
Journal of Information Systems Engineering and Management 

2024, 9(4s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 

 2174 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 

A Comparative Study of Deep Learning Techniques for 

Breast Cancer Detection Using Mammography, MRI, 

and Thermal Imaging 

Sandhya C.1, Dr. Suresha D2 

1Research Scholar, Institute of Computer Science and Information Science, Srinivas University, 

Mangalore, Karnataka, India. 

Orcid ID: 0000-0002-8342-6386 ; Email ID: sandyakvr@gmail.com 

2Professor& Head, CSE Dept., Srinivas Institute of Technology Mangalore, India 

Orcid ID: 0000-0003-2578-0552; E-mail: sureshasss@gmail.com 

ARTICLE INFO ABSTRACT 

Received: 11 Nov 2024 

Revised: 15 Dec 2024 

Accepted: 25 Dec 2024 

Breast cancer remains a critical global health concern with early detection being vital 

for effective treatment. This study presents a comparative evaluation of three deep 

learning techniques—CNN, RCNN, and CNN-LSTM—across three distinct imaging 

modalities: mammography, MRI, and dynamic thermal imaging. The CNN model was 

applied to mammogram datasets (CBIS-DDSM, INbreast, MIAS), the RCNN was 

trained on annotated MRI scans, and the CNN-LSTM model utilized sequential 

thermal images (DMR-IR dataset). Evaluation metrics such as accuracy, precision, 

recall, F1-score, and AUC were used to assess model efficacy. Our findings reveal that 

dynamic thermal imaging with temporal modeling outperforms traditional 

mammography-based CNNs and even MRI-based RCNNs in classification 

performance. The study concludes with a discussion on the potential of radiation-free, 

non-invasive thermal imaging for widespread deployment in resource-constrained 

settings. 
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1.Introduction 

Breast cancer is one of the most common malignancies affecting women globally, representing a 

significant public health challenge in both developed and developing nations. According to the World 

Health Organization (WHO), breast cancer accounts for approximately 2.3 million new cases and 

more than 680,000 deaths annually, making it the leading cause of cancer-related deaths among 

women. The incidence of breast cancer is steadily rising, partly due to aging populations, lifestyle 

changes, and increased awareness leading to more frequent diagnoses. Despite advances in treatment 

modalities such as surgery, chemotherapy, hormone therapy, and targeted drugs, the overall 

prognosis for breast cancer patients heavily depends on the stage at which the cancer is detected. 

Early detection significantly improves survival rates, reduces treatment complexity, and enhances the 

patient’s quality of life. 

Traditional methods of breast cancer detection primarily rely on medical imaging techniques such as 

mammography, ultrasound, and magnetic resonance imaging (MRI). Of these, mammography is the 

most widely adopted due to its cost-effectiveness and accessibility, especially in population-based 

screening programs. However, mammography has well-known limitations—particularly its reduced 

sensitivity in women with dense breast tissue, and the risk of both false positives and false negatives. 

MRI, on the other hand, offers superior soft tissue contrast and is often used as a supplemental 

screening tool for high-risk individuals. Despite its enhanced sensitivity, MRI is expensive, less 
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accessible, and associated with a higher false positive rate, which can lead to unnecessary biopsies and 

patient anxiety. 

In recent years, thermal imaging, also known as infrared thermography, has emerged as a non-

invasive, radiation-free alternative. Thermal imaging captures heat patterns emitted from the surface 

of the breast, which may indicate increased blood flow and metabolic activity typically associated with 

malignant tumors. Unlike structural imaging methods that detect morphological changes, thermal 

imaging is physiological in nature, identifying functional abnormalities potentially even before 

structural alterations become visible. The advantages of thermal imaging include being painless, 

contactless, affordable, and easy to operate—making it especially suitable for low-resource settings. 

However, until recently, its diagnostic accuracy has been questioned due to variability in 

interpretation and lack of standardization. With the advent of artificial intelligence (AI) and advanced 

image processing, the potential of thermal imaging is being revisited with significant promise. 

