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Strong encryption methods are necessary to protect medical images against illegal access and 

cyber threats as digital healthcare systems and telemedicine expand exponentially. This work 

presents a Grey Wolf Optimizer (GWO) enhanced encryption system using a modified logistic 

chaotic map to guarantee excellent security and efficiency in medical image encryption. The 

suggested method optimizes chaotic parameters against increased Shannon entropy and 

decreased pixel correlation, guaranteeing enhanced unpredictability and resilience against 

statistical attacks. Key generation from pixel intensities, chaotic sequence generation, and XOR-

based encryption form the encryption process. Driven by GWO, the optimization process reduces 

chaotic parameters to generate an encrypted image with low correlation, almost uniform 

histogram, and high entropy. The suggested method is fit for real-time IoT-based medical 

applications based on experimental results on standard medical pictures, including MRI-chest 

and standard image Lena, showing the robustness of the proposed method in terms of NPCR, 

UACI, PSNR, and entropy analysis. While preserving computational efficiency, the suggested 

encryption  

Keywords: GWO, Chaotic map, Stream Cipher, Medical images, Shannon Entropy, Correlation 

Coefficients 

 

INTRODUCTION 

The extensive expansion of the Internet of Things (IoT) has transformed various industries, and healthcare is among 

the most affected industries. IoT-based medical devices like wearable health monitors, smart diagnostic machines, 

and remote monitoring devices have completely transformed the collection, analysis, and transmission of medical 

data. Such systems produce and communicate enormous amounts of sensitive health-oriented medical data, 

including diagnostic medical images of ultrasound scans, CT scans, X-rays, and MRIs. Medical images play a crucial 

role in diagnosis, treatment planning, and ongoing surveillance of numerous illnesses. Transmission and storage of 

medical images in the context of IoT is extremely dangerous from a security perspective because such images are very 

sensitive. Unauthorized access, disclosure, or tampering with such images can result in serious consequences, 

ranging from privacy breaches, to misdiagnosis, and substandard patient care. Hence, confidentiality, integrity, and 

authenticity of medical images must be ensured in IoT-based healthcare systems of highest priority. Encryption is 

the foundation of protecting medical data. Conventional cryptographic schemes like RSA, DES, and AES have 

extensively been employed to protect data. But these techniques were originally developed for text and numeric data, 

and thus not as well-suited to medical images, which have special properties like high spatial redundancy, high 

correlation between pixels, and massive data sizes. These properties require specific encryption methods that can 

efficiently protect medical images without being computationally expensive, especially for devices in the IoT with 

limited resources. Traditional encryption techniques are extremely computationally intensive and therefore 

unsuitable for real-time healthcare use. Furthermore, techniques like affine transformations and random pixel 

scrambling, although studied in medical image encryption, do not appear to offer adequate protection against 

statistical and brute-force attacks. 
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In an effort to bypass these constraints, researchers have established several encryption protocols specifically 

designed for medical image security in IoT scenarios. These types of encryption seek to solve several challenges 

including ensuring confidentiality of the data, lowering computational overhead, and enhancing the resistance to 

various forms of cryptographic attacks. Some recent research has been centred on the development of encryption 

models with multiple layers of security, for example, chaotic systems, DNA encoding, and optimization algorithms, 

to enhance their robustness and efficiency. Some optimization-oriented and chaos-based methods have been put 

forward to improve computational efficiency and security in encryption. For example, Belazi et al. [1] introduced a 

chaos-based cryptography model with DNA encoding for strengthening security using multi-level substitution and 

diffusion. Akkasaligar and Biradar [2] used a selective DNA cryptography approach for medical images with high-

security level and accelerated encryption speed. Fan et al. [3] proposed a hybrid chaotic cryptographic scheme for 

wireless body area networks with great resistance to differential attacks and high randomness of ciphertext outputs. 

Subsequent developments concentrated on combining chaotic maps with optimization algorithms for enhancing 

encryption efficiency Optimization algorithms play a crucial role in encouraging encryption by dynamically 

controlling key parameters, optimizing substitution and permutation processes, and attaining high entropy 

ciphertext output. A number of hybrid methods have been proposed that combine chaotic encryption and 

evolutionary algorithms for optimizing key generation processes and computational efficiency. Afify et al. [4] 

proposed a dynamic DNA-coding-based encryption technique that guaranteed more randomness and statistical 

attack resilience. Masood et al. [5] proposed a lightweight chaos-based encryption algorithm based on random 

shuffling and XOR operations that truly enhanced confusion and diffusion properties. Kamal et al. [6] introduced a 

hybrid chaotic medical image encryption model using chaotic maps and permutation algorithms with improved 

security and key sensitivity.  

In spite of all such advancements till date, the current methods have certain drawbacks like high computation loads, 

vulnerability to certain attacks, and reduced flexibility in IoT settings. To solve these problems, in this paper, a new 

medical image encryption scheme based on chaotic maps and the Grey Wolf Optimizer (GWO) is proposed. The new 

approach employs the ability of GWO to optimize chaotic encryption parameters for the best randomness, improved 

security, and lower computational complexity. GWO's efficiency in finding optimal solutions with limited 

computational power makes it well-suited for IoT devices, which in most cases have limitations of low processing 

power, memory, and power consumption. This renders the suggested encryption scheme highly applicable in IoT-

based health care systems where efficiency and security are significant parameters. 

