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Early detection of breast cancer significantly improves treatment outcomes and patient survival 

rates. This study proposes a deep learning framework for classifying benign and malignant breast 

lesions using the curated CBIS-DDSM dataset. The preprocessing pipeline includes three key 

steps: Gaussian filtering for noise reduction, CLAHE-based contrast enhancement to improve 

lesion visibility, and extensive data augmentation to promote generalization. We systematically 

evaluate three transfer learning-based CNN architectures (InceptionV3, EfficientNetB0, and 

MobileNetV2) initialized with ImageNet weights and fine-tuned for binary classification. 

Experimental results show that InceptionV3 achieves the best performance, reaching 90.2% 

accuracy, 87.1% sensitivity, 89.3% specificity, and an F1-score of 88.4% after only 70 epochs. 

EfficientNetB0 provides a more efficient alternative with 88.3% accuracy and faster 

convergence, while MobileNetV2, with 86.1% accuracy and 82.4% sensitivity, is well-suited for 

deployment in resource-constrained environments. These results demonstrate that a well-

designed preprocessing strategy combined with transfer learning can yield clinically relevant 

classification performance, with InceptionV3 emerging as the most balanced and reliable 

architecture. 

Keywords: Breast cancer classification, deep learning, transfer learning, medical image 

preprocessing, data augmentation, CNN architectures. 

 

INTRODUCTION 

Breast cancer continues to be one of the most significant global health challenges for women, with millions of new 

cases diagnosed annually [1]. As the primary screening modality for early detection, digital mammography plays a 

crucial role in improving patient outcomes. However, the interpretation of mammograms presents notable 

difficulties, including variability in radiologist assessments and reduced sensitivity in dense breast tissue [2]. These 

limitations have driven the development of computer-aided diagnosis (CAD) systems to support clinical decision-

making. 

Recent advances in deep learning have transformed medical image analysis, with convolutional neural networks 

(CNNs) demonstrating particular promise for mammography interpretation. The success of these approaches stems 

from their ability to automatically learn discriminative features directly from image data, overcoming the constraints 

of traditional hand-crafted feature extraction methods [3]. Transfer learning has further enhanced this capability by 

enabling the adaptation of models pretrained on large natural image datasets to the specialized domain of medical 

imaging, even with limited annotated examples [4]. 

Several studies have demonstrated the potential of deep learning, particularly convolutional neural networks (CNNs), 

in improving breast cancer detection from mammographic images [5–7]. For instance, a two-stage deep learning 

pipeline was applied for automatic mass segmentation from full mammograms without user intervention [8]. In [9], 

a deep learning system was developed to classify breast lesions as malignant or non-malignant using both region-of-
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interest patches and whole images. A method based on Faster-RCNN and transfer learning was proposed in [10] for 

lesion localization in breast ultrasound images. A multi-view mammogram classification model combining 

Transformer and multiplex convolutions was introduced in [11]. In [12], transfer learning using pre-trained deep 

networks was employed for lesion characterization. An automated multi-scale end-to-end neural network addressing 

small lesion detection was proposed in [13], while [14] introduced an ensemble of CNNs for breast cancer diagnosis. 

These advances have significantly improved breast cancer detection, with CNNs and transfer learning proving highly 

effective in medical image analysis [15–17]. However, challenges remain, particularly in ensuring standardized 

preprocessing and enabling fair comparisons between architectures under consistent evaluation protocols. 

In this paper, we develop a CNN-based binary classification system using transfer learning to distinguish malignant 

from benign breast lesions in mammograms from the CBIS-DDSM dataset. Addressing the computational complexity 

caused by scale differences between full mammograms and small abnormalities, we focus on annotated regions of 

interest (ROIs) to concentrate analysis on diagnostically relevant areas. Our methodology includes a preprocessing 

phase and a CNN model-building phase based on three architectures: InceptionV3, EfficientNetB0, and 

MobileNetV2. This approach aims to provide radiologists with an efficient diagnostic tool that combines targeted 

ROI analysis with robust deep learning techniques for improved clinical decision-making. 