Parallel to the evolution in imaging technologies is the rapid progress in deep learning, a subfield of AI 

that has demonstrated remarkable success in medical image analysis. Deep learning models, 

especially Convolutional Neural Networks (CNNs), have revolutionized the way we analyze, interpret, 

and classify medical images. CNNs are particularly effective in capturing spatial hierarchies in images, 

making them ideal for tasks like tumor detection and classification. For instance, CNNs can learn 

subtle differences in texture and intensity in mammograms, which may be imperceptible to the 

human eye. However, traditional CNNs are primarily limited to classification tasks and lack spatial 

localization capabilities, which are crucial for treatment planning and clinical validation. 

To overcome this limitation, more advanced architectures like Region-based CNNs (RCNNs) have 

been introduced. RCNNs not only classify the presence of abnormalities but also localize them by 

drawing bounding boxes around suspicious regions. This localization is essential for precise surgical 

planning, biopsy guidance, and radiological verification. In breast cancer diagnostics, RCNNs have 

shown significant improvement in identifying the size, shape, and position of lesions in high-

resolution MRI or ultrasound images. 

Another critical innovation in medical AI is the use of temporal modeling, particularly for imaging 

modalities that capture changes over time. This is especially relevant for dynamic thermal imaging, 

where sequential thermal frames record temperature fluctuations over short intervals. Such temporal 

data contain rich physiological information about blood perfusion and metabolic activity. To exploit 

this time-series nature of thermal data, hybrid models combining CNNs with Long Short-Term 

Memory (LSTM) networks have been proposed. These CNN-LSTM models can learn both spatial and 

temporal dependencies, making them particularly suited for analyzing dynamic thermal image 

sequences. 

While each imaging modality and AI model offers distinct advantages, there has been limited work 

that systematically compares them in a unified framework. Most existing research focuses on a single 

modality or architecture, making it difficult to assess their relative merits in clinical contexts. 

Furthermore, the effectiveness of these approaches can vary significantly based on the quality of 

datasets, availability of annotations, and model interpretability. A thorough comparative study that 

evaluates CNN on mammography, RCNN on MRI, and CNN-LSTM on thermal imaging using 

standardized evaluation metrics can provide valuable insights for clinicians, researchers, and policy-

makers. 

Another crucial aspect often overlooked in deep learning-based medical diagnosis is explainability. 

Medical professionals require not only accurate predictions but also transparent reasoning behind 

them. Tools like Grad-CAM (Gradient-weighted Class Activation Mapping) provide visual 

explanations by highlighting the regions in the input image that influenced the model's prediction. 
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This interpretability bridges the gap between AI models and clinical practice, fostering trust and 

aiding decision-making. 

The current study is motivated by the need to address the following research gaps: 

1. Lack of comparative benchmarking across different imaging modalities under standardized settings. 

2. Insufficient evaluation of spatiotemporal modeling in dynamic thermal sequences. 

3. Minimal integration of explainable AI tools to enhance clinical interpretability. 

4. Under-utilization of low-cost alternatives like thermal imaging in mainstream diagnostic pipelines. 

5. Fragmented research focus on classification or localization rather than end-to-end comparative 

performance. 

This paper presents a comprehensive evaluation of three state-of-the-art deep learning approaches 

applied to three imaging modalities. Specifically: 

• A CNN model is developed for classifying breast cancer in mammogram images from CBIS-DDSM, 

INbreast, and MIAS datasets. 

• An RCNN framework is implemented for lesion detection and localization in breast MRI images 

obtained from The Cancer Imaging Archive (TCIA). 

• A CNN-LSTM model is designed to analyze temporal temperature variations in frame-wise thermal 

image sequences from the DMR-IR dataset. 

The performance of each model is evaluated using widely accepted metrics such as accuracy, 

precision, recall, F1-score, Intersection over Union (IoU), and Area Under the ROC Curve (AUC). 

Additionally, Grad-CAM is applied to enhance the interpretability of model decisions. By presenting a 

cross-modal and cross-architectural analysis, this study not only highlights the strengths and 

weaknesses of each approach but also offers practical recommendations for future development and 

deployment of AI-assisted breast cancer diagnostic tools. 