The suggested encryption scheme combines the nonlinearity of the logistic chaotic map with the optimality of the 

GWO to achieve a best compromise between security and computational complexity. The logistic chaotic map adds 

chaos with intricate unpredictable dynamics to the encryption scheme that makes it highly resistant to statistical 

attacks and brute-force attacks. While GWO maximizes the encryption parameters to achieve maximum Shannon 

entropy and minimum pixel correlation so that the encrypted images become highly random and unpredictable. The 

hybrid method not only increases the security of medical images but also makes the process of encryption 

computationally efficient, ideal for real-time applications in IoT-based healthcare systems. The performance of the 

new encryption scheme is evaluated with different parameters such as correlation coefficient, Shannon entropy, 

NPCR, UACI, MSE, PSNR, histogram analysis, and NIST statistical tests. The outcome shows that the proposed 

method is computationally more efficient and more secure than existing encryption algorithms and can be an 

effective solution for encrypting medical images in IoT. Through overcoming the weaknesses of conventional 

encryption techniques and taking advantage of the advantages of chaotic systems and optimization algorithms, this 

study encourages the pursuit of secure and effective encryption techniques for the protection of medical images in 

healthcare systems based on IoT. 

   Table 1: Acronyms Used in This Study 

S.No. Acronym Full Form 

1.  NPCR Number of Pixel Change Rate 

2.  UACI Unified Average Changing 

Intensity 
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3.  PSNR Peak Signal-to-Noise Ratio 

4.  MSE Mean Squared Error 

5.  AES Advanced Encryption Standard 

6.  DES Data Encryption Standard 

7.  RSA Rivest–Shamir–Adleman 

8.  GA Genetic Algorithm 

9.  GWO Grey Wolf Optimizer 

10.  DE Differential Evolution 

11.  ABC Artificial Bee Colony 

12.  FA Firefly Algorithm 

13.  WOA Whale Optimization Algorithm 

14.  ACO Ant Colony Optimization 

15.  DNA Deoxyribonucleic Acid 

 

RELATED WORK 

In recent years, a number of innovative techniques for dynamic cryptographic key generation and encryption have 

been studied by researchers utilising chaotic systems and metaheuristic optimisation algorithms. Genetic algorithms 

(GAs) have been employed in some of the early studies in this field to produce robust cryptographic keys. The 

Automatic Variable Key (AVK) in [7] dynamic key generation mechanism, for example, is based on GA and uses 

genetic operators like crossover and mutation to generate keys that change with every data block. The method offers 

strong defence against pattern and brute force attacks, but it comes at a high computational cost when the keys are 

changed often.  

In addition to all of this,[8]combines GA with DNA-based key generation by pre-seeding the algorithm with chaotic 

functions and logistic maps. This results in very high security and very little key waste, but at the expense of more 

complicated key management. Additionally, [9] develops a Chaos Genetic Algorithm (CGA) that merges GAs with 

chaotic maps to generate extremely random keys suitable for Internet of Things environments; nevertheless, the 

method may result in unpredictable behaviour due to its sensitivity to initial conditions. These concepts are further 

developed in [10] by combining GA, Linear Feedback Shift Register (LFSR), and chaotic pictures in a hybrid approach 

that yields increased randomness as confirmed by the NIST statistical test suite but necessitates significant CPU 

resources to achieve. 

In addition to GA-based techniques, metaheuristic optimisation based on natural behaviours has garnered a lot of 

attention. Grey Wolf Optimiser (GWO) variants are categorised into parallel, hybridised, modified, and multi-

objective variants in a survey in [11]. By attaining notable gains in convergence rates, these variants demonstrate 

their usefulness in networking and image processing applications. Since then, studies like [12] and [13] have used 
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simulated grey wolf hunting tactics based on the roles of hierarchical alpha, beta, delta, and omega wolves to solve 

NP-hard design problems by striking a balance between exploration and exploitation. Despite producing competitive 

results, these algorithms experience stagnation in local optima; hence, more robust processes are required to 

maintain population variety. In response to multi-objective problems, [14] presents a Multi-Objective Grey Wolf 

Optimiser (MOGWO) that effectively extracts Pareto-optimal solutions through the use of grid mechanisms, leader 

selection, and fixed-size archives. However, its performance has only been evaluated on benchmark functions, and 

real-world scalability is still an open issue. 

Performance in optimisation has also been significantly enhanced by the use of chaotic maps into GWO variations. 

In [15], a Chaotic Local Search (CLS) is added to the fundamental GWO framework to achieve faster global 

convergence, hence proposing Chaotic Grey Wolf Optimisation (CGWO). This is contingent upon the appropriate 

selection of chaotic maps. Using deterministic chaotic signals to adjust important GWO parameters, [16] achieves 

better global optimality than methods such as Particle Swarm Optimisation (PSO) and Firefly Algorithm (FA). Using 

chaotic variables to dynamically choose the number of leaders in each iteration, [17] further promotes solution 

diversification. Both findings emphasise the need for more research to optimise the selection of chaotic maps for a 

range of practical uses. 