METHODS 

Dataset 

In this study, we used the CBIS-DDSM dataset [18], a curated subset of DDSM [19], which contains 3,061 

mammograms across 1,566 patient cases. Each case includes both cranio-caudal (CC) and medio-lateral oblique 

(MLO), with annotations identifying lesions as benign or malignant. Figure 1. provides an overview of the various 

types of mammographic images included in the dataset. 

 
Fig1. Types of Mammographic Views in the CBIS-DDSM Dataset 

The CBIS-DDSM dataset includes digitized mammography cases converted to DICOM format and reviewed by expert 

radiologists. It comprises two primary lesion types: masses and calcifications. In this work, we utilize the pre-

extracted lesion patches provided by the dataset. These patches have been annotated and cropped by radiologists 

around regions of interest (ROIs), and are labeled as benign or malignant based on pathology-confirmed diagnoses. 

The dataset includes approximately 3,567 cropped ROI images, 3,247 ROI masks, and 2,857 full mammogram 

images.  

 
Fig 2. Examples of image types in the CBIS-DDSM Dataset 
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Some samples contain missing data, particularly in the ROI–full-view image pairs, with around 566 entries affected. 

CBIS-DDSM is widely adopted for developing and evaluating deep learning-based computer-aided diagnosis (CAD) 

systems for breast cancer detection. As shown in Figure 2, the CBIS-DDSM dataset comprises various image types, 

highlighting the range of mammographic views and corresponding annotations that support comprehensive breast 

cancer analysis.  

Data pre-processing  

Mammographic images are generally affected by noise, low contrast, and irrelevant background information, which 

can hinder the performance of deep learning models. Therefore, a preprocessing stage is essential to enhance image 

quality and highlight relevant diagnostic features before classification. The preprocessing pipeline consists of three 

stages:  

▪ Gaussian filtering (3×3 kernel, σ=1.0) for noise reduction while preserving diagnostic features such as spiculated 

margins and microcalcification clusters; 

▪ Contrast enhancement using CLAHE (clip limit=2.0, 8×8 tile grid) to improve visibility of subtle lesions in dense 

tissue; 

▪ Data augmentation during training, including random rotations (±15°), horizontal/vertical flipping (applied with 

50% probability), scaling (80-120% of original size), and translations (±10% along both axes), all while 

maintaining pathological validity.  

All ROI patches were resized to 224×224 pixels via bicubic interpolation and normalized to [0,1] by dividing pixel 

values by 255. This standardized approach ensures optimal feature extraction while preserving clinically relevant 

image characteristics, as confirmed through consultation with breast radiologists. 

 

Fig 3. Overview of the classification pipeline. Malignant and benign patches are extracted from the CBIS-DDSM dataset 

and undergo preprocessing steps, including noise removal, histogram equalization, and data augmentation. The 

preprocessed patches are then used for training and testing convolutional neural networks (CNNs). The trained 

models classify each patch into one of two categories: benign or malignant. 

CNN architectures 

To address the binary classification of breast lesions, we employed three widely recognized deep convolutional neural 

network architectures: InceptionV3, EfficientNetB0, and MobileNetV2. These architectures were originally trained 

on the large-scale ImageNet dataset and have demonstrated strong performance across various visual recognition 
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tasks, with particular advantages in computational efficiency and multi-scale feature learning. Leveraging their 

powerful feature extraction capabilities, we applied transfer learning to adapt these models to the medical imaging 

domain, particularly for digital mammograms. For this purpose, we replaced the final classification layers of each 

architecture with a new fully connected head tailored to our binary classification task, distinguishing between benign 

and malignant lesions. This strategy allows the networks to reuse learned visual features while focusing on 

mammography-specific patterns during fine-tuning. 

Inception-v3 

The Inception-V3 [20] employs parallel convolutional pathways with different kernel sizes (1×1, 3×3, 5×5) within 

modular blocks, enabling efficient multi-scale feature extraction. The architecture stacks these Inception modules 

between conventional convolutional and pooling layers, using batch normalization for stable training. Its design 

reduces computational cost while maintaining discriminative power through hierarchical feature combination, 

making it suitable for detecting lesions at varying scales in mammograms. The network concludes with global pooling 

and fully connected layers for classification. 

