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Efficient routing in IoT networks is critical for optimizing data transmission while addressing 

the inherent challenges of energy consumption, scalability, and resilience. Common routing 

techniques, such as flooding, tree-based, cluster-based, and geographic routing, each present 

unique advantages and limitations regarding energy efficiency, network congestion, and fault 

tolerance. In parallel, source location privacy protection (SLPP) has emerged as a pivotal concern 

in IoT applications like surveillance and environmental monitoring, where adversaries may 

exploit transmission patterns to identify sensitive source nodes. Despite advancements, current 

issues in SLP in IoT networks include balancing privacy with energy efficiency, ensuring 

scalability in dense network environments, and providing resilience against increasingly 

sophisticated adversarial models. Traditional SLP techniques, including phantom routing, 

random walks, and dummy packet generation, often impose trade-offs between privacy, energy 

consumption, and network longevity, limiting their practical application in large-scale IoT 

networks. Additionally, many existing protocols struggle with adapting to dynamic network 

topologies and fail to adequately address the challenges posed by hotspot formation, which can 

lead to uneven energy depletion and compromised privacy. Many SLP methods disrupt the 

Quality of Service (QoS) by introducing delays or reducing throughput, which can hinder the 

primary functions of IoT applications, particularly in time-sensitive scenarios. A new Hybrid 

Source Location Privacy (SLP) protocol that effectively integrates random walks, rumor routing, 

and Greedy Random Walks to obscure source node locations while optimizing energy 

consumption is implemented to overcome these limitations. The protocol employs a multi-layer 

grid framework, dynamic cluster head rotations, and phantom nodes to balance energy usage 

and reduce network hotspots. The new Hybrid SLP confuses adversaries by combining fake 

packet generation with adaptive routing strategies, enhancing privacy without compromising 

network performance. Simulations demonstrate that the Hybrid SLP protocol significantly 

outperforms existing techniques, achieving lower energy consumption, extended network 

lifetime, and robust privacy protections, making it ideal for privacy-sensitive IoT applications. 

The proposed Hybrid SLP protocol integrates a machine learning-based anomaly detection 

system to enhance its performance and security, highlighting the novelty of the proposed work. 

This novel combination of advanced routing strategies and machine learning strengthens 

network resilience against various threats. 

Keywords: Machine Learning, Hybrid Source, IoT 

 

1. INTRODUCTION 

The Internet of Things (IoT) is a transformative technology designed to collect, transmit, and utilize data through wireless 

connections, revolutionizing information access across various fields, including environmental monitoring, healthcare, and 

smart cities [1]. While IoT deployment is straightforward in areas with stable internet access, challenges arise in remote 

and resource-constrained environments like dense forests, mountainous regions, and deep-sea research zones. Wireless 

Sensor Networks (WSNs) bridge this connectivity gap by enabling scalable, flexible deployment for tracking valuable assets, 

such as real-time military operations and endangered species monitoring. However, direct communication between IoT 

nodes and the sink node quickly depletes node energy, making energy management critical in IoT applications. Existing 

routing schemes, including flooding, tree-based, cluster-based, and geographic routing, provide diverse solutions for data 
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transmission but often face trade-offs between energy consumption, fault tolerance, and network congestion, particularly 

in large-scale networks [2]. Additionally, WSNs are inherently vulnerable to security threats due to the open nature of 

wireless communication channels, exposing them to risks like eavesdropping and packet dropping. 

Traditional Source Location Privacy (SLP) techniques, such as phantom routing, dummy packet generation, and random 

walks, aim to protect the source node by obscuring data origins [3]. However, these methods frequently introduce high 

energy overhead, increased latency, and network complexity, limiting their effectiveness in resource-constrained settings. 

Recent innovations, including tree-based diversionary paths using phantom nodes [10] and multi-sink node routing with 

dynamic packet destinations [11], offer improved safety periods by misleading attackers. To further address challenges in 

network longevity and privacy, researchers have explored optimal power management [11], clustering techniques [12], and 

advanced energy-efficient protocols [13,14]. This paper introduces a novel hybrid approach to SLP, combining advanced 

privacy protection with extended network lifespan by optimizing energy efficiency and load distribution. The proposed 

Hybrid SLP method significantly outperforms traditional techniques and is ideal for privacy-critical IoT applications, 

striking an effective balance between security and energy management in modern networks. 

This paper is organized as follows: Section 2 reviews related studies and identifies gaps in existing SLP techniques. Section 

3 presents the Hybrid SLP protocol, its key components, and the models used, while Section 4 discusses simulation results, 

performance metrics, and key findings. Section 5 concludes with a summary and future research directions. 

