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High-speed interfaces and memory systems form the foundation of modern artificial 

intelligence architectures, enabling them to meet the rapidly growing computational 

demands of advanced neural networks. Progress in these domains centers on 

maximizing data movement efficiency while balancing the trade-offs between 

bandwidth and power consumption. In SerDes design, key considerations include 

clocking strategies, signal integrity control, and the physical implementation 

challenges that directly influence overall system performance. Memory hierarchy 

optimization requires carefully managing capacity, bandwidth, and power efficiency 

across multiple technology generations. Emerging solutions—such as processing-in-

memory architectures and next-generation non-volatile memories—help reduce data 

transfer overhead. Together, interface design and memory subsystem advancements 

create the scalable infrastructure needed to power next-generation AI applications 

across a wide range of deployment environments. 
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1. Introduction 

The rapid advancement of Artificial Intelligence (AI) has placed unprecedented demands on computing 

infrastructure. As AI workloads grow in both complexity and scale, hardware systems face mounting 

challenges in data movement, processing efficiency, and power consumption. The performance 

boundaries of modern AI accelerators are fundamentally shaped by the complex interaction between 

high-speed interfaces and memory systems. Horowitz's landmark analysis of computing's energy 

problem underscores why optimizing interfaces and memory is central to AI hardware design. His 

findings show that performing a 32-bit floating-point operation at 28nm consumes just 0.9 pJ, yet 

moving that same data a mere 10 mm on-chip requires about 25 pJ—nearly 28 times more energy[1]. 

The disparity is even greater for off-chip memory: accessing a 32-bit value from DRAM costs roughly 

640 pJ, a staggering 711× more than the computation itself[1]. These energy imbalances explain why 

today's AI accelerators operate at only 5–15% of their theoretical peak efficiency, with most of the loss 

attributable to data movement across interfaces and memory hierarchies. 

Interface design challenges are amplified by the distinctive traffic patterns of transformer-based AI 

architectures. Studies on processing-in-memory approaches for AI workloads reveal that attention 

mechanisms produce access patterns with minimal spatial and temporal locality, driving memory 

bandwidth demands of 35–42 GB/s per TFLOP of compute, substantially higher than the 10–15 GB/s 

per TFLOP typical of CNNs [2]. For state-of-the-art AI accelerators delivering 64 TFLOPS, this equates 

to bandwidth requirements exceeding 2.7 TB/s, necessitating advanced SerDes interfaces running at 

224 Gbps or 112 Gbps per lane, alongside HBM3E/HBM4 memory subsystems capable of up to 4.8 TB/s 

aggregate throughput. Such systems commonly employ sophisticated clock and data recovery (CDR) 

circuits to maintain jitter tolerance below 0.3 UI at these speeds, while adaptive equalization 

compensates for channel losses exceeding 40 dB at the Nyquist frequency. 

Memory hierarchies for AI systems have evolved toward heterogeneous architectures combining 

multiple technologies. The energy efficiency of these memory accesses varies dramatically across the 
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hierarchy: 5-8 pJ/bit for on-chip SRAM, 8-12 pJ/bit for HBM3E accesses, and 40-60 pJ/bit for off-

package memory [1]. Current designs typically feature 8-32 MB of on-chip SRAM (consuming 0.2-0.5 

mm² per MB at 7nm), providing 15-25 TB/s of bandwidth to processing elements, complemented by 

16-128 GB of HBM3E memory delivering 2.4-4.8 TB/s through 1024-2048 bit interfaces operating at 

5.1-6.4 Gbps [2]. 

 

Operation Type Energy Efficiency 
Technology 

Context 
Design Impact 

Floating-point 

computation 
Minimal energy cost 

Advanced process 

nodes 

Computation-

optimized designs 

On-chip data 

movement 

Moderate energy 

penalty 

Short-distance 

transfers 

Layout optimization 

critical 

Off-chip memory 

access 

High energy 

overhead 

External DRAM 

interfaces 

Memory hierarchy 

essential 

SRAM access 
Low energy 

consumption 
On-chip storage 

Cache-friendly 

architectures 

HBM access Moderate energy cost 
High-bandwidth 

memory 

Bandwidth-capacity 

tradeoffs 

Table 1: Energy Cost Hierarchy in AI Computing Systems [1,2] 

 

2. System-Level Requirements for High-Speed Interfaces in AI Architectures 

The surge in AI model complexity is fueling unprecedented data movement needs, making high-speed 

interfaces indispensable. At the core of these connections lies SerDes technology, the backbone of 

modern interconnect systems. 