EfficientNetB0  

The EfficientNetB0 [21] optimizes model scaling through balanced adjustments of depth, width, and resolution. Its 

core consists of mobile inverted bottleneck blocks (MBConv) featuring depthwise separable convolutions and channel 

attention mechanisms. These blocks process features at different abstraction levels while maintaining parameter 

efficiency. The architecture begins with a stem convolution and ends with standard classification layers, achieving 

high accuracy with relatively low computational requirements, which is advantageous for medical image analysis 

tasks. 

MobileNetV2  

The MobileNetV2 [22] utilizes inverted residual blocks with linear bottlenecks to create a lightweight architecture. 

Each block expands channel dimensions for feature processing via depthwise convolutions before projecting back to 

lower dimensions. This design minimizes memory usage while preserving important spatial information. The 

network's emphasis on efficient depthwise operations and reduced activation dimensions makes it particularly 

suitable for deployment in resource-constrained clinical environments requiring real-time lesion detection. 

CNN TRAINING 

In this study, we focused on the analysis of abnormalities within cropped regions of interest (ROIs) extracted from 

the CBIS-DDSM dataset, without relying on the entire mammogram. These ROI-cropped images, which represent 

localized lesions such as masses and calcifications, were selected based on their predominance in the 

SeriesDescription field. Each ROI was resized to 250 × 250 pixels to ensure uniform input dimensions. Since the 

original mammographic images are in grayscale (single-channel), each patch was replicated across the three RGB 

channels to meet the input requirements (224 × 224 × 3) of the CNN architectures pre-trained on the ImageNet 

dataset. The dataset was divided into 70% training, 15% validation, and 15% test sets, with class balance maintained 

across all splits. This resulted in 2,676 ROI-cropped images used for training, while 336 were reserved for testing. 

The remaining validation set was used to monitor generalization during training. Each image was labeled as either 

benign or malignant, regardless of whether the lesion type was a mass or a calcification. Before training, all input 

patches underwent intensity normalization to ensure consistent preprocessing across the dataset. 

To train the CNNs, the dataset was divided into training and validation subsets. The training subset was used to 

optimize the network’s parameters, while the validation subset served to assess the model’s generalization capability 

after each epoch. To prevent overfitting and enhance the diversity of the training data, several clinically valid data 

augmentation techniques detailed in Section 2.2 were dynamically applied during training. These transformations 

modified lesion orientation, scale, and position, thereby increasing data variability and improving the model’s 

robustness. 
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PACH CLASSIFICATION 

After training the CNN models on the ROI-cropped patches, the classification stage aims to determine whether each 

localized lesion corresponds to a benign or malignant abnormality. Normal cases were not included in this study, so 

the classification problem was framed as a binary task, regardless of the lesion subtype (mass or calcification). Each 

patch was passed through the trained CNN, which produced a probability distribution over the two classes. The final 

label was assigned based on the higher predicted probability. 

The evaluation was carried out on a held-out test set composed of 336 ROI-cropped images, equally divided between 

benign and malignant cases to ensure a balanced and fair assessment of model performance. The CNN models, 

trained using the deep features learned from the CBIS-DDSM dataset, demonstrated the ability to capture complex 

imaging cues and subtle variations in lesion appearance, contributing to more reliable classification. 

This approach enables automated analysis of localized breast lesions, offering a practical solution for assisting 

radiologists in clinical diagnosis. Figure 3 illustrates the binary classification pipeline employed in this work, which 

includes both training on ROI-cropped images and predicting their corresponding labels. 

EVALUATION METRICS  

To assess the performance of our CNN models in classifying breast lesions, we employed four key metrics calculated 

from the confusion matrix (True Positives TP, False Positives FP, True Negatives TN, False Negatives FN): 

Accuracy: Measures overall correctness of predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                           (1) 

Sensitivity (Recall): Evaluates the model’s ability to detect malignant cases. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑁
                                                                              (2) 

Specificity: Assesses correctness in identifying benign cases. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                                                (3) 

F1-Score: Balances precision and recall (harmonic mean). 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  , 𝑤ℎ𝑒𝑟𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
    (4) 

These metrics provide complementary insights: Accuracy for overall performance, Sensitivity/Specificity for class-

wise reliability, and F1-Score for imbalanced data robustness. 