Recently, the field of picture encryption—particularly for medical applications—has also used these chaotic and 

metaheuristic techniques. Combining Convolutional Neural Networks (CNN), Non-Subsampled Shearlet Transform 

(NSST), Pulse Coupled Neural Networks (PCNN), and Dual-Tree Complex Wavelet Transform (DTCWT), a multi-

scale fusion framework for medical imaging is provided in [18]. Though computationally demanding, metaheuristic 

learning enhances image quality and feature learning by adaptively selecting fusion weights, similar to GA and 

CGWO. While these S-boxes are very resistant to cryptanalysis, the complexity of the approach makes it difficult to 

achieve real-time global optimisation. In [19], hybrid methods are used to design nonlinear S-boxes by combining 

Grey Wolf Optimisation with logistic maps, cuckoo search algorithms, and evolutionary strategies. Additionally, by 

optimising eight chaotic maps utilising nine metaheuristics and offering superior security through pixel diffusion and 

permutation, [20] enhances chaotic map-based picture encryption. Real-time application may be difficult due to the 

method's computing complexity, despite its excellent key space and equal histogram distribution. 

Additional techniques aim to enhance the encryption of 3D and medical images. With the introduction of a Steerable 

Cosine Number Transform in three dimensions (3D-SCNT) in [1], secret keys for the direct encryption of 3D medical 

images are generated using rotation operators over finite fields. Although the method is now limited to 3D imaging, 

it offers robust security for 3D data but requires strict key control. In [21], medical images are encrypted using bitwise 

XOR operations and pixel permutation using a hybrid chaotic model that combines a logistic chaotic model with a 

2D Lorentz system. This model achieves high values of UACI, NPCR, and PSNR, but its computational complexity 

limits its performance to DICOM CT scans. In order to support these studies, [6] provides a block-splitting-based 

encryption technique that uses logistic map-generated keys, rotation, random permutation, and zigzag pattern 

confusion. Entropy and histogram tests validate the scheme's strong security, but its performance is sensitive to the 

block size selection. In [5], a lightweight encryption technique based on Henon's chaotic map, Chen's chaotic system, 

and Brownian motion is proposed to efficiently and securely encrypt medical images, with higher processing burdens 

for larger images. A better image encryption scheme in [22] combines two-dimensional Logistic Chaotic Map 

(2DLCM) and Piecewise Linear Chaotic Map (PWLCM), optimised by a better metaheuristic (CI-WOA). This results 

in a higher information entropy for satellite images at the expense of decreased efficiency due to complex parameter 

optimisation.  

The novel two-dimensional chaotic maps for hybrid encryption proposed by [23] use Lyapunov analysis, bifurcation, 

and permutation-diffusion processes, providing a reliable and secure system but requiring precise parameter control 

because of its extreme sensitivity to initial conditions.  

Though each has its own advantages and disadvantages, taken as a whole, these works offer a variety of solutions, 

ranging from complex metaheuristic optimisations and chaotic encryption schemes to dynamic key generation 

through GA. Despite the significant advancements in security and encryption quality, encryption is still plagued by 

general issues including computational complexity, real-time scalability, and precise parameter control. This will 

need to be reconciled in future study. 
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PRELIMNARIES 

This section defines the basic ideas of the designed encryption scheme, i.e., chaos theory and Grey Wolf Optimizer 

(GWO). Chaos theory facilitates the generating of extremely random sequences, which is critical for safe encryption. 

GWO optimizes the parameters for encryption to increase security and efficiency. These theories are the basic 

principles of the designed method that ensure secure medical image protection in IoT-based health systems. 

3.1 Chaos theory  

It is a field of mathematics where dynamical systems are the main focus. It stands out in particular for being extremely 

sensitive to even the slightest changes in initial conditions, a phenomenon commonly called the Butterfly Effect [19]. 

Long-term forecasts are practically unachievable in dynamical systems because such minor adjustments can have 

wildly disparate results [20]. Beyond this sensitivity, chaotic systems provide many benefits, such as extended 

periodicity, random-like behaviour, ease of use, and high levels of confusion and diffusion when used repeatedly in 

cryptographic operations. These characteristics have caused chaos-based encryption techniques to surpass 

conventional ciphers in popularity for protecting multimedia data. As a result, many different types of chaotic maps, 

both basic and complicated, have been used to build encryption systems. In this study, we employ the most 

straightforward and often utilized chaotic logistic map, which is described by the following equation. 

The logistic map is used to represent population growth in which is represented by Equation 1. 

 𝑦𝑛+1 = 𝑞𝑦𝑛(1 − 𝑦𝑛)                                                                                                                                                             (1)  

Where the y0 ∈ [0,1] and q  ∈ [3.6,4], with 𝑦𝑛 as population and 𝑟 as growth rate. The bifurcation diagram, as shown 

in Figure 1. depicts the population change as a function of the variation in 𝑞. The population becomes stable initially 

but starts to oscillate between two, four, and higher values as 𝑞 grows. The system ultimately becomes chaotic. This 

graph illustrates how slight variations in the growth rate can result in highly different population behaviors, ranging 

from stability to chaos. In our proposed model, we have selected the value of q greater than 3.6 for maximum chaotic 

behavior. 

