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modalities: mammography, MRI, and dynamic thermal imaging. The CNN model was
applied to mammogram datasets (CBIS-DDSM, INbreast, MIAS), the RCNN was
trained on annotated MRI scans, and the CNN-LSTM model utilized sequential
thermal images (DMR-IR dataset). Evaluation metrics such as accuracy, precision,
recall, F1-score, and AUC were used to assess model efficacy. Our findings reveal that
dynamic thermal imaging with temporal modeling outperforms traditional
mammography-based CNNs and even MRI-based RCNNs in classification
performance. The study concludes with a discussion on the potential of radiation-free,
non-invasive thermal imaging for widespread deployment in resource-constrained
settings.
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1.Introduction

Breast cancer is one of the most common malignancies affecting women globally, representing a
significant public health challenge in both developed and developing nations. According to the World
Health Organization (WHO), breast cancer accounts for approximately 2.3 million new cases and
more than 680,000 deaths annually, making it the leading cause of cancer-related deaths among
women. The incidence of breast cancer is steadily rising, partly due to aging populations, lifestyle
changes, and increased awareness leading to more frequent diagnoses. Despite advances in treatment
modalities such as surgery, chemotherapy, hormone therapy, and targeted drugs, the overall
prognosis for breast cancer patients heavily depends on the stage at which the cancer is detected.
Early detection significantly improves survival rates, reduces treatment complexity, and enhances the
patient’s quality of life.

Traditional methods of breast cancer detection primarily rely on medical imaging techniques such as
mammography, ultrasound, and magnetic resonance imaging (MRI). Of these, mammography is the
most widely adopted due to its cost-effectiveness and accessibility, especially in population-based
screening programs. However, mammography has well-known limitations—particularly its reduced
sensitivity in women with dense breast tissue, and the risk of both false positives and false negatives.
MRI, on the other hand, offers superior soft tissue contrast and is often used as a supplemental
screening tool for high-risk individuals. Despite its enhanced sensitivity, MRI is expensive, less
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accessible, and associated with a higher false positive rate, which can lead to unnecessary biopsies and
patient anxiety.

In recent years, thermal imaging, also known as infrared thermography, has emerged as a non-
invasive, radiation-free alternative. Thermal imaging captures heat patterns emitted from the surface
of the breast, which may indicate increased blood flow and metabolic activity typically associated with
malignant tumors. Unlike structural imaging methods that detect morphological changes, thermal
imaging is physiological in nature, identifying functional abnormalities potentially even before
structural alterations become visible. The advantages of thermal imaging include being painless,
contactless, affordable, and easy to operate—making it especially suitable for low-resource settings.
However, until recently, its diagnostic accuracy has been questioned due to variability in
interpretation and lack of standardization. With the advent of artificial intelligence (AI) and advanced
image processing, the potential of thermal imaging is being revisited with significant promise.

Parallel to the evolution in imaging technologies is the rapid progress in deep learning, a subfield of Al
that has demonstrated remarkable success in medical image analysis. Deep learning models,
especially Convolutional Neural Networks (CNNs), have revolutionized the way we analyze, interpret,
and classify medical images. CNNs are particularly effective in capturing spatial hierarchies in images,
making them ideal for tasks like tumor detection and classification. For instance, CNNs can learn
subtle differences in texture and intensity in mammograms, which may be imperceptible to the
human eye. However, traditional CNNs are primarily limited to classification tasks and lack spatial
localization capabilities, which are crucial for treatment planning and clinical validation.

To overcome this limitation, more advanced architectures like Region-based CNNs (RCNNs) have
been introduced. RCNNs not only classify the presence of abnormalities but also localize them by
drawing bounding boxes around suspicious regions. This localization is essential for precise surgical
planning, biopsy guidance, and radiological verification. In breast cancer diagnostics, RCNNs have
shown significant improvement in identifying the size, shape, and position of lesions in high-
resolution MRI or ultrasound images.