RESULTS AND DISCUSSION 

All experiments were conducted using Google Colaboratory with GPU acceleration, leveraging TensorFlow and Keras 

frameworks to optimize computational efficiency. The full pipeline includes three-stage image enhancement, patch 

extraction, and progressive fine-tuning. We evaluated three CNN architectures (InceptionV3, EfficientNetB0, and 

MobileNetV2) on preprocessed ROI-cropped patches from the CBIS-DDSM dataset. Transfer learning was employed 

by initializing each model with ImageNet pre-trained weights, while fine-tuning was restricted to the top 

classification layers for the binary classification task. The training protocol standardized input dimensions (224×224 

pixels for MobileNetV2 and EfficientNetB0, 299×299 for InceptionV3) and incorporated data augmentation through 

clinically valid transformations (e.g., rotations, flips, and scaling) as detailed in Section 2.2 to enhance generalization. 

Models were trained for up to 150 epochs with a batch size of 32, using the Adam optimizer (initial learning rate 1e-

3) and binary cross-entropy loss, while implementing early stopping (patience=15 epochs) and learning rate 

reduction on plateau (factor=0.1, patience=5) to prevent overfitting and optimize convergence. The dataset was 

partitioned into 70% training, 15% validation, and 15% test sets with balanced class distribution, with all experiments 
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ensuring reproducibility through fixed random seeds (42) and hardware efficiency via mixed-precision training. 

Figure 4 illustrates the comparative training dynamics, while Table 1 summarizes performance metrics. 

 
Fig 4. Training dynamics of transfer learning models: InceptionV3, EfficientNetB0, and MobileNetV2, showing 

accuracy and loss evolution across epochs 

InceptionV3: The figure demonstrates that InceptionV3 achieves a validation accuracy of 90% after 70 epochs, with 

the final loss stabilizing around 0.25. The learning curve indicates progressive convergence without significant 

overfitting, attributable to data augmentation and fine-tuning (transfer learning). The sensitivity (87%) and 

specificity (89%) confirm its robust capability to discriminate between malignant and benign lesions. InceptionV3's 

deep architecture can explain these superior performance metrics, which effectively capture hierarchical complex 

features. 
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EfficientNetB0: EfficientNetB0 exhibits a validation accuracy of 88% with a final loss of 0.30, achieved within 100 

epochs. Both accuracy and loss curves demonstrate stable optimization through transfer learning. While slightly less 

accurate than InceptionV3, this model provides an excellent balance between performance and computational 

efficiency, as evidenced by its F1-Score (85%). Its specificity (87%) makes it particularly reliable for minimizing false 

positives - a crucial advantage in clinical diagnostics. 

MobileNetV2: With a validation accuracy of 86% and final loss of 0.35 after 100 epochs, MobileNetV2 emerges as the 

lightest but least performant among the three architectures. Its relatively lower sensitivity (82%) suggests a higher 

false negative rate, which may limit its application in demanding clinical scenarios. However, its operational speed 

and low memory footprint render it a viable option for embedded or real-time deployment systems. 

Overall, InceptionV3 emerged as the best-performing model, achieving the highest accuracy, sensitivity, and 

specificity across all experiments, making it the most reliable architecture for lesion classification in the CBIS-DDSM 

dataset. EfficientNetB0 offered a compelling trade-off between accuracy and computational cost, while MobileNetV2, 

although the least accurate, demonstrated the fastest inference times, suggesting its potential suitability for 

deployment in resource-constrained or real-time diagnostic settings. These results highlight the critical balance 

between performance and efficiency when selecting models for clinical use. 