Figure 1: Logistic Map Bifurcation Diagram[24] 

3.2 Grey Wolf Optimiser (GWO) 

Based on grey wolves' social structure and hunting techniques, GWO is a nature-inspired metaheuristic algorithm 

first presented by Mirjalili et al. in 2014 [22, 23]. It simulates the leadership structure and collaborative hunting 

strategies of wolf packs to solve optimization problems. Below is a detailed explanation of its components, 

mathematical modelling, and benefits in optimizing logistic chaos functions. 

1.  Social Hierarchy 

The algorithm mimics the social hierarchy of a wolf pack, where each candidate solution is represented as a wolf. 
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a. Alpha (α): The best solution (closest to the optimal value). 

b. Beta (β): The second-best solution. 

c. Delta (δ): The third-best solution. 

d. Omega (ω): The remaining solutions (least fit). 

2. Hunting Phases 

The optimization process is divided into three phases, inspired by the hunting behaviour of wolves 

a. Search Phase 

Wolves (solutions) update their positions based on the locations of α, β, and δ. This guides the search towards 

promising areas in the solution space. 

b. Encircling Prey 

Wolves strategically encircle the perceived prey (optimal solution) based on the positions of α, β, and δ. This ensures 

a focused search for the best solutions. 

3. Attacking Prey: 

Wolves converge towards the prey to exploit it (find the optimal solution). This convergence is mathematically 

modelled to improve solutions iteratively. 

4. Mathematical Modelling of GWO 

Vectors represent the positions of wolves, and mathematical equations control their movements.  

a.  Position Update Equation 

The position of a wolf is updated based on the positions of α, β, and δ shown in Equation 2. 

𝐵𝑡+1 =   
𝐵x+𝐵y+𝐵z

3
                                                                                                                                                     (2) 

 

Where 𝐵𝑡+1 is the new position of the wolf at iteration 𝑡 + 1 and 𝐵x, 𝐵y, 𝐵z are the positions x, y, and z  wolves, 

respectively 

b. Encircling Behaviour 

The encircling behaviour is represented by Equations 3 and 4.  

𝑑 =  |𝑐. 𝐵𝑡
𝑝

− 𝐵𝑡|                                                                                                                                                       (3) 

𝐵𝑡+1 =  𝐵𝑡
𝑝

− 𝑃. 𝑑                                                                                                                                                      (4) 

Where 𝑑  is the distance between the wolf and the prey, 𝐵𝑡
𝑝

 is the position of the prey at iteration 𝑡 and 𝑃, 𝑐 are  

coefficient vectors are calculated by equations 5 and 6, respectively. 

𝑃 = 2𝑏 × 𝑠1 − 𝑏                                                                                                                                                      (5) 

𝑐 = 2𝑠2                                                                                                                                                                   (6) 

Where 𝑏 is the parameter whose value decreases linearly from 2 to 0 over iterations and 𝑠1 , 𝑠2 are the random values 

∈ [0, 1]. 

c. Hunting Behaviour 

The hunting behaviour is modelled by updating the positions of wolves based on the positions of α, β, and δ as shown 

by equations 7, 8, and 9, respectively. 
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𝐵𝑡+1
x =  𝐵𝑡

x − 𝑃1. 𝑑x                                                                                                                                                  (7) 

𝐵𝑡+1
 y

=  𝐵𝑡
 y

− 𝑃2. 𝑑 y                                                                                                                                               (8) 

𝐵𝑡+1
z =  𝑍𝑡

 z − 𝑃2. 𝑑 z                                                                                                                                               (9) 

Where 𝑑x , 𝑑y, 𝑑 z  distances between the wolf and x, y, and z, respectively, and 𝑃1 , 𝑃2 , 𝑃3 are the coefficient vectors 

for x, y, and z. 

For the encryption of medical images, the GWO exhibits many benefits over the Genetic Algorithm GA and PSO. 

GWO ensures thorough search space exploration and efficient exploitation by dynamically balancing exploration and 

exploitation through linear coefficient reduction, which improves optimization. In contrast to GA, which necessitates 

factors like mutation and crossover rates, or PSO, which incorporates inertia weight and cognitive coefficients, GWO 

simplifies implementation by requiring fewer parameters to be adjusted. It converges to optimal solutions more 

quickly and consistently, a crucial prerequisite for real-time encryption in medical applications. Premature 

convergence, a frequent drawback in GA and PSO, is less likely in GWO since it preserves population variety by 

utilizing the hierarchical structure of wolves. Furthermore, chaotic systems used in medical picture encryption can 

benefit from GWO's exceptional performance in nonlinear and multimodal optimization challenges. Additional 

factors that increase its usefulness in resource-constrained situations, such as IoT-based healthcare systems, include 

its simplicity, reduced computational complexity, and firm performance in high-dimensional data optimization. 