2. LITERATURE SURVEY 

Researchers have developed various routing strategies to address Source Location Privacy (SLP) challenges in IoT-enabled 

Wireless Sensor Networks (WSNs). Baseline flooding enhances privacy by involving all nodes in data transmission, 

potentially confusing adversaries, but it suffers from high energy consumption and minimal safety margins as packets travel 

the shortest path to the base station (BS). Attackers can easily trace the source under this approach. To address this, 

probabilistic flooding selectively involves nodes in the transmission process, reducing energy consumption while 

maintaining privacy protections. To enhance source location privacy (SLP) in Wireless Sensor Networks (WSNs), 

researchers have explored various routing strategies, focusing on balancing privacy and resource efficiency. Fake packet-

based SLP techniques, extensively examined in studies such as [8, 9, 10, 11-13, 14, 15], introduce dummy packets or fake 

sources to obscure real transmissions. However, these approaches are often energy-intensive, making them less viable for 

WSNs with limited resources. Instead, random walk- and phantom routing-based techniques are more suitable for energy-

constrained environments [16, 18, 21, 27]. For a comprehensive analysis of SLP preservation strategies, the work by Conti 

et al. [23] provides valuable insights. 

Random walk-based methods improve privacy by creating unpredictable packet paths, complicating adversaries' tracking 

attempts through random relay node selection. Ozturk et al. [28] introduced the Phantom Flooding Scheme (PFS), 

combining an initial directed walk with baseline flooding to reach the base station. While PFS enhanced privacy, its uneven 

node selection weakened protection and failed to optimize network longevity. This highlights the need for improved 

methods that balance privacy, energy efficiency, and network sustainability. Phantom node-based strategies employ 

techniques such as phantom single-path routing, locational angle-based phantom routing, phantom walkabouts, two-level 

phantom with backbone routing, pseudo-normal distribution-based phantom routing, Greedy Random Walk routing, and 

probabilistic routing [20], [31]. Similarly, angle-based methods encompass protocols like angle-based intermediate node 

routing, angle-strategic routing, dynamic angle-based routing, angle-proxy routing, constrained random routing, and two-

phantom angle-based routing [12], [20].  

SLP protocols are categorized into tree-based, intermediate node-based, phantom node-based, and angle-based strategies. 

Tree-based methods include diversionary and bidirectional tree routing [10], while intermediate node-based approaches 

involve techniques like randomly selected intermediary node routing and sink toroidal region routing [10], [35]. Hybrid 

protocols often combine multiple strategies, such as integrating phantom routing with ring and fake packet routing [10], 

[16]. Proxy nodes also enhance privacy by acting as intermediaries between the source and destination [21]. Multi-sink 

node protocols [14], [27] and two-phase routing using virtual nodes, escape angles, and random walks further improve 

security [27]. To address limitations in SLPDR, Ring-Loop Routing (SLPRR) employs phantom nodes, obfuscated 

transmissions, and random routing for enhanced privacy. Comparative evaluations indicate that no single protocol 

effectively balances privacy, energy efficiency, and network longevity, emphasizing the need for hybrid SLP solutions. 

3. PROPOSED METHODOLOGY 

The new Hybrid SLP protocol introduces an innovative technique that enhances both the safety period and network 

longevity in IoT-enabled WSNs. It improves upon traditional random walk-based SLP methods by offering superior privacy 

protection and extended network lifespan, even in large-scale or challenging environments. By balancing privacy and 

energy efficiency, it is ideal for resource-constrained IoT networks. The Hybrid SLP method is designed to safeguard the 

source node’s location is as shown in Figure 1. The new Hybrid SLP routing protocol effectively combines random walks, 

(RW) rumor routing, and Greedy Random Walks to achieve strong source location privacy, efficient energy usage, and 

scalability in IoT networks. Its ability to obscure the source node’s location while optimizing real packet delivery makes it 
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a robust solution for privacy-sensitive and resource-constrained IoT applications. IoT nodes are deployed, and the network 

is divided into layers and grids for efficient organization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Proposed Hybrid Source Location Privacy Protection Algorithm for IoT Network 
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A random walk is initiated from the source node to identify a phantom node. This technique selects neighbors 

probabilistically over a predefined number of hops, creating a randomized path that obscures the true location of the 

source. The final node reached after the random walk is designated as the phantom node, which serves as an 

intermediate point for routing packets, adding an extra layer of privacy. At the phantom node, fake packets and 

rumors are generated. Fake packets simulate decoy traffic, while rumors mimic event-driven communication, such 

as alerts or network status. These are propagated using rumor routing, where packets are forwarded probabilistically 

to a subset of neighboring nodes. This generates trails of decoy traffic, complicating efforts for adversaries to pinpoint 

the actual source location. Genuine packets are sent from the origin node to the base station through a Greedy 

Random Walk strategy. 

