2AI: A Python package that collects statistics on power consumption and CO2 emissions while running 

code. 

• Zeus: A framework for deep learning-based energy assessment and optimization.  

• Tracarbon: Tracks the device's energy use and calculates the carbon emissions based on the location. 

• AIPowerMeter: Easily track the energy consumption of machine learning programs. 

1.4.2. Monitoring tools 

Tools for tracking electricity use and environmental implications. 

• Scaphandre: A metrology agent focused on electrical power consumption measures. 

• PowerJoular: Monitor power consumption across many platforms and processes. 

• Baogent: Local API and tracking agent concentrated on the host's environmental effects. 

• vJoule: A tool to calculate how much energy the processes use. 

• Jupyter-power-usage: Jupyter addon to show carbon emissions and CPU and GPU usage of power. 

RESULTS 

It created a simple method for estimating an algorithm's carbon footprint based on a variety of criteria such as 

the tool's hardware requirements, runtime, and data centre location. Using a pragmatic scaling factor (PSF), improve 

the model by permitting empirical estimates of repeated computations for a specific job, such as parameter tuning 

and trial-and-error. The resulting gCO2e is compared to the amount of carbon stored by trees, as well as the emissions 

from everyday activities like driving and flying. It created Green Algorithms, a publicly available web application that 

implements the approach and allows users to evaluate their computations or estimate the carbon savings or costs of 

redeploying them on various architectures. 

  

Figure 2: 2021 GHG emissions from the world's largest emitters. 

In 2021, just eight big economies accounted for approximately two-thirds of global emissions (Figure 2). China 

remained the largest single contributor to global GHG emissions, accounting for 27% of total emissions, followed by 

the United States (11%), the European Union, and India (7%). 

It uses this tool with algorithms from several scientific domains, including physics (particle simulations and DNA 

irradiation), atmospheric sciences (weather forecasting), and machine learning (NLP). For each work, for factors 

unrelated to the technique, It utilizes global average values, such as 1.67 for power usage effectiveness (PUE) and 475 

gCO2e kWh−1.[27] 

27%

11%

27.70%

7%4%

3%

2%

36%

2021 GHG emissions from the 
world's largest emitters 

China

United States

EU

India



328  
 

 

Beena Nawghare et al. / J INFORM SYSTEMS ENG, 10(1s) 

  

Figure 3: Carbon footprint (gCO2e) of a variety of algorithms, with and without their pragmatic scaling factor. 

4.1. Particle Physics Simulations 

Simulations in particle physics, such as Geant4, model particle behave in the matter and are utilized in a variety 

of applications ranging from collider detectors to medical radiation analysis. Meylan et al. investigated DNA radiation 

damage with Geant4-DNA, doing studies at various photon energies. Using Green Algorithms, they projected that 

each experiment would release 49,465 gCO2e, for a total of 544,115 gCO2e with energy level variations. This equates 

to driving 3109 kilometres or fly from New York to San Francisco.  

 

 

Figure 4: The impact of parallelization with several cores on running time and carbon footprint has been simulated 

using TestEm12 GEANT4. 

The study's carbon impact corresponds to 593 months of CO2 emissions. Schweitzer et al. discovered that 

increasing processing cores up to 15 improved both runtime and emissions, but doubling cores from 15 to 60 

increased emissions with minimal time gain, emphasizing the trade-off between runtime and GHG emissions in 

parallelized computations. Optimal core numbers minimize emissions for parallelized algorithms. 

4.2. Weather Forecasting 

Weather forecasting relies on complicated models that simulate interactions between Earth's components. 

Neumann et al. examine two models: the ECMWF's Integrated Forecast System (IFS) and DWD's Icon. IFS produces 

10-day predictions with a 9-kilometre resolution, requiring 128 Broadwell nodes and releasing 1660 gCO2e every 

forecast day (FD). ICON, with a resolution of 13 km, requires 575 nodes and emits 12,848 gCO2e for each FD. Moving 

ECMWF supercomputing to Bologna could boost emissions by 18% due to Italy's greater carbon intensity. These 

emissions are similar to driving 1708 km, or three Paris-London return trips for IFS, and 13,215 km, or four New 

York-San Francisco flights for ICON, per day. 

4.3. Natural Language Processing 

The complexity and expense of model training provide important hurdles in Natural Language Processing (NLP). 