 

2. Related Works 

Over the last decade, artificial intelligence (AI) and deep learning have revolutionized the field of 

medical imaging, particularly in the domain of breast cancer detection and classification. Several 

studies have leveraged imaging modalities such as mammography, magnetic resonance imaging 

(MRI), and thermal imaging to enhance diagnostic accuracy and reduce false positives. This section 

presents a comprehensive review of existing work across these three modalities and the associated 

deep learning techniques—namely Convolutional Neural Networks (CNNs), Region-based CNNs 

(RCNNs), and hybrid CNN-LSTM models.Mammography remains the most widely used screening 

method for early detection of breast cancer. Numerous studies have utilized CNNs for the 

classification of mammograms due to their ability to automatically extract hierarchical features. For 

instance, Dhungel et al. (2017) applied a deep CNN combined with probabilistic graphical models on 

the INbreast dataset, achieving significant improvement in classifying benign and malignant masses. 

Similarly, Shen et al. (2019) proposed a deep transfer learning-based CNN model trained on CBIS-

DDSM images, yielding promising accuracy while reducing overfitting on small datasets. The MIAS 

database has also been used for lightweight CNN training and benchmarking. However, most CNN-

based mammogram studies focus solely on classification, lacking precise spatial localization of 

tumors, which is essential for clinical decision-making. 
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To address the need for both classification and localization, researchers have explored Region-based 

Convolutional Neural Networks (RCNNs). Girshick et al. (2014) first introduced the RCNN framework 

for object detection, which was later adapted for medical image analysis. In the context of breast MRI, 

RCNNs have proven effective in identifying lesion regions with bounding boxes. For example, Zhang 

et al. (2020) applied Faster RCNN using ResNet50 as the backbone to localize tumors in dynamic 

contrast-enhanced MRI (DCE-MRI), significantly improving the lesion detection rate and enabling 

better integration into radiological workflows. The strength of RCNN lies in its ability to generate 

region proposals, classify them, and refine bounding boxes, offering more interpretable outputs 

compared to standalone CNNs. 

While mammography and MRI are anatomical imaging modalities, thermal imaging captures 

physiological heat patterns emitted from breast tissues. Historically considered unreliable due to 

subjective interpretation, thermal imaging has gained renewed interest through the integration of 

deep learning. CNNs have been applied to static thermal images for binary classification tasks, as seen 

in the work of Pereira et al. (2021) using the DMR-IR dataset. However, static analysis fails to exploit 

the temporal nature of thermal data. To model sequential temperature variations, CNN-LSTM hybrid 

networks have been proposed. These models first extract frame-level spatial features using CNN layers 

and then pass the feature sequences through LSTM layers to learn temporal dynamics. Studies such as 

Mishra et al. (2022) have shown that CNN-LSTM models significantly outperform static CNNs in 

terms of sensitivity and AUC. 

In addition to modeling improvements, the incorporation of explainable AI (XAI) techniques such as 

Gradient-weighted Class Activation Mapping (Grad-CAM) has become a standard for interpreting 

deep learning models in healthcare. These visualizations help radiologists verify the focus areas of AI 

models and ensure alignment with clinical knowledge. 

Despite the growing body of work, most studies remain isolated to a single modality or model. Very 

few comparative analyses exist that benchmark different AI architectures across mammography, MRI, 

and thermal imaging within a standardized framework. This study aims to bridge this gap by 

presenting a unified evaluation of CNN, RCNN, and CNN-LSTM architectures applied to diverse 

imaging modalities for breast cancer detection. 

 

3. Methodology 

This section outlines the experimental design, data sources, preprocessing techniques, model 

architectures, training configurations, and evaluation strategies adopted for the comparative analysis 

of breast cancer detection using deep learning across three different imaging modalities. 

3.1 Overview 

To enable a comprehensive and modality-specific evaluation, we implemented three different deep 

learning models tailored to the nature of each imaging modality: 

• A CNN model for static mammographic images. 

• An RCNN model for spatial lesion localization in breast MRI images. 

• A CNN-LSTM model for analyzing dynamic thermal imaging sequences. 