Table 1. Comparative performance of deep learning architectures for breast lesion classification 

Model Accuracy(%) Sensitivity (%) Specificity (%) F1-Score (%) 

InceptionV3 90.2 87.1 89.3 88.4 

EfficientNetB0 88.3 85.2 87.5 85.2 

MobileNetV2 86.1 82.4 85.8 83.7 

The quantitative evaluation in Table 1 demonstrates that all three transfer learning models successfully classified 

breast lesions, with InceptionV3 emerging as the most robust architecture. The model attained the highest accuracy 

(90.2%) and F1-score (88.4%), coupled with balanced sensitivity (87.1%) and specificity (89.3%), indicating its 

clinical reliability for minimizing both false positives and negatives. EfficientNetB0 followed closely with 88.3% 

accuracy and 85.2% F1-score, showing particular strength in specificity (87.5%) that makes it suitable for scenarios 

prioritizing false positive reduction. MobileNetV2, while slightly less performant (86.1% accuracy, 83.7% F1-score), 

maintained reasonable sensitivity (82.4%) and specificity (85.8%), suggesting its potential for resource-constrained 

implementations where moderate performance trade-offs are acceptable. Notably, all models exceeded 85% 

specificity, confirming their effectiveness in correctly identifying benign lesions, which is a critical requirement for 

clinical decision support systems. The performance hierarchy (InceptionV3 > EfficientNetB0 > MobileNetV2) 

remained consistent across all metrics, validating the comparative analysis of their training dynamics shown in 

Figure 4. 

Table 2. Comparative results with existing methods 

Reference Approach Model Accuracy(%) 

[23] Transfer Learning VGG16 83.10 

[24] Transfer Learning 
AlexNet  90.87 

VGG16  86.52 

[25] 
Classical Machine 

Learning 

Naive Bayes classifier 83.00 

[26] 
Deep Learning-

based 

CNN + Multi-Layer 

Perceptron (MLP) 

80.00 

Ours 
Transfer Learning 

with CNNs 

InceptionV3 90.20 

EfficientNetB0 88.30 

MobileNetV2 86.10 
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To validate the effectiveness of our transfer learning-based approach, we compared the performance of three deep 

convolutional architectures, InceptionV3, EfficientNetB0, and MobileNetV2, with existing methods applied on the 

CBIS-DDSM dataset for the classification of benign and malignant breast tumors; the comparative results are shown 

in Table 2. In [23], the VGG16 model achieved an accuracy of 83.1%, while in [24], AlexNet reached 90.87% and 

VGG16 obtained 86.52%. The classical Naive Bayes classifier reported in [25] achieved 83%, and the CNN combined 

with MLP in [26] reached 80%. In comparison, our models achieved 90.2% with InceptionV3, 88.3% with 

EfficientNetB0, and 86.1% with MobileNetV2, demonstrating superior overall performance and greater robustness 

for classifying breast lesions on the CBIS-DDSM dataset. 

CONCLUSION 

We proposed a deep convolutional neural network (CNN) approach for early-stage breast cancer lesion detection 

using the CBIS-DDSM dataset. Our framework integrates image preprocessing, data augmentation, and transfer 

learning to achieve high classification performance. This approach shows strong potential for deployment in clinical 

CAD systems. Among the tested architectures, InceptionV3 demonstrated the most consistent and balanced results, 

particularly in sensitivity and F1-score, highlighting its suitability for medical imaging tasks involving subtle lesion 

features. While all models benefited from the standardized preprocessing pipeline, the results also reflected the 

common trade-offs between sensitivity and specificity, crucial considerations in clinical decision-making. Future 

work will focus on integrating attention mechanisms and hybrid architectures to further improve diagnostic accuracy. 

This study underscores the effectiveness of deep CNNs in distinguishing benign from malignant breast lesions in 

mammographic images. The exclusive use of the CBIS-DDSM dataset provides a focused and clinically relevant 

benchmark. Moreover, the preprocessing techniques significantly enhanced image quality, facilitating better model 

convergence. Overall, our findings suggest that CNN-based CAD systems can provide radiologists with reliable 

second opinions, potentially reducing false diagnoses and improving patient outcomes. 
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