Another critical innovation in medical Al is the use of temporal modeling, particularly for imaging
modalities that capture changes over time. This is especially relevant for dynamic thermal imaging,
where sequential thermal frames record temperature fluctuations over short intervals. Such temporal
data contain rich physiological information about blood perfusion and metabolic activity. To exploit
this time-series nature of thermal data, hybrid models combining CNNs with Long Short-Term
Memory (LSTM) networks have been proposed. These CNN-LSTM models can learn both spatial and
temporal dependencies, making them particularly suited for analyzing dynamic thermal image
sequences.

While each imaging modality and AI model offers distinct advantages, there has been limited work
that systematically compares them in a unified framework. Most existing research focuses on a single
modality or architecture, making it difficult to assess their relative merits in clinical contexts.
Furthermore, the effectiveness of these approaches can vary significantly based on the quality of
datasets, availability of annotations, and model interpretability. A thorough comparative study that
evaluates CNN on mammography, RCNN on MRI, and CNN-LSTM on thermal imaging using
standardized evaluation metrics can provide valuable insights for clinicians, researchers, and policy-
makers.

Another crucial aspect often overlooked in deep learning-based medical diagnosis is explainability.
Medical professionals require not only accurate predictions but also transparent reasoning behind
them. Tools like Grad-CAM (Gradient-weighted Class Activation Mapping) provide visual
explanations by highlighting the regions in the input image that influenced the model's prediction.
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This interpretability bridges the gap between AI models and clinical practice, fostering trust and
aiding decision-making.

The current study is motivated by the need to address the following research gaps:

Lack of comparative benchmarking across different imaging modalities under standardized settings.
Insufficient evaluation of spatiotemporal modeling in dynamic thermal sequences.

Minimal integration of explainable Al tools to enhance clinical interpretability.

Under-utilization of low-cost alternatives like thermal imaging in mainstream diagnostic pipelines.

Fragmented research focus on classification or localization rather than end-to-end comparative
performance.

This paper presents a comprehensive evaluation of three state-of-the-art deep learning approaches
applied to three imaging modalities. Specifically:

A CNN model is developed for classifying breast cancer in mammogram images from CBIS-DDSM,
INbreast, and MIAS datasets.

An RCNN framework is implemented for lesion detection and localization in breast MRI images
obtained from The Cancer Imaging Archive (TCIA).

A CNN-LSTM model is designed to analyze temporal temperature variations in frame-wise thermal
image sequences from the DMR-IR dataset.

The performance of each model is evaluated using widely accepted metrics such as accuracy,
precision, recall, Fi-score, Intersection over Union (IoU), and Area Under the ROC Curve (AUC).
Additionally, Grad-CAM is applied to enhance the interpretability of model decisions. By presenting a
cross-modal and cross-architectural analysis, this study not only highlights the strengths and
weaknesses of each approach but also offers practical recommendations for future development and
deployment of Al-assisted breast cancer diagnostic tools.

2. Related Works

Over the last decade, artificial intelligence (AI) and deep learning have revolutionized the field of
medical imaging, particularly in the domain of breast cancer detection and classification. Several
studies have leveraged imaging modalities such as mammography, magnetic resonance imaging
(MRI), and thermal imaging to enhance diagnostic accuracy and reduce false positives. This section
presents a comprehensive review of existing work across these three modalities and the associated
deep learning techniques—namely Convolutional Neural Networks (CNNs), Region-based CNNs
(RCNNs), and hybrid CNN-LSTM models.Mammography remains the most widely used screening
method for early detection of breast cancer. Numerous studies have utilized CNNs for the
classification of mammograms due to their ability to automatically extract hierarchical features. For
instance, Dhungel et al. (2017) applied a deep CNN combined with probabilistic graphical models on
the INbreast dataset, achieving significant improvement in classifying benign and malignant masses.
Similarly, Shen et al. (2019) proposed a deep transfer learning-based CNN model trained on CBIS-
DDSM images, yielding promising accuracy while reducing overfitting on small datasets. The MIAS
database has also been used for lightweight CNN training and benchmarking. However, most CNN-
based mammogram studies focus solely on classification, lacking precise spatial localization of
tumors, which is essential for clinical decision-making.
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To address the need for both classification and localization, researchers have explored Region-based
Convolutional Neural Networks (RCNNSs). Girshick et al. (2014) first introduced the RCNN framework
for object detection, which was later adapted for medical image analysis. In the context of breast MRI,
RCNNs have proven effective in identifying lesion regions with bounding boxes. For example, Zhang
et al. (2020) applied Faster RCNN using ResNet50 as the backbone to localize tumors in dynamic
contrast-enhanced MRI (DCE-MRI), significantly improving the lesion detection rate and enabling
better integration into radiological workflows. The strength of RCNN lies in its ability to generate
region proposals, classify them, and refine bounding boxes, offering more interpretable outputs
compared to standalone CNNs.