 

 

 



Journal of Information Systems Engineering and Management 

2024, 9(4s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 

 2178 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 

3.2 Datasets Used 

We employed three imaging modalities, each associated with well-established, labeled datasets: 

Imaging 

Modality 
Dataset Description 

Mammography 
CBIS-DDSM, 

INbreast, MIAS 

Digitized X-ray images with ground truth labels 

(benign/malignant) and region-of-interest annotations 

MRI 
TCIA Breast MRI 

Subset 

Dynamic contrast-enhanced MRI with annotated lesion 

bounding boxes and pathological confirmation 

Thermal 

Imaging 
DMR-IR Dataset 

Time-sequenced thermal videos (infrared), with diagnostic 

labels indicating malignancy status 

Each dataset was split into 70% training, 15% validation, and 15% test subsets, ensuring no data 

leakage and balanced class distribution across splits. 

 

3.3 Preprocessing 

To standardize input across modalities and models, the following preprocessing steps were applied: 

Mammograms: 

• Resized to 224×224 pixels. 

• Intensity normalization. 

• Contrast Limited Adaptive Histogram Equalization (CLAHE) for contrast enhancement. 

• Background noise removal and breast tissue segmentation. 

MRI: 

• Converted DICOM to PNG format. 

• Extracted slices with visible lesions using annotations. 

• Applied z-score normalization. 

• Regions of interest cropped and resized to 224×224. 

• Bounding boxes retained for RCNN training. 

Thermal Imaging: 

• Video frames extracted at 1 FPS (frames per second). 

• Frame sequences padded/truncated to uniform length (e.g., 20 frames). 

• Gaussian filtering to reduce sensor noise. 

• Normalized between 0 and 1. 

Augmentation (all modalities): 

• Horizontal/vertical flipping 

• Rotation (±15 degrees) 
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• Zoom and shift 

• Random brightness/contrast adjustments (mammogram and MRI only) 

3.4 Model Architectures 

3.4.1 CNN for Mammograms 

Methodology: Conceptual Framework Diagram  

 

An overall CNN architecture of CNN is as follows: 

• Input: 224×224 grayscale image 

• Conv Layer 1: 32 filters, 3×3 kernel, ReLU, MaxPooling 

• Conv Layer 2: 64 filters, 3×3 kernel, ReLU, MaxPooling 

• Conv Layer 3: 128 filters, 3×3 kernel, ReLU, MaxPooling 

• Flatten → Dense (128 units, ReLU) → Dropout(0.5) → Dense (1, Sigmoid) 

This model focused solely on classifying images as benign or malignant. Grad-CAM was used post-

training to visualize salient regions. 

3.4.2 RCNN for MRI 

We implemented Faster RCNN with ResNet-50 as the backbone: 

• Feature extractor: Pretrained ResNet-50 

• Region Proposal Network (RPN): Suggests potential bounding boxes 
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• ROI Pooling and Classifier: Classifies proposals as benign/malignant or background 

• Bounding box regression layer for localization 

This model provided both lesion classification and localization, making it ideal for clinical 

interpretability. 

3.4.3 CNN-LSTM for Thermal Imaging 

The CNN-LSTM model was constructed as follows: 

• CNN Module: ResNet-18 (pretrained) to extract frame-wise features (512-d vector per frame) 

• LSTM Module: LSTM layer with 128 units to capture temporal dependencies across frames 

• Classification Head: Dense → Dropout → Dense (1, Sigmoid) for binary classification 

Input shape: [Batch size, 20 frames, 224×224 image per frame] 

3.5 Training Details 

All models were trained using the same core configuration: 

• Optimizer: Adam 

• Learning Rate: 0.0001 (reduced on plateau) 

• Loss Functions: 

o Binary Cross-Entropy for CNN and CNN-LSTM 

o Multi-task Loss (Classification + Bounding Box Regression) for RCNN 

• Batch Size: 32 (adjusted for GPU memory) 

• Epochs: 50 

• Frameworks: TensorFlow 2.13 and PyTorch 2.0 

• Hardware: NVIDIA RTX 3080 Ti (10 GB VRAM), 64 GB RAM 

Early stopping and learning rate schedulers were used to prevent overfitting. Models were 

checkpointed based on validation loss. 