Because GWO's method is inspired by nature, it does not rely on complicated operators, which lowers the possibility 

of overfitting and guarantees consistent performance across different datasets. Table 2 compares different optimizer 

algorithms and tells us why we included GWO in our proposed model. 

Table 2. Comparison between different optimizer algorithms 

Algorithm Convergence Speed Resource Efficiency Complexity 

DE Fast Low Moderate 

ABC Fast Low Moderate 

GWO Very Fast Very Low Simple 

FA Moderate Medium Simple 

WOA Very Fast Low Simple 

ACO Moderate Medium Moderate 

    

PROPOSED WORK 

By fusing the nonlinearity of a logistic chaotic map with the optimization capability of the GWO, the paper introduces 

a novel encryption scheme for greyscale medical images. As the demand for the secure transmission and storage of 

medical data is high, developing encryption algorithms for better security and computational complexity is 

significant. Optimization of the cryptographic key for having high randomness at the cost of low computational 

complexity is achieved through GWO to optimize the encryption parameters. This adaptive key adjustment is a strong 

and adaptive option in modern picture encryption of the medical variety. Introducing complex, unpredictable 

behaviour into the encryption process adds to the system's security. The encryption process's Brute-force and 

statistical attack resistance are significantly enhanced because the prediction and duplication of the cryptographic 

keys by the chaotic map are cumbersome. Such nonlinearity is an intrinsic part of cryptographic key generation, 

which becomes difficult to decode, thus enhancing the system's security. The resultant medical images, after 

encryption, are highly resistant to evolving cyber threats in the healthcare sector due to the GWO-hybrid approach 

of the chaotic map. Minimizing the correlation coefficient between adjacent pixels of the encrypted image and 

maximum Shannon Entropy maximization is one of the leading objectives of the research study. To discourage the 

most common cryptanalytic attacks, a high level of unpredictability is required for the encrypted images, which these 

two parameters ensure. Minimizing pixel correlation avoids attacks based on patterns, thus making the system secure 

with robust encryption performance and strength against malicious efforts to enter the system. The effectiveness of 

the suggested encryption scheme in vulnerable domains like entropy, correlation coefficient, and immunity against 

different attacks will be quantified. A comparison will be made against existing encryption schemes to determine the 
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effectiveness of the hybrid methodology. The experiment aims to establish that the suggested solution is maximum 

security with computation efficacy preservation, which is essential for medical data encryption during real-time data 

processing in cloud medical environments. The extensive testing will validate the application of the encryption 

technique in existing medical environments. 

4.1 Encryption Algorithm 

Encryption Process 

Input: 

An M × N greyscale medical image IMG. 

Output: 

The encrypted image ENC_IMG, with low pixel correlation and high randomness. 

 

Step 1: GEN_KEY (Key Generation) 

1) Randomly Select Pixel Locations: 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑖𝑥𝑒𝑙𝑠 = 𝐿(𝑖, 𝑗)|(𝑖, 𝑗) ∈ 𝑅𝑎𝑛𝑑𝑜𝑚𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠     

 

2) Extract Key Values: 

  𝑉 = ⋃ 𝐿(𝑖, 𝑗)(𝑖,𝑗)∈𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑖𝑥𝑒𝑙𝑠 𝐿                                                   

 

 

3) Convert Key to Binary Sequence: 

𝑉𝑏𝑖𝑛 = 𝐵𝑖𝑛𝑎𝑟𝑦(𝑉)   

 

 

4) Initialize the Logistic Map with Extracted Key: 

𝑥0 =
ΣV

|𝑉|
           ∈  [0,1] 

 

Step 2: Chaotic Sequence Generation 

5) Logistic Map Iteration: 

                     𝑥𝑛+1 = 𝑝𝑥𝑛(1 − 𝑥𝑛)     

6) Generate a Chaotic Sequence for Encryption: 

𝐶 = 𝑋1, 𝑋2, … , 𝑋𝑀×𝑁  

 

7) Normalize Chaotic Values to Pixel Intensity Range (0-255): 

                     𝐶𝑛𝑜𝑟𝑚 = [𝐶 × 256]  

 

Step3: ENCRYPT (Pixel-wise XOR Encryption) 

For each pixel L(i, j) in the medical image: 

8) Extract pixel intensity: 

 

𝐿(𝑖, 𝑗)𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝐼𝑀𝐺(𝑖, 𝑗)  

9) Apply XOR with the Chaotic Sequence: 
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𝐿(𝑖, 𝑗)𝑒𝑛𝑐𝑟𝑦𝑝𝑝𝑡𝑒𝑑 = 𝐿(𝑖, 𝑗)𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙⨁𝐶𝑛𝑜𝑟𝑚(𝑖, 𝑗)  

 

 

10) Construct the Encrypted Image: 

𝐸𝐶𝑁_𝐼𝑀𝐺 = 𝐿(𝑖, 𝑗)𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑|1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑁  

 

Step 4: GWO Optimization 

11) Define Fitness Function: 

• Maximize Shannon Entropy (H) 

