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Protein sequence classification has retained its status as one of the biggest challenges in the 

pharmaceutical industry due to the involved complexities of the subject matter. Technological 

developments have justified that there needs to be (some) knowledge of identifying and 

classifying the protein families. On the other hand, and rather cursorily, current methodologies 

consider a meagre set of protein sequence descriptors. The authors set forth here the 

amalgamation of BLSTM and BTCN wherein the deeper features within the protein sequence 

shall be explored. The thesis seeks to divide protein sequences by the sliding duration of the 

sliding window applied. Local dependencies within these segments may be explored with the 

proposed convolutional network, capturing interactions between global residues involving 

BLSTM network. Hence, a BLSTM has been taken as needed in the whole creation, because there 

is a dependency between amino acid classification and past and future secondary features, and 

method is that it achieves bidirectional properties avoiding any knowledge of the past and future 

information for gaining a necessary amount of additional insight. The proposed ensemble model 

has been concluded as more suitable for protein structure prediction research 

Keywords: Protein sequence; Amino acid; Bidirectional long short-term memory (BLSTM); 

bidirectional temporal Convolutional network (BTCN) 

 

 

I.INTRODUCTION 

All biological tissues and cells are composed of the basic structural molecule known as protein. And it's the primary 

means via which all of life's pursuits are conveyed. In the fields of biology, medicine, and pharmacy, an understanding 

of protein function is fundamental. For example, learning how a protein works can direct genetic engineering efforts 

and provide a firm basis for developing novel proteins or modifying existing ones. Therefore, accurately labeling 

protein activity is a critical and significant task. Traditional experimental approaches for assessing protein function 

are accurate and reliable, but they are resource-intensive and time-consuming. Despite the exponential growth in 

protein sequences brought about by genomics and high-throughput sequencing, only a fraction of the total number 

of known and predicted protein sequences have had their functions fully defined. Experimental annotations cover 

less than 0.1% of the more than 179 million proteins in UniProtKB. [1-3] 

The primary determinant of a protein's function is its structure, not the order of its amino acids. Therefore, learning 

more about the structure of a protein can help us understand how it functions. Because experimental procedures are 

costly and difficult, it is frequently only feasible to obtain structural information about a protein using computational 

methods. Protein structure prediction advances have allowed for the quick generation of many models for a single 

protein. Therefore, one of the most crucial jobs in evaluating the accuracy of any computer method to protein 

structure prediction is to compare the predicted protein models to the naturally determined structure as determined 

by experiment. Two primary challenges currently facing methods for assessing model quality are (1) the time and 

effort involved in choosing the most accurate models from a vast protein structure database in an effective manner, 

and (2) the difficulty of doing so. (2) When comparing two protein structures, there isn't a similarity measure that 
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currently accounts for side chain orientation in addition to main chain carbon alpha (Cα) and side chain (SC) atom 

orientation.[4]  

Given their close relationship, understanding protein architectures can teach us a lot about proteins and their 

roles. The same primary obstacle faces bioinformatics, drug research, and enzyme discovery: precisely predicting 

protein structures. The practice of trying to infer a protein's three-dimensional structure from its amino acid 

sequence is known as "protein structure prediction." There is a significant discrepancy between the sequences that 

are currently available and the structures that have been found experimentally because of the enormous amounts of 

protein sequence data that next-generation sequencing technologies are producing. The current experimental 

methods for predicting protein structures are costly and labor-intensive. Since computational approaches to protein 

structure prediction are more economical and efficient than experimental procedures, there is a growing focus on 

their development [5]. The majority of machine learning techniques for assessing quality do not make use of pair 

wise features, which are composed of several parameters and the majority of the data that is not input. Their sole 

concentration is on combining the output from other simple estimators.  