Random walks and rumor routing create multiple decoy paths, protecting the source node's location from 

adversaries. Greedy Random Walks balance energy consumption across the network, preventing nodes from being 

overburdened and extending the network lifetime. The layered and grid-based structure adapts well to large IoT 

networks, ensuring efficient communication in dense deployments. Rumor routing minimizes unnecessary network-

wide communication by limiting packet propagation to a subset of nodes. 

Network Model:  

The network consists of 200 randomly or grid-deployed nodes using multi-hop routing to forward data to a single 

sink node. Rumor Routing and Greedy Random Walk are used to create unpredictable, energy-efficient paths while 

avoiding hotspots. Fake packets are generated and routed along random or greedy paths to obscure the true source 

node’s location and mislead attackers. Nodes with limited initial energy E0 balance load distribution, ensuring 

extended network longevity and enhanced privacy protection. 

i. Attacker Model: 

A cautious adversary with ample resources, powerful transceivers, and sufficient storage can detect packet signals 

and monitor traffic patterns. They can infer the transmitter's location by analyzing traffic converging at the central 

hub and backtracking to the source. Additionally, they can analyze captured packets for routing patterns and 

compromise nodes to extract or manipulate information. However, the adversary's mobility is limited, restricting 

their ability to monitor the entire network simultaneously. 

ii. Cluster Head (CH) Rotation: 

IoT nodes are arbitrarily positioned inside the network area with coordinates (𝑥𝑖, 𝑦𝑖) for each node i.  This approach 

utilizes a multi-layer framework, where each layer is subdivided into multiple grids. The network region is organized 

into L layers, each further divided into 𝑙grids. Each layer and grid is assigned a unique identifier to facilitate 

organization within the network. It is assumed that all grids and layers have equal areas. The neighboring nodes of a 

given node are denoted as: N(i) = {j:(i, j)∈E}, representing the set of nodes directly connected to node 𝑖. The base 

station (BS) is located at the apex of the network, while a phantom node is chosen through a random walk process. 

Each grid contains a node assigned as the cluster head (CH). The Cluster Head (CH) role assignment is a dynamic 

process that plays a crucial role in balancing the communication load among IoT nodes in a network. Within each 

grid, a node is designated as the CH to manage local communication, coordinate data aggregation, and forward 

packets to the base station (BS) or neighboring grids. The nodes take turns handling this responsibility in a cyclic 

order after each packet transmission. The rotation ensures that no single node is overburdened, distributing the 

energy consumption evenly along the network. 

 CH role is updated using the equation 1: 

Next CH =  (Current CH Index + 1) mod ∣ Ngrid ∣               (1) 

Where,     

∣𝑁grid∣ is the number of nodes within the grid.  

All nodes start with equal energy: 

Einit(i)  = Etotal/|Ngrid ∣, ∀i ∈ Ngrid                                         (2) 

The energy consumed by the CH in Intra-grid communication is given by  

 E𝑐𝑜𝑚𝑚 =  Ptx ⋅ d + P𝑟𝑥 ⋅ n                                                            (3) 
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where: 

Ptx: Transmission power, 

Prx: Reception power, 

d: Distance to neighboring nodes, 

n: Number of packets transmitted or received 

 

The CH forwards aggregated data to another CH or the BS. The energy consumed by the CH in Inter grid 

communication is given by equation 4. 

𝐸𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑃𝑡𝑥 ⋅ 𝐷𝑔𝑟𝑖𝑑−𝑡𝑜−𝐵𝑆                                                   (4) 

Where 𝐷𝑔𝑟𝑖𝑑−𝑡𝑜−𝐵𝑆  is the distance from the CH to the BS 

The total energy consumed by a CH per transmission round is given by equation 5. 

𝐸𝐶𝐻 = E𝑐𝑜𝑚𝑚 +  𝐸𝑓𝑜𝑟𝑤𝑎𝑟𝑑                                (5) 

After one round the residual energy of a node 𝑖 ∈ 𝑁grid is given by equation 6. 

𝐸𝑟𝑒𝑠(𝑖) =  {
𝐸𝑖𝑛𝑖𝑡  (𝑖) − 𝐸𝐶𝐻 , 𝑖𝑓  𝑖 𝑤𝑎𝑠 𝐶𝐻

𝐸𝑖𝑛𝑖𝑡  (𝑖),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (6) 

Residual energy across all nodes in the grid after R rounds: 

𝐸𝑟𝑒𝑠  (𝑖, 𝑅) ≈  𝐸𝑖𝑛𝑖𝑡  (𝑖) −  
𝑅

|𝑁𝑔𝑟𝑖𝑑|
∗ 𝐸𝐶𝐻            (7) 