Research by Shao et al. on deep learning accelerator simulation highlights a sharp rise in bandwidth 

requirements. Using the SimBA framework, they show that transformer models such as BERT generate 

memory access patterns demanding 24.7–37.2 GB/s per TFLOP of compute, substantially higher than 

the 9.5–15.8 GB/s per TFLOP typical of CNN models [3]. Their analysis of on-chip network traffic 

patterns reveals that transformer self-attention mechanisms produce traffic bursts up to 3.2× greater 

than peak sustainable bandwidth, with spatial locality coefficients of 0.41–0.57 versus 0.76–0.83 for 

CNNs. This lower locality drives the need for interface designs capable of delivering 1.2–1.8 TB/s 

aggregate bandwidth for accelerators targeting 32–48 TFLOP/s performance, while keeping router 

traversal latencies within 1.7–2.3 ns to sustain computational efficiency above 65% of theoretical peak 

[3]. 

Designing high-speed interfaces for AI applications requires careful consideration of several system-

level factors. Key among these are bandwidth density—measured in Gbps/mm—which directly impacts 

chip size and overall system cost; power efficiency—typically expressed in pJ/bit—which influences 

thermal constraints and operating expenses; and performance characteristics that govern real-time 

processing capability. In a comprehensive survey of low-power AI accelerators, Åleskog et al. analyzed 

37 commercial and academic designs, showing that bandwidth density at chip boundaries has risen 

from 89 Gbps/mm in 2018 to 327 Gbps/mm in today's designs, leveraging advanced packaging [4]. 

Their findings also indicate that interface power efficiency for cutting-edge data center AI accelerators 

has improved to 2.1–3.8 pJ/bit at 112 Gbps, while edge AI deployments achieve 1.8–2.4 pJ/bit at lower 

data rates of 16–32 Gbps [4]. 

AI workloads exhibit distinctive traffic patterns marked by intensive, often bursty data transfers and 

variable packet sizes. Shao's simulation studies show that attention mechanisms in transformer models 

produce packet sizes that vary by 2.7–3.4× within a single forward pass, with temporal correlation 

coefficients as low as 0.38–0.45 [3]. Such behavior demands specialized flow control schemes capable 

of dynamically adjusting to fluctuating bandwidth needs while preserving quality of service. In addition, 
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AI systems in edge deployments face stringent power and thermal constraints. Åleskog's extensive 

survey reports power budgets ranging from 1.8 W for smartphone-class accelerators to 15 W for edge 

servers, with thermal design power (TDP) limits of 2.5–17 W. These limits, in turn, cap maximum 

interface power consumption at 0.3–2.1 W [4]. 

 

Network 

Architecture 

Bandwidth 

Demand 

Locality 

Pattern 
Design Constraint 

Power 

Classification 

Convolutional 

Neural 

Networks 

Moderate 

throughput 

High spatial 

locality 
Compute-bounded 

Standard power 

envelope 

Transformer 

Models 
High throughput Limited locality Memory-bounded 

Enhanced power 

delivery 

Attention 

Mechanisms 
Burst-intensive Low correlation Latency-sensitive 

Thermal 

management 

Edge 

Applications 
Low data rates Variable patterns Power-constrained 

Battery 

optimization 

Data Center 

Deployment 

Maximum 

bandwidth 
Streaming access Performance-focused 

Cooling 

infrastructure 

Table 2: AI Workload Traffic Characteristics and System Requirements [3,4] 

 

3. SerDes Design Considerations for AI Workloads 

SerDes design in AI applications necessitates a rigorous focus on several critical factors, foremost 

among them being the choice of clocking architecture. Designers typically select from forward clocking, 

embedded clock recovery, or source-synchronous methods according to the application's specific 

demands. 