One of the main bottlenecks in the way of better protein structure analysis methods certainly comes from the 

nature of its protein names. That happens due to a great extent because designing fusion proteins and optimizing 

crystallization intermittently makes the quantity of information one seeks to reduce and quality a concern. There is 

no argument with the masses that helped us describe the better structures in general. In a time of two or three times 

greater speed, many of the techniques in structural mass spectrometry can offer limited measures. Protein structure 

research benefits greatly from this experimental approach. On the other hand, structural mass spectrometry is unable 

to definitively determine the structure of a protein. Using a labeling chemical called covalent labeling, proteins can 

be permanently and irreversibly altered in the structural mass spectrometry method. This allows for the inference of 

protein regions exposed to the solvent. Computational techniques combined with structural mass spectrometry can 

provide a better understanding of the three-dimensional structure of proteins. [6-9]  

Therefore, it is significant to develop computational methods to assist in the process of experimentally 

handling such enormous amounts of protein sequence data, since scaling up the strategy isn't easy. A small number 

of organizations and individuals have been working on algorithms, methods, and systems for predicting protein 

functions using advance computer technologies.  Taking everything into account, these highly competitive models 

and algorithms are continuously being optimized and have proven to be incredibly effective in predicting protein 

function. When dealing with proteins from other species, it is crucial to comprehend and research the amino acid 

sequence. This proves that understanding the protein sequence is critical for predicting protein function.[10]  

An ensemble model combining BTCN and BLSTM has been proposed in this study to enhance the efficiency of protein 

sequence classification. The BTCN module in the proposed architecture utilizes a sliding window method to capture 

the deep local dependencies in protein sequences, whereas the BLSTM module enables capturing the global 

interactions between amino acid residues. The BLSTM module also captures bidirectional deep long-range 

interactions between residues, which contribute to enhancing feature fusion and optimization. The BLSTM module 

also captures bidirectional deep long-range interactions between residues, which enhance feature fusion and 

optimization. With our method, complicated sequence-structure relationships can be effectively simulated by using 

longer-term bidirectional feature information. Our findings show that our methods perform better and could 

potentially mitigate the shortcomings of insufficient and partial feature extraction. In this research, we aim to build 

a DBN- and BLSTM-based protein sequence classification framework, using natural language processing (NLP) to 

derive contextual cues from the given dataset. From this point forward, this paper is organized into several parts: 

Section II presents a subsection on findings which are pertinent to a specific period of time covered by the latest 

pertinent review presented in several academic contributions in this area. Section III deals with the proposed protein 

classification system using a BTCN-FBLSTM combination over the given dataset. Section V presents the experimental 

setup conducted on analyzing the efficacy of the proposed classification method. Section V presents the conclusion 

of research work. 

II.RECENT WORK IN THE FIELD OF PROTEIN SEQUENCE CLASSIFICATION 

A crucial phase in the pharmaceutical industry is drug development. The cost and duration of creating new 

medications have been significantly lowered by computational methods. In order to address obstacles of all kinds, we 

will need to employ a range of drug screening and design techniques. This section focuses mostly on machine learning 
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and deep learning techniques that transcend the limitations of earlier research. Wei-Li et al. [11] combined loop-

based resampling, near-native sampling, loop-based crossover, and stochastic rank-based selection with Rama 

torsion angle sampling to construct multi-objective evolutionary approaches. The energy function's error may be 

remedied by applying the secondary structural similarity criterion. Zhou et al. [12] used reinforcement learning based 

CNN framework which made protein secondary structure prediction possible. On top of CNN's abstraction 

capabilities and LSTM's sequence data analysis abilities, CDNN has a strong classification capability. Cross-entropy 

error has been used as a feature for the effective training of the model. The effectiveness of the approach is showcased 

through empirical validation on two separate datasets. Nevertheless, in spite of the anomalies, the projection remains 

credible. As a result, forecasts for the future are less reliable.  

Deep ResNet was developed by you and others [13] in order to predict template-free protein folding and protein 

contact/distance. Recent advances in deep ResNet have been made in two areas: tertiary structure prediction and 

protein-protein interaction. In terms of utilizing inter-residue orientation data, the suggested 3D modeling method 

remains more basic and less sophisticated. The proposed deep ResNet can accurately fold the great majority of 

proteins made by humans.  