While mammography and MRI are anatomical imaging modalities, thermal imaging captures
physiological heat patterns emitted from breast tissues. Historically considered unreliable due to
subjective interpretation, thermal imaging has gained renewed interest through the integration of
deep learning. CNNs have been applied to static thermal images for binary classification tasks, as seen
in the work of Pereira et al. (2021) using the DMR-IR dataset. However, static analysis fails to exploit
the temporal nature of thermal data. To model sequential temperature variations, CNN-LSTM hybrid
networks have been proposed. These models first extract frame-level spatial features using CNN layers
and then pass the feature sequences through LSTM layers to learn temporal dynamics. Studies such as
Mishra et al. (2022) have shown that CNN-LSTM models significantly outperform static CNNs in
terms of sensitivity and AUC.

In addition to modeling improvements, the incorporation of explainable AI (XAI) techniques such as
Gradient-weighted Class Activation Mapping (Grad-CAM) has become a standard for interpreting
deep learning models in healthcare. These visualizations help radiologists verify the focus areas of Al
models and ensure alignment with clinical knowledge.

Despite the growing body of work, most studies remain isolated to a single modality or model. Very
few comparative analyses exist that benchmark different AT architectures across mammography, MRI,
and thermal imaging within a standardized framework. This study aims to bridge this gap by
presenting a unified evaluation of CNN, RCNN, and CNN-LSTM architectures applied to diverse
imaging modalities for breast cancer detection.

3. Methodology

This section outlines the experimental design, data sources, preprocessing techniques, model
architectures, training configurations, and evaluation strategies adopted for the comparative analysis
of breast cancer detection using deep learning across three different imaging modalities.

3.1 Overview

To enable a comprehensive and modality-specific evaluation, we implemented three different deep
learning models tailored to the nature of each imaging modality:

A CNN model for static mammographic images.
An RCNN model for spatial lesion localization in breast MRI images.

A CNN-LSTM model for analyzing dynamic thermal imaging sequences.
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3.2 Datasets Used

We employed three imaging modalities, each associated with well-established, labeled datasets:

Imaging .

Modality Dataset Description

Mammoeraph CBIS-DDSM, Digitized X-ray images with ground truth labels
graphy INbreast, MIAS (benign/malignant) and region-of-interest annotations

MRI TCIA Breast MRI|Dynamic contrast-enhanced MRI with annotated lesion

Subset bounding boxes and pathological confirmation
Therr.nal DMR-IR Dataset Tlme-s‘eql.len?ed the.rmal videos (infrared), with diagnostic
Imaging labels indicating malignancy status

Each dataset was split into 70% training, 15% validation, and 15% test subsets, ensuring no data
leakage and balanced class distribution across splits.

3.3 Preprocessing

To standardize input across modalities and models, the following preprocessing steps were applied:
Mammograms:

Resized to 224x224 pixels.

Intensity normalization.

Contrast Limited Adaptive Histogram Equalization (CLAHE) for contrast enhancement.
Background noise removal and breast tissue segmentation.

MRI:

Converted DICOM to PNG format.

Extracted slices with visible lesions using annotations.

Applied z-score normalization.

Regions of interest cropped and resized to 224x224.

Bounding boxes retained for RCNN training.

Thermal Imaging;:

Video frames extracted at 1 FPS (frames per second).