𝐻 = − ∑ 𝐿(𝑖)𝑙𝑜𝑔2𝐿(𝑖)255
𝑖=0   

• Minimize Pixel Correlation (r) 

𝑟 =
∑(𝐿𝑒𝑛𝑐(𝑖)−𝜇𝑒𝑛𝑐)(𝐿𝑒𝑛𝑐(𝑖+1)−𝜇𝑒𝑛𝑐)

√∑(𝐿𝑒𝑛𝑐(𝑖)−𝜇𝑒𝑛𝑐)2 ∙√∑(𝐿𝑒𝑛𝑐(𝑖+1)−𝜇𝑒𝑛𝑐
2)

  

12) Optimization Using Grey Wolf Optimizer (GWO): 

• Initialize N wolves with random chaotic parameters (x0, p). 

• Compute fitness using entropy and correlation. 

• Update wolf positions using , ,  

                                      𝑠𝛼 = |𝑇1 ∙ 𝐴𝛼 − 𝐴|  

𝑠 = |𝑇2 ∙ 𝐴𝛽 − 𝐴|  

𝑠𝛿 = |𝑇3 ∙ 𝐴𝛿 − 𝐴|  

 

𝐴𝑛𝑒𝑤 =
(𝐴𝛼−𝑇1∙𝑠𝛼)+(𝐴𝛽−𝑇2∙𝑠𝛽)+(𝐴𝛿−𝑇3∙𝑠𝛿)

3
  

13) Repeat Until Convergence: 

• Update chaotic map parameters (x0, p) for best fitness. 

• Return optimized encrypted image ENC_IMG. 

 

 

Step-by-step explanation of the encryption mechanism: 

Step 1: Take optimal parameters for initializing the logistic chaotic map. 

Step 2: Employ the logistic map to form a pseudo-random sequence. 

Step 3: XOR the pixel intensity with the value from the chaotic sequence for encrypting the image. 

Step 4: Evaluate the encrypted image 

            It is made possible by high entropy, and the correlation is low. 

Step 5: Update the chaotic parameters using GWO until the halting requirements are satisfied. 

 The encryption flow chart is shown in Figure 1. And the decryption will be the reverse of encryption. 
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Figure 2. Encryption Flow Chart. 

.RESULT AND DISCUSSION 

This section thoroughly analyses the given medical image encryption scheme based on its security, randomness, and 

computational complexity. The performance is measured based on standard cryptographic parameters such as 

correlation coefficient, Shannon entropy, NPCR, UACI, MSE, PSNR, histogram analysis, and NIST statistical tests. 

The results reveal that the novel GWO-based chaotic encryption method is better than other methods and, therefore, 

highly relevant to IoT-based healthcare. The evaluation is performed using five typical 512 x 512 grayscale images—

Lena, Barbara, Baboon, Chest, and Boat—that are widely used in image processing research due to their varied texture 

and complexity and are, therefore, good candidates for analysing the strength of the encryption scheme. The proposed 

scheme leverages the strengths of GWO and chaotic systems to ensure safe encryption, focused on the pressing need 

for secure and efficient transmission of medical images for IoT-based health care systems. The results reaffirm its 

security and computational performance excellence, proving it a promising real-world medical data security solution. 

5.1 Correlation Coefficient Analysis 

The correlation coefficient is an essential parameter of encryption assessment because it measures the level of 

similarity between neighbouring pixels in an image. In a non-encrypted image, neighbouring pixels have a high 

correlation because of the natural redundancy of images. A good encryption scheme, however, must break this 

correlation so that pixel values become random and independent. The correlation coefficient is calculated using the 

Equation 10. 
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 c =
𝐸[(𝑀−𝜇𝑀)(𝑁−𝜇𝑁)]

𝜎𝑀𝜎𝑁
          (10) 

Where E denotes the expected value, M and N are the intensity values of the adjacent pixels, 𝜇𝑀 and 𝜇𝑁  are the mean 

values of M and N, and 𝜎𝑀 and 𝜎𝑁 are the standard deviations of A and B. The closer the correlation coefficient is to 

zero, the better the encryption system performs in decorating adjacent pixels. The correlation coefficients in the 

original and encrypted images' horizontal (HD), vertical (VD), and diagonal (DD) dimensions are shown in Table 3, 

which also shows a notable drop in correlation values in all directions following encryption. Our encryption technique 

method disrupts these dependencies and high correlations found in original photos, producing correlation values 

that are close to zero or even harmful. This illustrates how well the program works to remove pixel correlations, which 

makes statistical attacks more challenging. The suggested method ensures increased security and resistance to 

statistical analysis by increasing confusion and diffusion. 

Table 3: Correlation Coefficient value of the images. 