According to Xu et al. [14], template-based structural modeling may be augmented with deep learning  to derive a 

deep structural inference to forecast protein residue/residue interactions. They have used a tertiary structure 

prediction using huge set of single-domain proteins. A unique recurrent geometric network (RGN) was created by 

Du et al. [15] that can be used to predict protein structure from sequences. This method was not only efficient 

computationally but also offers several advantages when multiple sequence alignment isn't possible. RGN does this 

by describing the geometry of the C backbone using a straightforward method. This approach is limited to taking into 

account just local interactions (curvature and torsion angles) between C atoms in order to progressively reconstruct 

the structure of the backbone.  

Guo et al. [16] improved protein sequence estimation by creating a multi-advanced deep belief network-based 

technique. Together, they were able to increase forecast accuracy by more than 80%. The outcomes also showed how 

well secondary structure could be predicted using hidden Markov model profiles that were created using 

emission/transition probabilities. The network will have uneven features, though. By computing the network 

parameters for the particular approach, the optimal values for the other parameters, such as the LR, network width, 

and depth, were found. To make it easier to compare the DNN model with the recommended Work, the author 

independently trained it using AC, CT, and LD. 

Li et al. [17] has presented an auto-feature engineering based technique sequence prediction using DNs. As NN 

architecture can learn only through numerical input, the authors have altered the protein sequence by randomly 

allocating natural numbers to every amino acid. Gonzalez-Lopez et al. [18] presented a tokenization based method 

which involved assigning an integer token to each sequence triplet to represent it numerically. Two branches that 

resembled each other were fed and analyzed the pair representation of each protein in the NN. The FC layer of the 

design, along with the embedding and recurrent layers, each had a distinct function. We also employed Dropout and 

Branch normalization to guarantee consistent input and prevent over-fitting.  

A recent problem for the bioinformatics community has been defining a protein's class only from its discovery, which 

presents numerous challenges. This enzyme class prediction provides researchers with a high probability when more 

proteins are added [19]. The primary goal of this work was to identify and execute the most effective machine learning 

technique for feature selection and prediction. Seven different procedures were tested and compared in order to 

determine the best categorization strategy. Vani and Bhavani [20] employed the SMOTE (Synthetic Minority Over-

Sampling Technique) method to increase accuracy and balancing the data. In addition, SMOTE has proven to be 

quite effective in tackling protein categorization difficulties. It does have some downsides, such as a tendency to 

overfit and overgeneralize. To address this issue, the authors created and implemented a sampling approach.  

Wang et. al. [21] looked into a variety of feature selection procedures to improve protein classification accuracy. These 

new sampling strategies improved accuracy while lowering the problem of unbalanced data, even if they were unable 

to balance the dataset. They asserted that feature selection is an important phase in the protein classification process 

since it helps extract the most relevant attributes from a dataset while also reducing the dataset's dimensionality. 

Selecting crucial characteristics simplifies protein classification. Unlike the prior approach, this work treated each 

protein as a point in feature vector space and used voxel-based descriptors to extract features. These solutions hold 

a lot of potential for solving problems in this critical field by combining novel methodologies and detailed designs. 
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However, the accuracy of the classification depends solely on the depth of feature extraction, quality of dataset, 

feature dependencies and the respective training of the intelligent model.  

III.PROPOSED FRAMEWORK FOR PROTEIN SEQUENCE CLASSIFICATION 

For effective classification of various proteins into different types, this study describes methods such as data pre-

processing, feature extraction, model training and validation, and classification. Generally, the entire work is divided 

into four steps as shown in figure 1 and elaborated as follows: 

a) Dataset definition 

In this particular work, the Protein Data Bank (PDB) has been used for the structural configuration data. It was 

developed at the RCSB's Research Collaboratory [22]. The first part of the collection is comprised of protein Meta 

data, which includes topics such as protein classification and extraction methods. The other half of the collection is 

made up of protein structural sequences. Both databases are organized according to the "structureID" property of the 

proteins that they hold as their guiding principle. In contrast to the dimensions of second data set which is 4,67,000-

by-5, the first data set has the dimension of 1,41,000-by-14. Protein sequence datasets abound on Kaggle, with 

structural details included in a few of them. To fully grasp the relationships, functions, and roles that proteins play 

in biological processes, one must have a firm grasp of their three-dimensional structure. Such details are supplied by 

structural protein sequences. Protein structures found in experiments are part of the Protein Data Bank's collection 

of structural data that is accessible on Kaggle. Protein structures with exact 3D coordinates and associated sequence 

data are available in this set. Information included: protein sequences, annotations for secondary structures, three-

dimensional coordinates (e.g., in PDB format), and related metadata (e.g., resolution and experimental methods). 