Recent advances in high-speed SerDes implementation for AI accelerator interfaces demonstrate 

critical design parameters. State-of-the-art 112 Gbps PAM-4 transceivers achieve bit error rates of less 

than 10^-12 while maintaining jitter tolerance of 0.3 UI (unit interval) at 28 GHz, utilizing quarter-rate 

architectures with 4:1 multiplexing to reduce clock distribution challenges [5]. These implementations 

demonstrate that clock accuracy must be maintained within 1.8-2.2 ps of peak-to-peak jitter to sustain 

reliable operation, requiring 6-bit phase interpolators with 0.7 ps resolution. The CDR architecture 

employs second-order loops with an optimized bandwidth of 8.5 MHz, achieving lock times of 156 ns 

while consuming 67 mW in 7nm FinFET technology. Analysis quantifies the relationship between 

supply noise and timing jitter, showing that each 10 mV of power supply noise translates to 

approximately 0.52 ps of deterministic jitter at 112 Gbps, highlighting the importance of power integrity 

for high-speed interfaces in AI systems where multiple SerDes lanes switch simultaneously [5]. 

Signal integrity challenges are paramount in high-speed SerDes design, especially as data rates reach 

the 112 Gbps PAM-4 signaling regime. Recent studies offer detailed insights into the equalization 

demands for high-speed SerDes functioning within typical AI system environments [6]. Modern 112 

Gbps PAM-4 receiver implementations demonstrate that channels with insertion loss of 35.7 dB at 

Nyquist frequency require a combination of CTLE providing 12.4 dB of peaking and 9-tap DFE 

consuming 124 mW to achieve vertical eye-opening of 28.6 mV (14.3% of nominal eye height). Analysis 

across multiple channel configurations reveals that crosstalk degrades receiver sensitivity by 3.4-4.2 dB 

in dense routing environments typical of AI accelerator packages, necessitating careful layout with 

guard traces maintaining minimum separation of 2.8× the trace width [6]. For power integrity, 

measurements show that PDN impedance must remain below 0.18 Ω from 10 MHz to 5.6 GHz to 

maintain supply ripple within 12 mV for a 0.8V supply voltage, requiring 6.8-8.4 μF of on-die 

decoupling capacitance per SerDes macro to prevent supply-induced jitter from exceeding 0.03 UI. 
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These concerns extend to physical implementation, where floor planning and placement constraints 

significantly impact performance. Modern SerDes implementations demonstrate that placement must 

consider both signal and power integrity, with optimal configurations placing transmit and receive 

circuits within 325 μm of I/O pads to minimize on-die routing parasitics [5]. Measurements show that 

each additional 100 μm of on-die routing introduces 0.23 dB of insertion loss and 3.4 ps of propagation 

delay variation across process corners. Analysis further reveals that differential pairs must maintain a 

consistent impedance of 85-100 Ω with less than 3% mismatch between positive and negative traces to 

prevent mode conversion that degrades signal integrity [6]. The increasing integration density in 

modern AI chips further complicates these challenges, with implementations utilizing silicon interposer 

technology providing 9.2× higher routing density than organic substrates while reducing channel loss 

by 0.28 dB/mm. 

 

 

Design 

Parameter 

Performance 

Target 

Implementatio

n Challenge 

Signal 

Integrity 

Factor 

Power 

Consideration 

Bit Error 

Rate 

Ultra-low error 

tolerance 
Noise immunity 

Jitter 

management 
Supply stability 

Clock 

Recovery 
Phase accuracy Loop bandwidth Timing precision 

CDR power 

consumption 

Equalization 
Channel 

compensation 

Adaptive 

algorithms 

Eye diagram 

optimization 
Equalizer overhead 

Physical 

Layout 

Impedance 

matching 

Routing 

constraints 

Crosstalk 

mitigation 
PDN design 

Packaging 

Integration 
High density 

Thermal 

management 

Loss 

minimization 

Decoupling 

requirements 

Table 3: SerDes Design Parameters for AI Applications [5,6] 

 

4. Memory Hierarchy Optimization for AI Systems 

The memory subsystem represents the most important component in modern AI architecture, where 

memory bandwidth bottlenecks often serve as major performance limiters. Designing an effective 

memory hierarchy for AI workloads requires a deep understanding of specific access patterns generated 

by various neural network topologies. 