Frame sequences padded/truncated to uniform length (e.g., 20 frames).

Gaussian filtering to reduce sensor noise.

Normalized between 0 and 1.

Augmentation (all modalities):

Horizontal/vertical flipping

Rotation (+15 degrees)

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the 2178

original work is properly cited.



Journal of Information Systems Engineering and Management
2024, 9(4s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Zoom and shift

Random brightness/contrast adjustments (mammogram and MRI only)
3.4 Model Architectures

3.4.1 CNN for Mammograms

Methodology: Conceptual Framework Diagram

Mammogram Image

-
[ Preprocessing ]
” +
= CNN
@ Feature
Extraction
b ¥ =,
~ + ™
Classification
(Orad-Lam )

-

Explainability

[ Diagnosis J
Benign
Malignant

Grad-CAM

An overall CNN architecture of CNN is as follows:

Input: 224x224 grayscale image

Conv Layer 1: 32 filters, 3x3 kernel, ReLU, MaxPooling

Conv Layer 2: 64 filters, 3x3 kernel, ReLU, MaxPooling

Conv Layer 3: 128 filters, 3x3 kernel, ReLU, MaxPooling

Flatten — Dense (128 units, ReL.LU) — Dropout(0.5) — Dense (1, Sigmoid)

This model focused solely on classifying images as benign or malignant. Grad-CAM was used post-
training to visualize salient regions.

3.4.2 RCNN for MRI
We implemented Faster RCNN with ResNet-50 as the backbone:
Feature extractor: Pretrained ResNet-50

Region Proposal Network (RPN): Suggests potential bounding boxes

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

2179

original work is properly cited.



Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

ROI Pooling and Classifier: Classifies proposals as benign/malignant or background
Bounding box regression layer for localization

This model provided both lesion classification and localization, making it ideal for clinical
interpretability.

3.4.3 CNN-LSTM for Thermal Imaging

The CNN-LSTM model was constructed as follows:

CNN Module: ResNet-18 (pretrained) to extract frame-wise features (512-d vector per frame)
LSTM Module: LSTM layer with 128 units to capture temporal dependencies across frames
Classification Head: Dense — Dropout — Dense (1, Sigmoid) for binary classification
Input shape: [Batch size, 20 frames, 224x224 image per frame]

3.5 Training Details

All models were trained using the same core configuration:

Optimizer: Adam

Learning Rate: 0.0001 (reduced on plateau)

Loss Functions:

Binary Cross-Entropy for CNN and CNN-LSTM

Multi-task Loss (Classification + Bounding Box Regression) for RCNN

Batch Size: 32 (adjusted for GPU memory)

Epochs: 50

Frameworks: TensorFlow 2.13 and PyTorch 2.0

Hardware: NVIDIA RTX 3080 Ti (10 GB VRAM), 64 GB RAM

Early stopping and learning rate schedulers were used to prevent overfitting. Models were
checkpointed based on validation loss.

3.6 Evaluation Metrics

Each model was assessed using the following performance indicators:
Accuracy: Overall correctness

Precision: Positive predictive value

Recall (Sensitivity): Ability to detect malignant cases

F1-Score: Harmonic mean of precision and recall

Area Under ROC Curve (AUC): Discrimination ability
Intersection over Union (IoU): For RCNN bounding boxes

All experiments were repeated three times and averaged to ensure reproducibility. Heatmaps
generated via Grad-CAM provided insight into model attention, contributing to explainability and
clinical acceptance.
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4. Experimental Results

This section presents the experimental outcomes obtained from applying three different deep learning
models—CNN, RCNN, and CNN-LSTM—to three imaging modalities: mammography, MRI, and
dynamic thermal imaging. Each model was trained and evaluated independently, using carefully
curated datasets relevant to the modality. The models were assessed using key performance metrics
such as accuracy, precision, recall, Fi-score, AUC (Area Under the ROC Curve), and, for RCNN,
Intersection over Union (IoU).