Fig.1 Proposed model for protein sequence classification 

b) Data Preprocessing and Feature Extraction 

Protein sequence analysis requires data pretreatment because it prepares the raw biological data for computational 

modeling and analysis. Unfortunately, direct analysis is difficult since raw sequence data is frequently noisy, 

fragmentary, and high-dimensional. By altering and purifying the data, data preparation allays these worries and 

guarantees that the information is prepared for additional processing, including statistical analysis and machine 

learning. Long segments of amino acids called protein sequences hold a variety of intricate biological information. 

Unprocessed protein sequence data, which is frequently obtained from PDB databases, may include mistakes, 
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missing values, or unrelated information. Furthermore, the length, makeup, and structure of protein sequences might 

differ significantly, which makes direct comparison and analysis challenging. Data preparation is necessary for 

raising consistency, lowering noise, and improving quality of the data.  

Researchers can employ preprocessing techniques to ensure that their models are trained on coherent, consistent, 

and pertinent data. Predictions will become more trustworthy and accurate as a result [23]. Working with big datasets 

and complex models is made feasible through preprocessing, which lowers the computing cost of the study. Protein 

sequence estimation involves a number of data preparation procedures, each of which aims to address a distinct 

problem with the raw data. Data transformation, cleansing, standardization, and dimensionality reduction are a few 

of these processes. The first stage of data preparation, referred to as "data cleaning," involves finding and fixing 

errors, conflicts, and missing numbers. Protein sequences may contain incorrect or unclear amino acids, denoted by 

"X" and other symbols. Two approaches to resolve these problems include removing undesirable sequences from the 

dataset or altering the sequence in light of biological knowledge. Furthermore, duplicate sequences may be included 

in huge protein databases, which, if not adequately managed, could produce biased outcomes. Each protein sequence 

has exactly one representation in the dataset now that duplication has been either eliminated or combined.  

Sequence alignment is a crucial preprocessing step in protein sequence comparison. Sequences are aligned to 

maximize similarity and identify conserved regions using alignment techniques including pair wise alignment and 

multiple sequence alignment (MSA) [24]. Creating features for machine learning models requires first identifying 

valuable patterns and domains within the sequences. Sequence alignment is helpful for finding gaps and insertions 

during preprocessing on sequences so that they can be treated properly. Data is resized to fit inside a predefined 

range when it is normalized. One such way to guarantee consistency of features throughout the collection and 

eliminate bias is to standardize physicochemical characteristics (like hydrophobicity or charge) amongst sequences. 

Protein sequences are commonly represented as strings of amino acid symbols, which require transformation into a 

numerical representation in order to facilitate computational analysis. Protein sequences can be encoded using a 

variety of techniques, such as one-hot encoding, which assigns numerical values based on the characteristics of the 

amino acids, and physicochemical property encoding, which encodes each amino acid as a binary vector.  

Protein sequence analysis relies heavily on feature extraction to clean up raw data and prepare it for tasks like 

function prediction, protein categorization, and interaction analysis. Computational techniques are necessary to 

comprehend the complex biological information that proteins, which are made up of amino acid sequences, carry. 

Feature extraction is performed to identify the most important traits from these sequences so that protein attributes 

may be efficiently and accurately estimated. Protein sequence estimate relies on feature extraction, which is discussed 

in this essay along with the various techniques used and the difficulties faced. Since protein structures are essential 

to biological processes, it is vital to comprehend their function and behavior to make progress in areas such as 

medicine development, bioengineering, and illness therapy. 