Nodes with residual energy 𝐸res(𝑖, 𝑅) below 𝐸threshold are excluded from the CH rotation. The CH role rotation is 

adjusted dynamically to balance the load among remaining nodes: 

RCH (j) is updated for all j ∈ Ngrid ∖ {i: Eres (i, R) < Ethreshold} 

However, nodes with residual energy below a predefined threshold, 𝐸threshold are excluded from CH selection to 

preserve their energy for other network functions. This approach ensures that nodes with sufficient energy levels are 

prioritized, preventing premature node depletion 

iii. Phantom Routing: 

The primary objective is to protect the confidentiality of the transmitting node by utilizing random routing paths for 

packet delivery and incorporating decoy packet transmission from phantom nodes (PNs). The base station (BS) is 

located at the apex of the network, while a phantom node is chosen through a random walk process. Each grid 

contains a node assigned as the cluster head (CH). The process of selecting a phantom node in Phantom Routing 

involves creating a diversion from the actual source node's location to obscure its identity and protect its privacy. A 

random walk is initiated from the source node to select a phantom node. The phantom node P is selected using a 

random walk from the source node 𝑆 for 𝑇 phantom steps. At each step 𝑡, the probability of moving from the active 

node i to a neighboring node j is given by equation (8). 

𝑃𝑡(𝑖 → 𝑗) = {|

1

N(i)|
, 𝑖𝑓 𝑗 ∈ 𝑁(𝑖)

0, 𝑖𝑓 𝑗 ∉ 𝑁(𝑖)
                 (8) 

where     

N(i) is the set of neighbors of node u, 

Rumor Routing: 

Rumor Routing and Phantom Routing together enhance Source Location Privacy (SLP) by leveraging the creation of 

trails (Rumor Routing) and the randomized selection of phantom nodes (Phantom Routing). Once the phantom node 

P is selected, the protocol leverages Rumor Routing to forward packets efficiently to the BS. Rumors carry the 

contextual information necessary to propagate fake packets through the network. For example, a rumor may indicate 

a simulated event ("Anomaly detected at Node X") or create a fake route to guide fake packets along unpredictable 
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paths. In Rumor Routing, mobile agents are deployed to create trails between CHs and the BS. These agents record 

state information at each visited node, forming trails. These agents traverse the network using random walks. Mobile 

agents also record state information T (i, j) at each visited node i for edge (i, j) 

T (i, j)  =  True, ∀ (i, j)  ∈  trail              (9) 

Trails are virtual paths in the network that connect CHs to the BS or other CHs. These trails form paths from CHs to 

the BS, ensuring efficient data delivery. Trails can expire or be updated dynamically based on network conditions, 

such as node failures or energy depletion. A packet originating at a phantom node (P), follows the shortest trail 𝑅 (𝑃, 

𝐵𝑆) based on state information as follows  

       𝑅(𝑃, 𝐵𝑆) = min ∑ 𝑑(𝑖, 𝑗)(𝑖,𝑗)∈T                          (10) 

where  

d(i, j) is the distance between nodes i and j. 

When a node i receives a packet, it uses its routing table 𝑇(i, j) to forward the packet along a valid trail to the BS. The 

next hop i is selected based on the trail's state information given by expression as 

j 𝑗 = arg
𝑚𝑖𝑛

𝑖 ∈ N (i) 
 𝑇(𝑖, 𝑗) ∗ 𝑑(𝑖, 𝑗)                      (11)                                                            

iv. Greedy Random Walk: 

Greedy Random Walk enhances the hybrid protocol by optimizing forwarding decisions along the trails established 

by Rumor Routing. Unlike static routing, where paths are pre-defined, Greedy Random Walk dynamically evaluates 

neighboring nodes at each step based on their residual energy and distance to the BS. The goal of Greedy Random 

Walk is to select the next hop along the trail in a way that optimizes energy consumption and reduces latency. While 

the Greedy Random Walk dynamically optimizes forwarding decisions, it still adheres to the trails established by 

Rumor Routing. This ensures efficient use of established paths while allowing flexibility in node selection. Nodes with 

sufficient energy along the trail are prioritized, preventing the depletion of specific nodes and prolonging the 

network's lifetime. Nodes with sufficient energy along the trail are prioritized, preventing the depletion of specific 

nodes and prolonging the network's lifetime. Nodes with higher E (j) are preferred to avoid depleting energy of critical 

nodes. The Euclidean distance between a node j and the BS. Nodes closer to the BS are preferred to minimize latency 

and transmission energy. For the current node i, the neighbors N(i) are evaluated based on the scoring function. Each 

neighbor i receives a score based on its energy and proximity to the BS. The node with the highest score is selected as 

next hop i*. The packet is forwarded to i*, and the process repeats at i* until BS is reached. If two nodes have similar 

scores, tie-breaking rules (e.g., random selection) prevent overloading a single node. The score combines distance to 

the base station and, optionally, other factors like randomization or energy levels to ensure privacy and efficiency. At 

each step, the next hop i is selected based on a scoring function: 