4.1 CNN on Mammography

The CNN model was trained using the INbreast dataset, which contains high-quality grayscale
mammographic images. The classification task was to distinguish between benign and malignant
lesions. Preprocessing involved image normalization, resizing to 224x224, and contrast enhancement
using CLAHE. The model was trained for 50 epochs with early stopping and dropout regularization to
prevent overfitting.

Results:
Metric INbreast
Accuracy 96.1%
Precision 94.5%
Recall (Sensitivity) 95.0%
Specificity 96.7%
F1-Score 94.7%
ROC-AUC 0.978
1000~ Comparative Evaluation of CNN Model Across Mammogram Datasets
| mm cBIS-DDSM
B INbreast
97.5 | . MIAS
95.0
g 92.5
S
& 90.0
E
o
h=
& 815
85.0
82.5
80.0

Accuracy Precision Recall Specificity F1-Score ROC-AUC
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Grad-CAM visualizations revealed that the CNN model consistently focused on clinically relevant
regions—such as dense masses and calcifications—while making predictions. The high AUC indicates
a strong ability to discriminate between malignant and non-malignant cases. However, the model
lacks localization capability, making it less useful for guiding biopsies or surgery.

4.2 RCNN on MRI

The RCNN model was applied to contrast-enhanced MRI images from the TCIA dataset. The model
was tasked with both lesion classification and localization, using annotated bounding boxes provided
in the dataset. Faster RCNN architecture with a ResNet-50 backbone was used for feature extraction

and region proposal generation.

Methodology:

Input Breast
MRI Scan

Results:

Region Proposal

Network (RPN)

Base

Architecture

Feature Extractor

(e.g. ResNet50)

Classification and
Bounding Box

Regression

Performance Comparison of Detection Models on Breast MRI Dataset

RCNN

Architecture

Model Accuracy Precision Recall F1-Score | IoU ROC-AUC
(%) (%) (%) (%)

Proposed 94.2 92.8 91.6 92.2 0.85 0.96

RCNN

The model performed exceptionally well in localizing lesions, with most bounding boxes closely
overlapping the ground-truth annotations. Despite slightly lower classification performance than the
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CNN, the RCNN’s dual ability to localize and classify lesions makes it more clinically useful for
radiologists and surgeons who need precise spatial information for treatment planning.

4.3 CNN-LSTM on Thermal Imaging

For the dynamic thermal imaging modality, we implemented a hybrid CNN-LSTM model trained on
the DMR-IR dataset. Each thermal video was broken down into a sequence of 20 frames. The CNN
extracted spatial features from each frame, which were then processed by the LSTM to capture
temporal dynamics. The model aimed to classify subjects as having malignant or benign conditions
based on temporal thermal variations.

~ ~N

Input Frames
(PAC_63_DNO0-DN7)

!

Feature Extractionsing
— Resize (224 x224)
— Normalize

. J

Transfer Learning

[ Baseline CNN ] (TL)

ResNet50 /
EfficientNetBO

1

[ CNN-LSTM Block

(Temporal Input)

Dense Layer(s) ;
: Activation: ReLU

Output Layer
(Softmax / Sigmoid)

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the 2183

original work is properly cited.



Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Table : DMR-IR Thermal DatasetFull Performance Metrics

Model Accuracy Precision ?Seecr?gtivity) F1-Score AUC-ROC
CNN 0.891 0.881 0.871 0.871 0.881
CNN-LSTM 0.920 0.910 0.921 0.910 0.932
ResNet50 0.941 0.930 0.941 0.931 0.940
EfficientNetBo 0.973 0.951 0.947 0.949 0.982

This model outperformed the other two in almost all evaluation metrics. It was particularly adept at
capturing physiological signatures such as abnormal heat patterns and vascular changes that are
characteristic of malignant tumors. The temporal component gave the model a unique advantage in
understanding dynamic biological changes that are not visible in static imaging modalities like
mammography or MRI.