Here, the categorical values are obtained for all 10 labels which are then transformed into a single hot representation 

using LabelBinarizer. Values are assigned a 1 in a single hot representation if they exist, and a 0 otherwise. Sequences 

are further pre-processed by using the Keras library's Tokenizer method, which converts each character in the 

sequence to a number. The length of every sequence is also uniformized for precise processing. In this case, there is 

a 256 character limit. 

c) Model Training and Testing 

This stage presents the training and testing of the proposed framework for the Protein sequence classification. Here 

we have used an ensemble technique of BTCN and BLSTM to exploit the local features and global features. BTCN is 

the modified version of TCN which has been proposed to overcome the issues encountered in the application of 

gradient descent over the sequence processing. It has also presented the advantages of lower memory requirement 

and faster computational due to parallel processing over the conventional techniques. It is a feedforward multilayered 

hierarchical network in which a pool of convolutional kernels is used by each layer to perform a distinct 

transformation. The convolution technique aids in the extraction of a significant feature from locally related data 

points. After receiving the convolutional kernels' output, the activation function uses it to aid with abstraction 

learning and incorporate non-linearity into the feature space. This non-linearity facilitates the learning of semantic 

differences between segmented sequences by producing distinct activation patterns for distinct responses. 

Subsampling is often used to shield the input from geometric distortions and summarize the results after the non-
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linear activation function output. The most distinctive features of TCN are weight sharing, parallel processing, 

automatic feature extraction, and hierarchical learning. The models use input from a condensed portion of the layer 

above each hidden node. By leveraging on these local connections, convolutional layers are better than fully-linked 

ones in handling spatial reliance in data and extracting valuable high-level properties. TCN has the same structure as 

a 1 dimensional fully connected CNN network. The length of the hidden layers is kept equal to that of input layer. 

Furthermore, zero padding ensures the exact one-to-one mapping of input sequences to the output sequences. 

Dilated convolutions have been used here to extract the long term past information and to increase the receptive 

field, which could not be done effectively in casual convolutions. However, this network can only pass the information 

from past to future, which cannot be suitable for the amino acid sequence estimation problem where the 

comprehensive feature extraction is depending upon both past and future positions. To overcome this issue, we have 

used a bidirectional framework of TCN known as BTCN which consists of two TCNs: forward and backward. The 

forward TCN is similar to the conventional TCN, but the backward TCN is created by reversing the sequence at the 

input layer. 

 

Fig 2. The architecture of BTCN. 
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to denote the weighting matrix and the bias term, respectively. Here, we are using the 11-dimensional PCscores 

descriptor as one amino acid feature on the input protein sequences of 300 amino acids. The eleven columns of an 11 

x 300 matrix represent one input feature of that single protein. The max-pooling layer then down-samples along the 

sequence dimension of those feature maps to reduce dimensionality after the convolutional layers apply them on 
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grouped input from nearby locations. In each of the convolutional layers, a set of filters works like a sliding window 

taking a distinct feature set from the data channels of the neighboring layer. This proposed research work ensembles 

the BTCN network with a recursive type of framework called BLSTM, composed of forward and backward LSTM. The 

architectural framework of the BLSTM unit is shown in fig 3. The global features of the amino acid sequence can be 

efficiently extracted using this bidirectional variant of LSTM. The bidirectionality of this model also affords it 

increased ability to capture deeper long-range dependencies among the amino acid sequences, thereby further 

enhancing its ability to model the complex relationship between the protein sequence and its structure. It could assign 

importance to what information to retain and what to discard automatically. A typical LSTM cell represents the input 

feature at some time t by xt, the output by ht, and the cell state by ct. The LSTM unit calculates input gate (i), forget 

gate (f), and output gate (o) as follows: [25] 

 

where the weight and bias terms are represented by W and b respectively. is the sigmoid function,  element-wise 

multiplication is represented by  . Two dropout layers are added in this model to ensure the gradient stabilization 

at the time of training.  