Kwon and colleagues' research on MAERI demonstrates the criticality of memory hierarchy 

optimization in AI accelerators. Their detailed analysis shows that dataflow patterns in CNNs can 

achieve reuse factors of 28-196× for weights and 4-18× for activations when properly mapped to 

hardware, while less regular networks like transformers exhibit reuse factors of only 3.7-12.3× [7]. Their 

reconfigurable architecture implements a three-level memory hierarchy with 3.2KB register files 

distributed across 168 processing elements, supported by 256KB of shared L1 scratchpad providing 

205.8 GB/s bandwidth at 1.2ns access latency and 2MB L2 buffer delivering 78.3 GB/s at 3.5ns latency. 

This hierarchy enables compute utilization of 68.9-73.4% across diverse neural networks, compared to 

just 41.2-46.8% for designs with less optimized memory systems. MAERI's implementation in 28nm 

technology achieves energy efficiency of 7.2-11.3 TOPS/W, with detailed power breakdown revealing 

that data movement consumes 62.7% of total energy, 35.4% in on-chip networks, and 27.3% in memory 

accesses [7]. 

Memory optimization begins with characterizing workload requirements across multiple dimensions: 

capacity needs, bandwidth demands, access latency sensitivity, and energy efficiency constraints. Chi et 

al. demonstrate through their PRIME architecture that memory-bound neural network operations have 
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fundamentally different characteristics compared to compute-bound operations. Their measurements 

across seven benchmark networks reveal that fully-connected layers require 21.3-38.7× more memory 

bandwidth per operation compared to convolutional layers while exhibiting 83-97% lower arithmetic 

intensity [8]. PRIME addresses these challenges through a ReRAM-based processing-in-memory 

architecture that achieves 644.2 GOPS/W for FC layers—a 23.4× improvement over GPU 

implementations. Their memory hierarchy analysis shows that access patterns in FC layers exhibit row 

locality of only 0.17-0.25 and column locality of 0.32-0.41, making traditional cache hierarchies 

ineffective. By integrating computation directly within memory arrays, PRIME reduces data movement 

energy by 95.4% while increasing effective memory bandwidth by 8.5× compared to conventional 

architectures. Implementation in 32nm technology yields computational density of 78.4 GOPS/mm² 

with memory capacity density maintained at 2.17 Mb/mm² [8]. 

This multidimensional optimization problem has driven the development of specialized memory 

hierarchies incorporating multiple technologies. Kwon's analysis quantifies tradeoffs between SRAM, 

embedded DRAM, and emerging non-volatile memories, demonstrating that optimal hierarchies for 

large language models allocate 12-15% of chip area to memory subsystems with capacity ratios of 

approximately 1:8:64 across the three levels [7]. Recent progress in compute-in-memory architectures 

further complicates this landscape, with implementations achieving 9.7× higher energy efficiency 

compared to GPU platforms for memory-bound operations through fine parallelization across 2048 

memory banks operated at 1.2 GHz [8]. The memory hierarchy design process must carefully balance 

these techniques, considering not only raw performance metrics but also system-level constraints 

related to power budgets, thermal boundaries, and cost targets. 

 

Optimization 

Strategy 

Architecture 

Type 

Data Reuse 

Efficiency 

Implementation 

Benefit 

Energy 

Advantage 

Hierarchical 

Caching 

Traditional 

memory 

High weight 

reuse 

Standard 

interfaces 
Moderate savings 

Reconfigurable 

Dataflow 

Flexible 

mapping 

Variable reuse 

patterns 

Adaptive 

throughput 

Network 

optimization 

Processing-in-

Memory 

Integrated 

compute 

Eliminates 

movement 

Novel 

architectures 

Maximum 

efficiency 

Non-volatile 

Storage 

Weight 

stationarity 

Persistent 

storage 

Density 

advantages 

Standby 

elimination 

Compression 

Techniques 

Parameter 

encoding 

Effective 

capacity 

Bandwidth 

multiplication 
Access reduction 

Table 4: Memory Architecture Optimization Strategies [7,8] 

 

5. Advanced Memory Solutions for AI Workloads 

The diversity of AI applications has driven the development of specialized memory solutions to address 

their unique data processing demands. Training tasks, due to their large datasets and complex gradient 

computations, typically prioritize memory capacity and bandwidth over latency. For these applications, 

HBM3E/HBM4 technology has emerged as the leading solution, offering capacity up to 64 GB per 

package with bandwidth exceeding 2 TB/s per stack in the latest iterations. Inference workloads, 

conversely, often operate under more stringent power and cost constraints, adopting LPDDR and 

GDDR technologies that offer more favorable performance-per-watt and performance-per-dollar 

metrics. 