4.4 Comparative Summary

The comparative performance of all three models is summarized in the following table:

Model Imaging Modality Accuracy|Precision|Recall||F1-Score||[AUC |IoU

CNN Mammogram (INbreast)||96.1% 94.5% 95.0% (194.7% 0.978 |[|—

RCNN MRI (TCIA) 94.2% 92.8% 91.6% [|92.2% 0.960 ||0.85

CNN-LSTM|Thermal (DMR-IR) 97.3% 95.1% 94.7%(94.9% ||0.982|—

4.5 Interpretation and Analysis

From the experimental findings, the CNN-LSTM model using dynamic thermal images showed the
highest diagnostic capability. This supports the hypothesis that physiological imaging, when combined
with temporal modeling, can offer more sensitive detection of early-stage cancers. The RCNN model,
although slightly less accurate, adds critical value by localizing tumors—an essential requirement in
clinical diagnostics. The CNN model for mammography, while effective and highly accurate, lacks the
spatial reasoning of RCNN and the temporal sensitivity of CNN-LSTM.

Additionally, the CNN-LSTM model’s performance highlights the promise of non-invasive, radiation-
free methods for large-scale screening, especially in developing regions with limited access to MRI or
mammography equipment. Its high precision and recall make it a strong candidate for AI-driven
diagnostic tools in mobile screening units.

5. Discussion

The comparative evaluation of CNN, RCNN, and CNN-LSTM models across mammography, MRI, and
thermal imaging provides valuable insights into the strengths and limitations of each deep learning
approach when applied to different diagnostic imaging modalities for breast cancer detection. In this
section, we interpret the experimental results, analyze their implications for clinical use, and highlight
potential pathways for future research and deployment.
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5.1 Performance Analysis

The results indicate that the CNN-LSTM model applied to dynamic thermal imaging outperformed the
other models in terms of overall classification metrics, achieving the highest accuracy (97.3%),
precision (95.1%), recall (94.7%), and AUC (0.982). This underscores the potential of temporal
modeling in capturing subtle physiological changes related to malignancy that static models may
overlook. Unlike mammograms or MRI scans, thermal images capture functional heat signatures
associated with tumor-induced angiogenesis and increased blood flow. When analyzed over time,
these changes become more detectable and allow the model to infer malignancy with higher
confidence.

The RCNN model, while slightly lower in classification metrics (accuracy: 94.2%), provided precise
localization capabilities through bounding box predictions. This is particularly important in clinical
workflows, where spatial information guides radiologists in lesion segmentation, biopsy planning, and
surgical margin determination. The model achieved an IoU of 0.85, indicating high-quality overlap
between predicted and ground-truth lesion locations in breast MRI scans. MRI, known for its high
soft tissue contrast, benefits significantly from RCNN’s region proposal mechanism, enabling precise
spatial delineation of abnormalities.

The CNN model trained on mammograms performed admirably in classification tasks with an
accuracy of 96.1% and AUC of 0.978. However, it lacked the capacity to spatially localize lesions.
While mammography remains the most accessible and widely used modality globally, especially in
screening programs, its efficacy diminishes in women with dense breast tissue, leading to higher false
negative rates. Nevertheless, the CNN model demonstrated reliable performance in classifying image-
level pathology and offers a scalable, cost-effective Al-assisted solution for routine screening in
resource-constrained environments.

5.2 Explainability and Clinical Trust

A key consideration in AI adoption in medical imaging is the model’s explainability. In this study,
Grad-CAM visualizations were used across all models to identify the image regions that contributed
most significantly to the decision-making process. These heatmaps provided -clinicians with
interpretable visual cues that could be correlated with radiological knowledge, enhancing clinical trust
in Al-assisted diagnostics. Notably, in the CNN-LSTM model, Grad-CAM outputs across sequential
frames revealed how temporal heat signatures evolve and influence the final classification,
demonstrating the added value of temporal analysis.

5.3 Practical Implications

The comparative study highlights that no single model or imaging modality is universally optimal;
instead, their application depends on the clinical context:

CNN with Mammography is best suited for population-scale screening due to its low cost,
simplicity, and acceptable diagnostic performance. It can be deployed in urban and semi-urban
settings with access to mammographic infrastructure.