The outputs of both the networks, BTCN and BLSTM are concatenated in the end and are used for the classification 

of protein sequence. The extracted features are processed and oputimized over the residual block and the 

combination of a fully connected layer and softmax function is used to perform the classification. 

d) Classification 

Basically, to categorize the protein sequences, one has to combine the outputs of the two different networks 

BTCN and BLSTM. Here, the classification is performed with the help of a fully connected layer with softmax. Most 

proprietary efforts in protein engineering are directed toward finding protein sequences that mediate the highest 

substrate exchange. There are twenty standard types of amino acids in the protein sequences database (A, C, D, E, F, 

G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y) and six non-standard amino acid types (B, X, and Z). These non-

standard types can all be clumped together due to their very low occurrence. We assumed amino acid types in protein 

sequences to be of 21 kinds and formulated the problem as a multi-class classification problem. 

IV.IMPLEMENTATION AND RESULTS  

Intelligent prediction and classification models make use of the Protein Data Bank (PDB) dataset to assess the 

accuracy in prediction of proposed methods for protein attributes. The collection includes 14,991 proteins selected 

by us from the PDB. Proteins that were duplicated in the training set and test set were thus discarded. In addition, 

proteins longer than 800 or shorter than 40 were discarded. The final dataset has a total of 14,562 protein chains. 

Random splitting of the dataset was done into three sections for better evaluation- the test set (1,456), the validation 

set (1,456), and the training set (11,650). All results for all experiments are derived from averaging over three 

separate, independent experiments. The feature matrix under consideration with sequence length L for 21 classes 

could be derived from semantic one-hot encoding, as stated above. Because of the independent characteristics of the 

amino acid structures, one-hot encoding could also be called orthogonal coding. Hyperparameters used for the 

training of the proposed ensemble model are presented in Table 1. 

Table 1. Hyperparameters  

Parameters Description/Values  Parameters Description/Values 

Learning rates 0.001, 0.005, 0.01  Number of filters  512 
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Optimization 

technique  

Gradient Descent  Objective mse 

Number of Fully 

connected layers in 

BTCN 

20  Initialization 

 

HeNormal 

Number of hidden 

layers in LSTM 

2500  Number of residual blocks 6 

Sliding window size  13, 15, 17  Size of filter 5 

 

The technique is put to questionnaire during its evaluation assessing accuracy as well as a comparison with some 

conventional techniques. The corresponding results of comparison are listed in table 3. 

Table 2. Comparison of techniques 

Technique Accuracy 

CNN 82.35 

BTCN 85.71 

BTCN+BLSTM 88.59 

 

It is clearly shown that the performance of the proposed ensemble technique is better than the conventional 

techniques i.e. CNN based and BTCN based classification. The training performance is shown in figure 4 and 5 which 

display the variation of cost function with respect to number of epochs and variation of training and validation 

accuracies with respect to number of iterations. 

 

 

Figure 4 Modeling Accuracy wrt number of iterations 
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b 

Figure 5 Errors wrt number of epochs 

The convergence of the error graph relates the training performance of its model. Cumulative evaluations of the 

figures give a clearer idea of the overall system performance. The existence of a large flexible receptive field allows 

the proposed model to be practically used for long sequences of higher dimensions. It helps explore the complex 

relationships between the sequence and the structure of the protein by capturing longer-term dependencies among 

the residues. 

V.CONCLUSION 

We are introducing a novel AI-based method in this article for protein sequence classification. To delve deeper into 

protein-chain intricacy, this study will assemble both BTCN and BLSTM networks. In order to dissect protein 

sequences, the sliding window technique was used. The convolutional network possibly can focus on local 

dependencies within these segments, while the BLSTM network could possibly extract global relationships amid 

residues. The BLSTM was selected for the task, considering that amino acid classification is dependent upon the 

previous and following secondary features. We applied the bidirectional network to maintain the feature information 

of intervening residual blocks in addition to pulling bidirectional features, which is in contrast to traditional temporal 

convolutional networks pulling unidirectional features. The evaluation shows that the ensemble model gives a slightly 

lower Accuracy on predicting Protein Structures, even though MOECNN received the highest Accuracy. 
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