To solve this, language representations such as BERT have emerged. BERT provides great performance and 
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versatility, enabling fine-tuning for specialized workloads such as academic analysis of text and biological text mining 

without requiring complete retraining. Despite BERT's objective to reduce training, most data scientists stay to 

enhance it, resulting in duplicate computation and increased CO2e emanations. Even with specialized hardware such 

as NVIDIA Volta GPUs, a BERT training run can last more than three days. Strubell et al. discovered that training 

BERT on 64 Tesla V100 GPUs for 79 hours produced 754,407 gCO2e. With hyperparameter search, this rises to 

75,440,740 gCO2e. Additionally, Google's Meena, a chatbot program, was trained for 30 days on a TPU-v3 Pod with 

2048 TPU cores and an estimated power supply of 288 KW. Meena's training produced 164,488,320 gCO2e, the 

equivalent of 179,442 tree-months or 71 New York-Melbourne flights. These findings highlight the environmental 

impact of training advanced NLP models and emphasize the importance of sustainable computing methods in AI 

research and development. 

DISCUSSION 

The approach and Green Algorithms tool given here offer users a realistic way to calculate the carbon footprint 

of their computations. The method focuses on creating reasonable estimates with low overheads for scientists looking 

to quantify the environmental impact of their work. As a result, the online calculator is easy to use and applicable to 

almost any computational work. It used the Green Algorithms calculator to estimate relative and ongoing carbon 

emissions from a variety of jobs, including particle physics simulations, weather forecasting, and natural language 

processing. Everyday life, modifications to computing structures, such as shifting data centres, were also quantified 

in regards to carbon footprint and demonstrated to be of significant relevance, moving data centres, for example, 

may result in a higher PUE, but variations in CI may cancel out any efficiency benefits, thereby harming the 

environment. 

The findings greatly improve existing methods for assessing computation's carbon footprint by incorporating and 

formalizing previously confusing aspects like core use and unitary power draw. This enables a more exact breakdown 

of an algorithm's carbon footprint into clearly quantifiable components such as core count and memory consumption. 

By streamlining the procedure, users no longer have to manually measure hardware power drain or rely on a 

restricted number of cloud providers. In comparison to earlier approaches, the solution provides greater flexibility. 

In addition to raising awareness about greenhouse gas emissions from data centres, the precise approach and 

technology aim to enable users to reduce their carbon footprint. Establishing common practices for estimating and 

reporting is a significant difficulty in green computing GHG emissions, which the Green Algorithms calculator and 

open-source resources address, promoting transparency and accessibility. 

The technique has some drawbacks. To begin, it simply assesses the carbon footprint of GHGs emitted during 

computer operation, disregarding the total life cycle impact of hardware manufacturing, maintenance, and disposal, 

as well as power plant maintenance. Including these components is impractical on a large scale. Second, the 

conversion of various GHGs to CO2e may misrepresent short-lived climate pollutants such as methane. Third, the 

Thermal Design Power (TDP) may underestimate power consumption, especially in hyperthreading settings. Fourth, 

strong reliance on storage queries can greatly increase power consumption, albeit this is usually minimal for single 

computations. Fifth, differences in a country's energy mix can have an impact on emissions estimates, and the Power 

Usage Effectiveness (PUE) indicator for data centres is limited due to inconsistencies in calculation techniques.  

Finally, carbon emissions estimates are based on manual literature curation, with assumptions made where data is 

lacking, leading to potential discrepancies with actual emissions. 

CONCLUSION 

The implementation of green AI algorithms represents a big step forward in mitigating the environmental impact 

of AI systems. These algorithms prioritize sustainability by incorporating energy-efficient procedures and 

encouraging environmentally beneficial behaviour throughout the AI lifetime. Green AI algorithms provide real 

solutions for decreasing the carbon footprint of AI computations by combining resource optimization, renewable 

energy use, and carbon-aware techniques. Green AI algorithms optimize resource allocation to ensure that 

computational tasks are completed with minimal energy use. This not only lowers running expenses but also 

minimizes AI systems' environmental effects by cutting greenhouse gas emissions. Furthermore, promoting 

renewable energy sources for AI model training helps to reduce dependency on fossil fuels and shift to cleaner energy 

options.  

Furthermore, carbon-aware optimization approaches play an important role in reducing the environmental 
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impact of AI computing. Green AI algorithms help organizations achieve their goals while reducing environmental 

harm by taking into account the carbon footprint of various computational operations and choosing low-emission 

strategies. The incorporation of green AI algorithms into AI systems creates prospects for emission reduction and 

energy optimization in a variety of industries. By giving insights and recommendations for sustainable operations, 

these algorithms enable businesses to embrace environmentally friendly practices and contribute to a greener world. 
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