Beyond traditional memory technologies, several emerging solutions hold promise for meeting the 

unique demands of AI systems. Processing-in-Memory (PIM) architectures integrate computation 

directly within memory blocks, minimizing data movement and thereby reducing the energy costs that 
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dominate many AI workloads. The rise of non-volatile memory technologies—such as Magnetoresistive 

RAM (MRAM), Resistive RAM (ReRAM), and Phase-Change Memory (PCM)—offers promising paths 

toward achieving high memory density while lowering standby power consumption. These technologies 

also support innovative architectural strategies, such as weight-stationary designs, which help minimize 

costly data movement. Additionally, specialized memory compression techniques corresponding to 

statistical properties of neural network parameters have demonstrated significant effective capacity 

improvements with minimal computational overhead, further expanding the effective memory capacity 

available to AI systems. 

 

Characteristic HBM 

(Training) 

GDDR6 (Cloud 

Inference) 

LPDDR5 

(Edge 

Inference) 

Emerging 

Technologies 

Primary 

Advantage 

Extreme 

bandwidth 

Cost-performance 

balance 

Power efficiency Novel capabilities 

Key Limitation Cost and 

integration 

complexity 

Power consumption Limited 

bandwidth 

Maturity and 

reliability 

Form Factor Stacked die with 

interposer 

Traditional BGA 

package 

Mobile-

optimized 

package 

Various 

(embedded/discrete) 

Ideal Application Large model 

training 

Batch inference Real-time edge 

processing 

Specialized 

workloads 

Access Pattern 

Support 

High-throughput 

streaming 

Burst-oriented 

access 

Low-duty cycle 

operation 

In-situ computation 

Scaling Direction Vertical 

integration 

Higher signaling 

rates 

Power 

optimization 

Density and 

integration 

Thermal 

Consideration 

Active cooling 

required 

Managed thermal 

solution 

Passive cooling 

sufficient 

Low-temperature 

sensitivity 

Cost Structure Premium 

technology 

Moderate cost Consumer 

volume pricing 

Early adoption 

premium 

Future Evolution Increased stack 

height 

Improved signaling 

efficiency 

Further power 

reduction 

Computational 

capabilities 

Implementation 

Challenge 

System 

Integration 

Signal integrity Power delivery Novel programming 

models 

Emerging 

Variant 

HBM3E/HBM4/ 

HBM-PIM 

GDDR7 LPDDR5X/6  Hybrid memory 

architectures 

Architectural 

Impact 

Enables model 

scaling 

Bandwidth/capacity 

balance 

Enables edge 

deployment 

Blurs the 

compute/memory 

boundary 

                                  Table 5: Advanced Memory Technologies for AI Workloads  
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Conclusion 

Building high-performance AI systems fundamentally relies on high-speed interfaces and advanced 

memory architectures capable of handling the massive data movement demands of modern neural 

networks. This article explores key design principles across both areas, emphasizing the intricate 

interplay between system-level requirements, SerDes design choices, and memory hierarchy 

optimization. As AI workloads continue to grow in both complexity and scale, foundational technologies 

will play a critical role in pushing the practical performance limits of next-generation AI accelerators. 

Future research will likely focus on several key areas: advanced SerDes architectures surpassing 

112Gbps per lane with improved energy efficiency; novel memory hierarchies that strike a balance 

between capacity, bandwidth, and power constraints; and emerging interconnect technologies aimed at 

narrowing the widening gap between compute capability and memory access speeds. Additionally, co-

design approaches that simultaneously optimize algorithms, architecture, and circuit implementation 

will become increasingly essential, especially as the benefits of traditional technology scaling diminish. 

By mastering the core principles outlined in this article and advancing these research directions, 

designers can enable hardware architectures capable of meeting the demanding computational 

requirements of next-generation AI applications. 
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