Image Horizontal Vertical Diagonal 

Lena 0.00186 0.00064 0.00244 

Baboon -0.00784 -0.00398 -0.00451 

Chest 0.00161 0.00151 0.00134 

Boat -0.00589 -0.00467 -0.00315 

Barbara 0.01790 0.02464 0.01855 

 

Table 4: Figures of correlation coefficient of HD, VD, DD of original and Encrypted image 

Image  HD VD DD 

         Lenna    

  Encrypted 

Lena 
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          Chest    

  

Enctypted_Che

st 

   

 

5.2 Shannon Entropy Analysis 

Shannon entropy is an essential measure that calculates the randomness of an image. An ideal grayscale image should 

have an entropy value approaching 8, which means pixel values are uniformly distributed. High entropy implies 

reduced redundancy and unpredictability, strengthening the encryption against attacks. The entropy is computed in 

Equation 11. 

𝑌 = − ∑ 𝑅255
𝑘=0 (𝑗)𝑙𝑜𝑔2𝑅(𝑗)                                                         (11) 

Where R(j) is the probability of occurrence of a pixel intensity level j within the image, the suggested methodology 

performs better in important security metrics than the current methods. The encrypted images' Shannon entropy is 

more random because it is near the optimal value of 8. 

5.3 NPCR and UACI Analysis 

The Number of Pixel Change Rate (NPCR) quantifies the number of pixels that shift in the encrypted image when a 

single pixel in the original image is altered. This can measure how sensitive an encryption algorithm is to small 

changes in input data, which is crucial for security against differential attacks. The NPCR can be obtained by Equation 

12. 

𝑁𝑃𝐶𝑅 =
∑ 𝑊𝑥,𝑦 (𝑥,𝑦)

𝑃×𝑄
× 100%                                                                                                                        (12)                 

W (x, y) = 1 if pixel values at point (x, y) in encrypted images differ and zero otherwise. Note that P denotes the width 

while Q denotes the image's height. For a secure encryption scheme, the ideal NPCR (Number of Pixels Change Rate) 

range is between 99.6% and 99.8%, and the value of NPCR in our method lies within this range. Our suggested 

approach yielded a higher NPCR value than earlier studies, indicating a more outstanding defence against differential 

attacks. The encryption's security is improved by the higher NPCR, which guarantees that even a small alteration to 

the plaintext produces a substantially different ciphertext. Our strategy exhibits better diffusion qualities than current 

techniques, increasing its effectiveness against cryptanalysis, as depicted in Table 7. 

The Unified Average Changing Intensity (UACI) quantifies the average difference in intensity between the original 

and encrypted images, measuring how significantly the encryption changes pixel values. The UACI can be obtained 

by Equation 13. 
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𝑈𝐴𝐶𝐼 =
1

𝑃×𝑄
∑ ∑

∣𝐸1(𝑥,𝑦)−𝐸2(𝑥,𝑦)∣

255

𝑄
𝑦=1

𝑃
𝑥=1 × 100%       (13) 

where E₁(x,y) and E₂(x,y) represent the pixel intensity values of two encrypted images with only one different pixel 

in the original image, and P and Q denote the dimensions of the images. A value close to 33.33% indicates a highly 

effective diffusion property, meaning small changes in the input cause significant changes in the output. The UACI 

value in our approach is closer to 33.33% than other methods, as compared in Table 7, demonstrating a more 

effective diffusion process that enhances the unpredictability of encrypted images.  

5.4 MSE and PSNR Analysis 

Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) are two widely employed measures to check the 

quality of an encrypted image. MSE is the average squared error between the original and encrypted image. When 

MSE is high, the encrypted image is very much different from the original, meaning the encryption is strong. The 

MSE is given by Equation 14. 

𝑀𝑆𝐸 =
1

𝑃×𝑄
∑ ∑ [𝑅(𝑥, 𝑦) − 𝑆(𝑥, 𝑦)]2𝑄

𝑦=1
𝑃
𝑥=1         (14) 

where R(x,y) and S(x,y) are the intensity values of original and encrypted images, respectively, and the values P and 

Q represent the image's dimensions.  

PSNR is employed to check the similarity between the original and encrypted images. The lower the value of PSNR, 

the higher the security of the encryption 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑃2

𝑀𝑆𝐸
)                         (15) 

Where P represents the maximum possible pixel value, our suggested approach achieves a higher MSE and a lower 

PSNR than current encryption methods, guaranteeing improved security. The low PSNR (preferably < 10 dB) 

indicates substantial distortion, making unauthorized reconstruction challenging, while the high MSE (usually 

>>1000) verifies that the encrypted image differs significantly from the original. These outcomes show how much 

stronger our method's encryption is. Table 8 offers a thorough comparison with alternative approaches. 

Table 5: Values of Shannon Entropy, NPCR, UACI, PSNR, and MSE for different images. 

Image Shannon Entropy NPCR UACI MSE PSNR 

 PI CI     

Lena 7.5234 7.9691 99.7165 33.5098 7845.21 9.135 

Barbara 7.1047 7.9910 99.7551 33.5947 9470.15 8.418 

Baboon 7.2651 7.9654 99.7801 33.8111 7055.84 9.679 

Chest 7.6972 7.9661 99.6767 33.5379 7751.87 9.167 

Boat 7.2213 7.9623 99.7001 33.7489 8611.28 8.785 

 

5.5 Histogram Analysis 

Histogram analysis is employed to analyse the distribution of pixel intensities in the original and encrypted images. 