3.6 Evaluation Metrics 

Each model was assessed using the following performance indicators: 

• Accuracy: Overall correctness 

• Precision: Positive predictive value 

• Recall (Sensitivity): Ability to detect malignant cases 

• F1-Score: Harmonic mean of precision and recall 

• Area Under ROC Curve (AUC): Discrimination ability 

• Intersection over Union (IoU): For RCNN bounding boxes 

All experiments were repeated three times and averaged to ensure reproducibility. Heatmaps 

generated via Grad-CAM provided insight into model attention, contributing to explainability and 

clinical acceptance. 
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4. Experimental Results 

This section presents the experimental outcomes obtained from applying three different deep learning 

models—CNN, RCNN, and CNN-LSTM—to three imaging modalities: mammography, MRI, and 

dynamic thermal imaging. Each model was trained and evaluated independently, using carefully 

curated datasets relevant to the modality. The models were assessed using key performance metrics 

such as accuracy, precision, recall, F1-score, AUC (Area Under the ROC Curve), and, for RCNN, 

Intersection over Union (IoU). 

4.1 CNN on Mammography 

The CNN model was trained using the INbreast dataset, which contains high-quality grayscale 

mammographic images. The classification task was to distinguish between benign and malignant 

lesions. Preprocessing involved image normalization, resizing to 224×224, and contrast enhancement 

using CLAHE. The model was trained for 50 epochs with early stopping and dropout regularization to 

prevent overfitting. 

Results: 

Metric INbreast 

Accuracy 96.1% 

Precision 94.5% 

Recall (Sensitivity) 95.0% 

Specificity 96.7% 

F1-Score 94.7% 

ROC-AUC 0.978 

 

 

 



Journal of Information Systems Engineering and Management 

2024, 9(4s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 

 2182 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 

Grad-CAM visualizations revealed that the CNN model consistently focused on clinically relevant 

regions—such as dense masses and calcifications—while making predictions. The high AUC indicates 

a strong ability to discriminate between malignant and non-malignant cases. However, the model 

lacks localization capability, making it less useful for guiding biopsies or surgery. 

4.2 RCNN on MRI 

The RCNN model was applied to contrast-enhanced MRI images from the TCIA dataset. The model 

was tasked with both lesion classification and localization, using annotated bounding boxes provided 

in the dataset. Faster RCNN architecture with a ResNet-50 backbone was used for feature extraction 

and region proposal generation. 

Methodology: 

 

Results: 

Performance Comparison of Detection Models on Breast MRI Dataset 

 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

IoU ROC-AUC 

Proposed 

RCNN 

94.2 92.8 91.6 92.2 0.85 0.96 

 

The model performed exceptionally well in localizing lesions, with most bounding boxes closely 

overlapping the ground-truth annotations. Despite slightly lower classification performance than the 
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CNN, the RCNN’s dual ability to localize and classify lesions makes it more clinically useful for 

radiologists and surgeons who need precise spatial information for treatment planning. 

4.3 CNN-LSTM on Thermal Imaging 

For the dynamic thermal imaging modality, we implemented a hybrid CNN-LSTM model trained on 

the DMR-IR dataset. Each thermal video was broken down into a sequence of 20 frames. The CNN 

extracted spatial features from each frame, which were then processed by the LSTM to capture 

temporal dynamics. The model aimed to classify subjects as having malignant or benign conditions 

based on temporal thermal variations. 
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Table : DMR-IR Thermal DatasetFull Performance Metrics 

Model Accuracy Precision 
Recall 

(Sensitivity) 
F1-Score AUC-ROC 

CNN 0.891 0.881 0.871 0.871 0.881 

CNN-LSTM 0.920 0.910 0.921 0.910 0.932 

ResNet50 0.941 0.930 0.941 0.931 0.940 

EfficientNetB0 0.973 0.951 0.947 0.949 0.982 

 

This model outperformed the other two in almost all evaluation metrics. It was particularly adept at 

capturing physiological signatures such as abnormal heat patterns and vascular changes that are 

characteristic of malignant tumors. The temporal component gave the model a unique advantage in 

understanding dynamic biological changes that are not visible in static imaging modalities like 

mammography or MRI. 