𝑆𝑐𝑜𝑟𝑒(𝑗) =  𝛼 ∗  
𝐸(𝑗)

𝑚𝑎𝑥𝜔∈𝑁(𝑖) 𝐸(𝜔)
−  𝛽 ∗

𝑑(𝑖,𝐵𝑆)

𝑚𝑎𝑥𝜔∈𝑁(𝑖) 𝐸(𝜔,𝐵𝑆)
                    (12) 

where: 

i: Current node. 

N(i): Neighbouring nodes of i. 

α, β: Weighting factors for energy and distance. 

maxω∈N(i) E (ω) : maxω∈N(i)d (ω, BS): Normalize the values to ensure fair comparison. 

The density and distribution of nodes affect the path length. A dense network reduces the average distance between 

nodes, minimizing path length. The total path length Lpath from the source node S to the base station BS is the sum 

of the contributions from Phantom Routing and Rumor Routing, optimized by Greedy Random Walk. The total path 

length is given by 

𝐿𝑝𝑎𝑡ℎ =  𝐿𝑝ℎ𝑎𝑛𝑡𝑜𝑚 +  𝐿𝑔𝑟𝑒𝑒𝑑𝑦                     

Greedy Random Walk reduces the number of hops in 𝐿rumor by prioritizing closer nodes.  
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𝐿𝑔𝑟𝑒𝑒𝑑𝑦 ≤  𝐿𝑟𝑢𝑚𝑜𝑟  

 By dynamically balancing energy consumption and minimizing latency, it ensures efficient routing while maintaining 

robust Source Location Privacy. This combination allows the protocol to adapt to varying network conditions, making 

it ideal for scalable and privacy-critical sensor networks.  

v. Application of Machine Learning alogritm to Detect Sybil and Sinkhole Attacks: 

The most detrimental form of routing attack in IoT networks are the Sybil attack and Sinkhole Attacks. In Sinkhole 

Attack, compromised node lures nearby traffic by falsely advertising itself as the optimal path to the base station, 

causing data loss, packet dropping, and network performance degradation. In Sybil Attack, a malicious node in the 

network creates multiple fake identities to deceive legitimate nodes. Isolation Forest can effectively detect both Sybil 

and Sinkhole attacks in IoT networks. Its energy efficiency, unsupervised nature, and scalability make it well-suited 

for anomaly detection in resource-constrained, large-scale IoT deployments. The poroposed Hybrid SLP is tested 

agaist these two attacks by using Isolation Forest algorithm. During the Pre-routing Phase, the Isolation Forest 

continuously monitors network traffic and detects anomalies during the random walks and Greedy Random Walk 

processes. As part of Dynamic Adaptation, the protocol adjusts routing strategies in real time based on the detection 

results, ensuring compromised nodes are either rerouted or dropped. Simultaneously, Energy Optimization is 

achieved by isolating nodes with high anomaly scores, preventing unnecessary resource depletion and enhancing the 

network's longevity. The isolation forest anomaly score is calculated using the path length of points through the trees. 

Isolation score: 𝑠(𝑋𝑖 ) =  2
−

𝐸(ℎ(𝑋𝑖))

𝑐(𝑛)                       (13) 

Where:  

ℎ(𝑋𝑖)is the path length of data point 𝑋𝑖  

E(h(Xi) is the average path length across all trees. 

c(n) is the normalization factor for the expected path length. 

The isolation forest is trained on normal traffic data (without attacks). The model is fitted by using the following loss 

function: 

𝐿𝑜𝑠𝑠 =  ∑ max (0, 𝑠(𝑋𝑖) − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑁
𝑖=1      (14) 

If the anomaly score s(Xi)s(X_i)s(Xi) exceeds the threshold, the point is flagged as suspicious 

4. RESULT AND DISCUSSION 

The simulation of the SLP method was conducted using Python on 64 bit Microsoft Windows System, 8 GB RAM, 

Intel core CPU running at 1.8GHz. The parameters are outlined in Table 1. The simulations are performed 15 times, 

each with a distinct random deployment of nodes to ensure robustness and reliability of results. The results are 

validated through comparisons with state-of-the-art approaches, confirming the robustness of the proposed 

framework. 