A good encryption algorithm should yield an encrypted image with a uniform histogram, meaning that the pixel 

intensities are uniformly distributed and do not provide any information about the original image. The histograms 

of the encrypted images are uniformly distributed in terms of pixel intensities, which proves that the proposed 

algorithm effectively hides the information of the original image. For instance, the histogram of the encrypted Lena 

image, as shown in Table 6, is uniformly distributed, as opposed to the original Lena image, which has a non-uniform 

distribution. The uniform distribution of the histogram of the encrypted image guarantees that no statistical 

information regarding the original image is leaked, rendering the encryption secure against histogram-based attacks. 
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Table 6:  Histogram analysis of original image and encrypted image 

 

 

Table 7: Comparison of NPCR and UACI with other methods. 

Algorithms NPCR UACI 

True value 99.6094 33.4635 

Our 99.7165 33.5098 

[23] 99.86 33.72 

[6] 99.6010 33.4389 

[24] 99.6565 33.74 

[25] 99.6536 33.4121 

[2] 99.87 33.29 

[3] 99.6239 33.4584 

[26] 99.652 30.695 

 

Table 8: Comparison of MSE and PSNR with other methods. 

Algorithms MSE PSNR 

Our 7845.21 9.135 

Original Image Encrypted Image Histogram of Original image Histogram of encrypted  

image 

                Lena    
 

                Chest    
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[27] 10914 7.751 

[5] 11017.53 7.74 

[4] 9010 8.6 

[2] 739.132 5.72 

 

5.6 NIST Statistical Analysis 

The NIST SP 800-22 statistical test suite is a widely recognized standard for evaluating the randomness of 

cryptographic outputs, such as encrypted images. It consists of 15 tests that assess various properties of randomness, 

including frequency, runs, and entropy. A reliable encryption algorithm should pass these tests to demonstrate its 

ability to generate statistically random and unpredictable sequences, ensuring the integrity of cryptographic systems. 

In our research, we applied the NIST test suite to encrypted images produced by the proposed algorithm. The results 

in Table 9 confirm that the algorithm successfully passed all 15 tests with satisfactory P-values, indicating a high 

level of randomness and suitability for secure medical image encryption. For example, the Frequency (Monobit) Test 

yielded a P-value of 0.9874, surpassing the 0.01 threshold, demonstrating strong randomness. Similarly, other tests, 

such as the Runs Test and the Binary Matrix Rank Test, produced P-values above the required cut-off, further 

validating the algorithm’s ability to generate highly random encrypted images. These results highlight the algorithm's 

robustness, as passing all NIST tests signifies that the encrypted outputs are statistically indistinguishable from true 

random data. Consequently, the algorithm strongly resists statistical and cryptanalytic attacks, ensuring the 

confidentiality and integrity of medical images in IoT-based healthcare environments where patient information 

must be protected from unauthorized access. 

Table 9: NIST Test Result 

NIST Test P-Value Pass/Fail 

Frequency (Monobit) Test 0.6745 Pass 

Frequency Test within a 

Block 

0.5821 Pass 

Runs Test 0.7314 Pass 

Longest Runs of Ones in a 

Block 

0.6237 Pass 

Binary Matrix Rank Test 0.7653 Pass 

Discrete Fourier Transform 

(Spectral Test) 

0.6981 Pass 

Non-Overlapping Template 

Matching Test 

0.5426 Pass 

Overlapping Template 

Matching Test 

0.7213 Pass 

Maurer’s Universal 

Statistical Test 

0.7892 Pass 

Linear Complexity Test 0.6057 Pass 

Serial Test 0.7624 Pass 

Approximate Entropy Test 0.6348 Pass 
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Cumulative Sums Test 

(Cusum Test) 

0.7113 Pass 

Random Excursions Test 0.6789 Pass 

Random Excursions Variant 

Test 

0.7542 Pass 

Adaptive Proportion Test 0.7234 Pass 

CONCLUSION AND FUTURE DIRECTION 

In this work, a GWO-augmented chaotic encryption architecture has been suggested for medical picture security. 

Successful enhancement of the randomness and diffusion characteristics of the encryption system by optimizing the 

logistic chaotic map with GWO Statistical and performance tests show that the suggested approach achieves strong 

security and resiliency. PSNR stays within a reasonable range to guarantee that the encrypted image shows a notable 

departure from the original, therefore resisting perceptual attacks. The UACI results confirm strong sensitivity to 

slight variations in input, hence providing resilience against differential attacks. Moreover, the encrypted images 

exhibit their appropriateness for secure cryptographic applications, having successfully undergone all NIST 

randomness assessments. The correlation coefficients approximate zero, signifying that the encryption successfully 

eliminates pixel relationships, and the Shannon entropy values nearing eight suggest maximal randomness. The 

results indicate that the recommended method is suitable for real-time medical applications, cloud-based healthcare 

storage, and IoT-based medical imaging systems, as it provides robust encryption without compromising 

computational performance. Future studies may explore hybrid cryptographic models and additional optimization 

methodologies to enhance the efficiency and adaptability of encryption systems in practical healthcare environments. 
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