4.4 Comparative Summary 

The comparative performance of all three models is summarized in the following table: 

Model Imaging Modality Accuracy Precision Recall F1-Score AUC IoU 

CNN Mammogram (INbreast) 96.1% 94.5% 95.0% 94.7% 0.978 – 

RCNN MRI (TCIA) 94.2% 92.8% 91.6% 92.2% 0.960 0.85 

CNN-LSTM Thermal (DMR-IR) 97.3% 95.1% 94.7% 94.9% 0.982 – 

 

4.5 Interpretation and Analysis 

From the experimental findings, the CNN-LSTM model using dynamic thermal images showed the 

highest diagnostic capability. This supports the hypothesis that physiological imaging, when combined 

with temporal modeling, can offer more sensitive detection of early-stage cancers. The RCNN model, 

although slightly less accurate, adds critical value by localizing tumors—an essential requirement in 

clinical diagnostics. The CNN model for mammography, while effective and highly accurate, lacks the 

spatial reasoning of RCNN and the temporal sensitivity of CNN-LSTM. 

Additionally, the CNN-LSTM model’s performance highlights the promise of non-invasive, radiation-

free methods for large-scale screening, especially in developing regions with limited access to MRI or 

mammography equipment. Its high precision and recall make it a strong candidate for AI-driven 

diagnostic tools in mobile screening units. 

5. Discussion 

The comparative evaluation of CNN, RCNN, and CNN-LSTM models across mammography, MRI, and 

thermal imaging provides valuable insights into the strengths and limitations of each deep learning 

approach when applied to different diagnostic imaging modalities for breast cancer detection. In this 

section, we interpret the experimental results, analyze their implications for clinical use, and highlight 

potential pathways for future research and deployment. 
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5.1 Performance Analysis 

The results indicate that the CNN-LSTM model applied to dynamic thermal imaging outperformed the 

other models in terms of overall classification metrics, achieving the highest accuracy (97.3%), 

precision (95.1%), recall (94.7%), and AUC (0.982). This underscores the potential of temporal 

modeling in capturing subtle physiological changes related to malignancy that static models may 

overlook. Unlike mammograms or MRI scans, thermal images capture functional heat signatures 

associated with tumor-induced angiogenesis and increased blood flow. When analyzed over time, 

these changes become more detectable and allow the model to infer malignancy with higher 

confidence. 

The RCNN model, while slightly lower in classification metrics (accuracy: 94.2%), provided precise 

localization capabilities through bounding box predictions. This is particularly important in clinical 

workflows, where spatial information guides radiologists in lesion segmentation, biopsy planning, and 

surgical margin determination. The model achieved an IoU of 0.85, indicating high-quality overlap 

between predicted and ground-truth lesion locations in breast MRI scans. MRI, known for its high 

soft tissue contrast, benefits significantly from RCNN’s region proposal mechanism, enabling precise 

spatial delineation of abnormalities. 

The CNN model trained on mammograms performed admirably in classification tasks with an 

accuracy of 96.1% and AUC of 0.978. However, it lacked the capacity to spatially localize lesions. 

While mammography remains the most accessible and widely used modality globally, especially in 

screening programs, its efficacy diminishes in women with dense breast tissue, leading to higher false 

negative rates. Nevertheless, the CNN model demonstrated reliable performance in classifying image-

level pathology and offers a scalable, cost-effective AI-assisted solution for routine screening in 

resource-constrained environments. 

5.2 Explainability and Clinical Trust 

A key consideration in AI adoption in medical imaging is the model’s explainability. In this study, 

Grad-CAM visualizations were used across all models to identify the image regions that contributed 

most significantly to the decision-making process. These heatmaps provided clinicians with 

interpretable visual cues that could be correlated with radiological knowledge, enhancing clinical trust 

in AI-assisted diagnostics. Notably, in the CNN-LSTM model, Grad-CAM outputs across sequential 

frames revealed how temporal heat signatures evolve and influence the final classification, 

demonstrating the added value of temporal analysis. 

5.3 Practical Implications 

The comparative study highlights that no single model or imaging modality is universally optimal; 

instead, their application depends on the clinical context: 

• CNN with Mammography is best suited for population-scale screening due to its low cost, 

simplicity, and acceptable diagnostic performance. It can be deployed in urban and semi-urban 

settings with access to mammographic infrastructure. 