Table 1. Simulation parameters 

Parameters Values 

Number of IoT nodes (N) 200 

Network region (M×M) 200 × 200 m2 

E0 (Initial energy of deployed node) 0.5 J 

Eelec for all the nodes 50 nJ/bit 

∊fs denotes the energy consumption in the free space model. 10 pJ/bit/m2 

∊mp represents the energy consumption in the multi-path model 0.0013 pJ/bit/m4 

L (packet size in bits)  1000 bits 

Sensor node transmission range 40 m 



519  

 

J INFORM SYSTEMS ENG, 10(9s) 

The simulation in Figures 2 illustrates the Hybrid Source Location Privacy (SLP) Protocol in an IoT network, showing 

the transmission of real and fake packets through a 200×200-meter 2D space. The real packet (red) travels from the 

source node (yellow) through phantom nodes (red), cluster heads (green), and reaches the destination node (purple). 

Fake packets (orange) follow randomized paths through various phantom nodes to confuse adversaries and enhance 

privacy. The simulation highlights the Hybrid SLP protocol’s effectiveness in balancing privacy, energy efficiency, 

and path diversity within the network. 

 

Figure 2: Simulation of packet transmission in an IoT network using the Hybrid Source Location Privacy (SLP) 

Protocol 

The effectiveness of the proposed technique is assessed using the following performance metrics. 

1. Energy consumption: The energy consumed during the transmission of the l-bit packet over distance d is 

represented by 𝐸𝑇𝑥(l,d). 

𝐸𝑇𝑥 = 1 ∗ (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑓𝑟𝑒𝑒𝑠𝑝𝑎𝑐𝑒 ∗ 𝑑2)𝑖𝑓 𝑑 <  𝑑0             (12) 

𝐸𝑇𝑥 = 1 ∗ (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ ∗ 𝑑4)𝑖𝑓 𝑑 ≥  𝑑0              (13) 

     The energy consumed during the reservation of the l-bit packet is given by equation 14. 

                     𝐸𝑟𝑥 = 1 ∗  𝐸𝑒𝑙𝑒𝑐                                                       (14) 

 In the above energy equation, 𝐸𝑒𝑙𝑒𝑐  represents the energy expended by the transmitter or receiver circuitry, while the 

energy required by the transmission amplifier for free space and multipath propagation is denoted by Efs and Emp. 

The threshold value d0 is √𝐸𝑓𝑟𝑒𝑒𝑠𝑝𝑎𝑐𝑒/𝐸𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ
  

2. Network Lifetime:  This refers to the period from when the network begins operating until the first node's energy 

is completely depleted. This is determined by calculating the total number of messages successfully delivered to 

the base station (BS) prior to the depletion of energy in the first node. 

3. Transmission Delay: The Source Location Privacy (SLP) protocol ensures route privacy by assigning each packet 

a unique path originating at the source node and terminating at the base station (BS). To evaluate delay 

performance, the hop count for each packet traveling between the source node and the BS is measured. Greater 

variability in hop counts across different routes enhances the overall privacy of the transmission. 

A. Energy Consumption:  

The proposed Hybrid SLP protocol improves source node privacy by using dummy packet transmissions through 

phantom nodes, which disrupt attacker backtracking attempts and are primarily generated by IoT nodes in the 

hotspot area. This method involves more dummy packets than existing schemes but is considered acceptable due to 

the enhanced privacy it provides. Energy consumption data from Table 2 shows that the Baseline Protocol has the 

highest energy use across all distances, near 400 units, due to its lack of advanced privacy mechanisms. The Phantom 

and Probabilistic protocols consume slightly less energy, while the SLPDR, SLPRR, and SLP-RRFPR protocols show 
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significantly lower and more consistent energy consumption, below 50 units. The Proposed SLP protocol is the most 

energy-efficient, with consistently lower energy consumption compared to all other protocols, indicating superior 

privacy and optimized resource utilization. 

Table 2. Comparison of Energy consumption versus distance from the SN to BS for various SLPs 

Distance 

between 

SN and 

BS 

(Meters) 

Baseline 

[28]  

Phantom 

[29] 

Probabilistic 

[30] 

SLPDR 

[2] 

SLPRR 

[2] 

SLP-

RRFPR 

[3] 

Proposed 

Hybrid 

SLP 

20 390 380 380 10 10 20 4 

40 390 380 380 12 10 20 8 

60 390 380 350 12 10 20 8 

80 390 380 380 12 12 22 8 

100 390 380 380 14 15 25 12 

120 390 380 380 25 20 25 18 

140 390 380 380 32 27 25 18 

160 390 380 380 40 34 25 18 

Figure 3: Energy Consumption (μJ) Vs SN to BS Distance 

Table 3 compare the energy consumption of various SLP protocols based on communication radius, showing that the 

Baseline protocol consumes the most energy, around 400 units across all radii. Phantom and Probabilistic protocols 

use slightly less energy than the Baseline, with Probabilistic routing showing a minor dip at smaller radii. The SLPDR, 

SLPRR, and SLP-RRFPR protocols exhibit significantly lower energy consumption, consistently staying below 50 

units, reflecting more energy-efficient designs. The Proposed Hybrid SLP protocol outperforms all others, 

maintaining the lowest energy consumption across all communication radii by effectively combining Rumor Routing, 

random walk, and Greedy Random Walk strategies. 