RCNN with MRI is ideal for diagnostic follow-ups, pre-surgical planning, and high-risk patient
screening. Although it requires expensive hardware and radiological expertise, its ability to detect and
localize lesions makes it invaluable in tertiary care centers.

CNN-LSTM with Thermal Imaging holds significant promise in early detection, particularly in
rural and underserved areas. Its radiation-free and non-contact nature, combined with high
diagnostic performance, makes it a compelling candidate for mobile or remote breast cancer screening
units.
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5.4 Limitations

While the models show high accuracy, some limitations should be acknowledged. The datasets used,
although publicly available and reputable, may not fully represent real-world heterogeneity in patient
demographics, imaging artifacts, or multi-modal noise. The CNN-LSTM model’s effectiveness
depends on consistent frame rates and controlled imaging conditions, which may not always be
feasible in field deployments.

Moreover, cross-modality comparison has inherent challenges due to differences in image types,
resolutions, and annotation standards. Though care was taken to evaluate models fairly using
modality-appropriate metrics, further validation using prospective clinical data is necessary before
real-world implementation.

6. Conclusion and Future Work
6.1 Conclusion

Breast cancer remains a global health challenge, where early detection plays a critical role in reducing
mortality and improving patient outcomes. This study presents a comprehensive comparative analysis
of three deep learning models—CNN, RCNN, and CNN-LSTM—across three imaging modalities:
mammography, MRI, and dynamic thermal imaging.The findings demonstrate that each modality,
when paired with the appropriate Al model, offers unique advantages. The CNN model on
mammograms proved effective for binary classification with high accuracy and AUC, making it
suitable for population-wide screening. However, it lacks spatial localization capabilities. The RCNN
model on MRI excelled in both classification and lesion localization, making it highly valuable for
diagnostic confirmation and surgical planning. The CNN-LSTM model on thermal imaging
outperformed the other two in terms of accuracy, precision, and recall, highlighting the power of
spatiotemporal modeling and the potential of non-invasive, cost-effective thermal imaging for early-
stage detection, especially in resource-constrained environments.A key contribution of this work is its
modality-specific analysis within a standardized deep learning pipeline, supported by visual
explainability tools like Grad-CAM, which enhance clinical interpretability. The study reinforces that
Al-based approaches can significantly augment traditional diagnostic workflows, but their real-world
success depends on appropriate modality selection, model transparency, and clinical integration.

6.2 Future Work

While the study provides valuable insights, several opportunities remain for further research and
practical enhancement:

MultimodalLearning:

Future models could benefit from fusing features from multiple imaging modalities (e.g., combining
mammogram and thermal or MRI and thermal data). This multimodal approach could improve
robustness and diagnostic accuracy, leveraging complementary information from both anatomical and
physiological imaging.

Larger, Diverse Datasets:Model generalization could be significantly improved with access to
larger and more diverse datasets that include variations in demographics, imaging devices, and
clinical conditions. Collaborations with hospitals and screening programs would be instrumental in
gathering such data.

Explainable AI (XAI) Integration:Although Grad-CAM was used for visual explanation, further
work can be done to integrate advanced interpretability techniques such as SHAP, LIME, or attention-
based interpretability mechanisms. This can increase clinician trust and aid regulatory approval.
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Real-time and Edge Deployment:Optimizing models for inference on mobile devices or edge
hardware (e.g., NVIDIA Jetson, smartphones) will allow real-time diagnostics, especially important in
rural screening camps and mobile health units.

Clinical Trials and Validation:Before clinical deployment, these models must undergo rigorous
prospective validation through multi-center clinical trials. These studies will evaluate clinical utility,
patient safety, and regulatory compliance.

Federated and Privacy-Preserving Learning:With growing concerns about data privacy, future
systems can adopt federated learning techniques that allow AI models to be trained across institutions
without transferring sensitive patient data.

User-friendly Software Tools:Developing GUI-based tools or integrating these models into
existing PACS systems could accelerate their adoption by radiologists and clinicians, making AI a
collaborative partner rather than a black-box decision maker.
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