• RCNN with MRI is ideal for diagnostic follow-ups, pre-surgical planning, and high-risk patient 

screening. Although it requires expensive hardware and radiological expertise, its ability to detect and 

localize lesions makes it invaluable in tertiary care centers. 

• CNN-LSTM with Thermal Imaging holds significant promise in early detection, particularly in 

rural and underserved areas. Its radiation-free and non-contact nature, combined with high 

diagnostic performance, makes it a compelling candidate for mobile or remote breast cancer screening 

units. 
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5.4 Limitations 

While the models show high accuracy, some limitations should be acknowledged. The datasets used, 

although publicly available and reputable, may not fully represent real-world heterogeneity in patient 

demographics, imaging artifacts, or multi-modal noise. The CNN-LSTM model’s effectiveness 

depends on consistent frame rates and controlled imaging conditions, which may not always be 

feasible in field deployments. 

Moreover, cross-modality comparison has inherent challenges due to differences in image types, 

resolutions, and annotation standards. Though care was taken to evaluate models fairly using 

modality-appropriate metrics, further validation using prospective clinical data is necessary before 

real-world implementation. 

 

6. Conclusion and Future Work 

6.1 Conclusion 

Breast cancer remains a global health challenge, where early detection plays a critical role in reducing 

mortality and improving patient outcomes. This study presents a comprehensive comparative analysis 

of three deep learning models—CNN, RCNN, and CNN-LSTM—across three imaging modalities: 

mammography, MRI, and dynamic thermal imaging.The findings demonstrate that each modality, 

when paired with the appropriate AI model, offers unique advantages. The CNN model on 

mammograms proved effective for binary classification with high accuracy and AUC, making it 

suitable for population-wide screening. However, it lacks spatial localization capabilities. The RCNN 

model on MRI excelled in both classification and lesion localization, making it highly valuable for 

diagnostic confirmation and surgical planning. The CNN-LSTM model on thermal imaging 

outperformed the other two in terms of accuracy, precision, and recall, highlighting the power of 

spatiotemporal modeling and the potential of non-invasive, cost-effective thermal imaging for early-

stage detection, especially in resource-constrained environments.A key contribution of this work is its 

modality-specific analysis within a standardized deep learning pipeline, supported by visual 

explainability tools like Grad-CAM, which enhance clinical interpretability. The study reinforces that 

AI-based approaches can significantly augment traditional diagnostic workflows, but their real-world 

success depends on appropriate modality selection, model transparency, and clinical integration. 

6.2 Future Work 

While the study provides valuable insights, several opportunities remain for further research and 

practical enhancement: 

• MultimodalLearning: 

Future models could benefit from fusing features from multiple imaging modalities (e.g., combining 

mammogram and thermal or MRI and thermal data). This multimodal approach could improve 

robustness and diagnostic accuracy, leveraging complementary information from both anatomical and 

physiological imaging. 

• Larger, Diverse Datasets:Model generalization could be significantly improved with access to 

larger and more diverse datasets that include variations in demographics, imaging devices, and 

clinical conditions. Collaborations with hospitals and screening programs would be instrumental in 

gathering such data. 

• Explainable AI (XAI) Integration:Although Grad-CAM was used for visual explanation, further 

work can be done to integrate advanced interpretability techniques such as SHAP, LIME, or attention-

based interpretability mechanisms. This can increase clinician trust and aid regulatory approval. 
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• Real-time and Edge Deployment:Optimizing models for inference on mobile devices or edge 

hardware (e.g., NVIDIA Jetson, smartphones) will allow real-time diagnostics, especially important in 

rural screening camps and mobile health units. 

• Clinical Trials and Validation:Before clinical deployment, these models must undergo rigorous 

prospective validation through multi-center clinical trials. These studies will evaluate clinical utility, 

patient safety, and regulatory compliance. 

• Federated and Privacy-Preserving Learning:With growing concerns about data privacy, future 

systems can adopt federated learning techniques that allow AI models to be trained across institutions 

without transferring sensitive patient data. 

• User-friendly Software Tools:Developing GUI-based tools or integrating these models into 

existing PACS systems could accelerate their adoption by radiologists and clinicians, making AI a 

collaborative partner rather than a black-box decision maker. 
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