Table 3 Comparison of Energy consumption versus communication radius for various SLPs 

Communication 

radius (Meters) 

Baseline 

[28]  

Phantom 

[29] 

Probabilistic 

[30] 

SLPDR 

[2] 

SLPRR 

[2] 

SLP-

RRFPR 

[3] 

Proposed 

Hybrid 

SLP 

20 400 380 390 10 10 25 12 

25 400 350 390 12 10 20 14 

30 400 390 390 15 12 19 16 

35 400 390 390 25 19 19 16 

40 400 390 390 40 25 19 16 

 

B. Network lifetime:  

Table 4 compare the network lifetime of various SLP protocols across different communication radii. The Baseline 

protocol shows a steady lifetime of about 1000 rounds, while Phantom and SLPDR experience declines at larger radii 

due to inefficient energy management. SLPRR and SLP-RRFPR maintain stable lifetimes with gradual improvements 

as the communication radius expands. The Proposed SLP significantly outperforms all other protocols, achieving up 

to 2500 rounds at a 40-meter radius by effectively balancing energy consumption using Rumor Routing, random 

walk, and Greedy Random Walk techniques. 

Table 4 Comparison of Network lifetime versus communication radius for various SLPs 
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Communication 

radius (Meters) 

Baseline 

[28]  

Phantom 

[29] 

Probabilistic 

[30] 

SLPDR 

[2] 

SLPRR 

[2] 

SLP-

RRFPR 

[3] 

Proposed 

Hybrid 

SLP 

20 1150 1100 1400 200 100 1700 1250 

25 1150 1120 1420 600 50 1500 1550 

30 1150 1120 1420 450 200 1450 1666 

35 1150 1120 1420 450 400 1400 2000 

40 1150 1120 1410 450 480 1400 2500 

 Table 5 compare the network lifetime of various SLP protocols as a function of the distance between the Source Node 

(SN) and Base Station (BS). The Baseline protocol shows a steady 1000-round lifetime, while Phantom, Probabilistic, 

and SLP-RRFPR stabilize around 1500 rounds, with Phantom slightly outperforming the others. SLPDR and SLPRR 

have significantly lower lifetimes, remaining below 500 rounds, particularly at shorter distances. The Proposed SLP 

achieves the longest lifetime, peaking at 3500 rounds at shorter distances and gradually decreasing to 2000 rounds, 

consistently outperforming all other protocols due to superior energy management. 

Table 5 Comparison of Network lifetime versus distance from the SN to BS for various SLPs 

Distance 

between SN 

and BS 

(Meters) 

Baseline 

[28]  

Phantom 

[29] 

Probabilistic 

[30] 

SLPDR 

[2] 

SLPRR 

[2] 

SLP-

RRFPR [3] 

Proposed 

Hybrid 

SLP 

20 1150 1100 1400 200 100 1600 3550 

40 1150 1120 1420 600 50 1580 3333 

60 1150 1120 1420 450 200 1400 2650 

80 1150 1120 1420 450 400 1500 2335 

100 1150 1120 1410 450 480 1600 2200 

120 1150 1120 1420 420 425 1480 2200 

140 1150 1120 1420 400 425 1600 2200 

160 1150 1120 1420 450 450 1200 2200 

The validation of the proposed Hybrid SLP against existing protocols demonstrates superior performance in terms 

of energy efficiency and network lifetime 

C. Transmission delay and safety period: 

In Figure 3 comparison of the average packet delay (in number of hops) for multiple Source Location Privacy (SLP) 

protocols across varying distances between the Source Node (SN) and the Base Station (BS) is given. The analysis 

encompasses Baseline [28], Phantom [29], Probabilistic [28],, SLPDR, SLPRR [2], SLP-RRFPR [3],, and the 

Proposed Hybrid SLP Protocol. The Proposed Hybrid SLP protocol achieves the lowest delay at shorter (20-40m) 

and larger (120-140m) distances, demonstrating superior adaptability and routing efficiency. It dynamically adjusts 

to network conditions, minimizing hops and avoiding routing loops even at greater distances. The protocol effectively 

balances source location privacy and routing efficiency, ensuring minimal delays without compromising security. Its 

scalability and advanced pathfinding enable efficient long-path management, outperforming traditional protocols. 
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Figure 3:  Average packet delay versus distance from the SN to BS 

The graph in Figure 4 shows the average delay (in hops) for various protocols across different communication radii. 

The Baseline protocol consistently has the highest delays, while the Phantom and Probabilistic protocols show 

moderate improvements but still experience higher delays at larger radii. SLPDR, SLPRR, and SLP-RRFPR 

demonstrate better efficiency, with SLPRR and SLP-RRFPR maintaining relatively low delays. The Proposed SLP 

protocol outperforms all others, achieving the lowest delays, particularly excelling in the 20 to 40-meter radius 

range, highlighting its advanced optimization and efficient routing strategies.

 

Figure 4 Average packet delay versus varied communication radius 

Table 6 highlights the average delay introduced by various Source Location Privacy (SLP) techniques, indicating the 

network's safety time and privacy protection. The Proposed SLP achieves the highest delays, such as 130 hops at 20 

meters and 85 hops at 40 meters, offering superior privacy and extended safety time. SLP-RRFPR provides moderate 

delays, balancing reasonable privacy with faster transmission, while SLPDR, SLPRR, and Probabilistic protocols 

prioritize speed with delays ranging between 6 and 22 hops. Baseline and Phantom methods have minimal delays, 

prioritizing fast delivery but offering limited resistance against adversarial tracing. 

Table 6 Comparison of Average hops by adversary vs Communication Radius for various SLPs 

Communication 

Radius in meter 

Baseline 

[28]  

Phantom 

[29] 

Probabilistic 

[30] 

SLPDR 

[2] 

SLPRR 

[2] 

SLP-

RRFPR 

[3] 

Proposed 

Hybrid SLP 

20 32 2 22 6 14 60 130 

25 31 3 19 5 12 55 105 

30 30 4 17 5 10 48 82 

35 28 2 16 4 9 46 84 

40 26 1 15 4 8 45 85 
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D. Integration of Machine learning with Hybrid SLP: 

The use of Isolation Forest within the Hybrid SLP protocol demonstrates robust and scalable detection of Sybil and 

Sinkhole attacks.  This study used IoT-23 datasets, with 25 critical features. After preprocessing and cleaning 48005 

samples are used. In the IoT network data is transmitted using hybrid encryption combinig AES and ECC algorithms. 

Figure 5 and 6 shows attack detection and rerouting using isolation Forest algorithm. When an attacker is detected 

at node 2, the transmission halts, and the adversary manager evaluates the attack type. Once the attack is indefied 

the system initiates a rerouting process, directing the packet transmission from the source to the destination through 

an alternative path.  

 

Figure 5. Attack detected at node 2                        Figure 6. System initiates a rerouting process 

CONCLUSION: 

The Proposed Source Location Privacy (SLP) protocol achieves exceptional energy efficiency by utilizing Rumor 

Routing, which reduces network-wide flooding by involving only a subset of nodes in the routing process. This 

selective approach creates trails and employs agents to significantly lower communication overhead compared to 

protocols that depend on extensive network-wide communication. The inclusion of Greedy Random Walk in the 

Proposed SLP further enhances efficiency by randomizing path selection, preventing certain nodes from becoming 

overburdened. This helps distribute energy consumption evenly across the network and avoids rapid energy depletion 

of specific nodes. By integrating Rumor Routing, Random Walk, and Greedy Random Walk, the Proposed SLP 

achieves minimal energy consumption while ensuring robust source location privacy and a balanced network 

performance. Across all communication radii, the energy consumption in the Proposed Hybrid SLP method shows 

consistent improvements of approximately 96% to 97% compared to the Baseline, phantom and probabilistic 

approach and approximately 20% improvement compared to SLPDR, SLPRR and SLP-RRFPR for larger 

communication radii. 

Although protocols like SLPRR and SLP-RRFPR exhibit reasonable efficiency, they do not match the superior 

performance of the Proposed SLP. Latency in the hybrid protocol stems from the combined effects of Phantom 

Routing, Rumor Routing, and Greedy Random Walk. While Phantom Routing's added randomness introduces some 

delay, the efficiency of Rumor Routing and the optimization from Greedy Random Walk offset this impact. The 

Proposed SLP achieves a balanced trade-off, delivering strong privacy with manageable delays, making it ideal for 

scalable, privacy-sensitive applications. The validation of these findings suggests that the approach can be effectively 

applied in real-world IoT deployment.   

The integration of Hybrid SLP with machine learning significantly enhances the protocol’s ability to detect and 

mitigate security threats in dynamic IoT networks. By leveraging machine learning algorithms like Isolation Forest, 

the system effectively identifies anomalies, such as Sybil and Sinkhole attacks, with high accuracy and minimal energy 

consumption. This combination ensures adaptive, real-time responses to threats while maintaining network 

efficiency and extended lifespan 
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