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This article explores the progression of Change Data Capture (CDC) methodologies, 

highlighting their transformation from periodic batch processes to instantaneous 

real-time frameworks. It examines Apache Hudi's architectural foundation for 

implementing efficient CDC solutions, emphasizing its complementary storage 

models and incremental processing functionalities. The article details stream 

processing enhancement techniques, including event-based architectures, 

distribution strategies, and flow control mechanisms that improve CDC workflow 

performance. Resource-efficient implementation patterns are discussed, contrasting 

utilization profiles across different CDC methodologies and storage approaches while 

addressing infrastructure scaling techniques. Performance measurement provides 

empirical data regarding response times, processing capacity, and resource 

consumption characteristics across diverse CDC implementations and operational 

scenarios, demonstrating the considerable advantages of contemporary CDC 

approaches over conventional synchronization methods. 
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1. Introduction to Modern Change Data Capture Methodologies 

Corporate information landscapes have become progressively complex, transforming data 

synchronization into a significant technical hurdle. The methodologies supporting Change Data Capture 

(CDC) have experienced remarkable advancement, transitioning from scheduled interval-based 

processing to advanced continuous integration architectures. This evolution represents a critical 

reorientation in how businesses maintain cross-system data coherence while satisfying intensifying 

demands for real-time information availability throughout distributed environments. 

The conventional CDC implementation historically depended on predetermined processing windows, 

employing mechanisms like timestamp-based comparison and scheduled log examination for 

identifying record modifications. Though serviceable for specific applications, these approaches 

introduced inevitable processing delays that became increasingly problematic as business velocity 

accelerated. Modern CDC frameworks have pivoted toward monitoring transaction journals, including 

write-ahead logs and commit logs, facilitating immediate change recognition directly from originating 

database systems [1]. 

Today's CDC architectures incorporate flow-based processing paradigms that fundamentally reshape 

how data alterations propagate across enterprise information systems. These sophisticated 

implementations construct uninterrupted data conduits utilizing specialized integration components 

and durable messaging frameworks. By capturing database modification events through log-based 

interception techniques and directing them through resilient message delivery systems, organizations 

establish dependable data harmonization processes with substantially compressed latency profiles. This 

architectural configuration delivers inherent disruption tolerance through message durability and 

sequence preservation, effectively addressing traditional synchronization vulnerabilities during system 

instabilities [1]. 
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Organizations across diverse sectors now demand prompt access to updated information for urgent 

operational judgments. This requirement for immediacy enhances customer engagement through 

consolidated information perspectives across interaction points and facilitates swift adaptation to 

evolving market dynamics. The structural transition toward streaming information paradigms 

acknowledges the growing recognition that traditional database architectures frequently prove 

inadequate for continuous processing requirements where temporal considerations directly impact 

business outcomes and competitive positioning [2]. 

Technical obstacles persist despite substantial progress in CDC technology development. The 

heterogeneous technology composition within enterprise environments introduces complexity when 

designing universal change identification and distribution mechanisms. Companies maintaining 

diverse database ecosystems must address varying transaction models, structural definitions, and 

performance attributes when implementing multi-system CDC solutions. This complexity has 

stimulated innovation in technologies capable of operating across varied database platforms while 

preserving transaction boundaries and referential relationships. The understanding that generalized 

architectural approaches inadequately address specialized integration requirements has motivated the 

development of purpose-designed solutions optimized for particular operational characteristics [2]. 

This investigation examines the architectural development of CDC frameworks, with particular 

emphasis on implementations utilizing Apache Hudi technologies. The research approach combines 

systematic literature evaluation with empirical assessment of CDC implementations across 

representative data volumes and modification patterns. It evaluates essential performance metrics, 

including processing delays, throughput capabilities, and resource utilization under controlled 

experimental conditions to establish objective comparisons between architectural alternatives. This 

research addresses the emerging consensus that specialized data architectures engineered for specific 

processing requirements deliver enhanced outcomes compared to general-purpose systems attempting 

to accommodate diverse workload profiles simultaneously [2]. 

 

2. Apache Hudi-based CDC Architectural Framework 

Apache Hudi (Hadoop Upserts, Deletes, and Incrementals) provides foundational capabilities for 

contemporary Change Data Capture architectures, delivering robust mechanisms for orchestrating 

extensive data synchronization across distributed computing environments.  The structural 

components and deployment patterns that allow Hudi-based CDC implementations to reliably and 

efficiently handle enterprise integration challenges are examined in this section. 

The structural composition of Apache Hudi encompasses numerous essential components that jointly 

facilitate sophisticated CDC functionality. At its core, Hudi employs a transaction journal approach that 

documents metadata for individual data modification events. This transaction record functions as the 

definitive chronicle of alterations, enabling precise monitoring of insertion, modification, and removal 

operations throughout the dataset. The timeline functionality maintains sequential organization of all 

transactions, guaranteeing consistency and facilitating point-specific recovery when necessary. The 

architectural blueprint specifically addresses near-immediate data ingestion challenges through 

optimized structures for intercepting, persisting, and retrieving modification events. These capabilities 

render it particularly appropriate for implementing CDC methodologies across diverse scenarios, 

including database mirroring, analytical data harmonization, and compliance verification contexts 

where preserving modification history remains essential [3]. 

Hudi introduces dual fundamental storage configurations supporting varied CDC implementations: 

Copy-on-Write (CoW) and Merge-on-Read (MoR) methodologies. The CoW approach sustains read-

optimized file organizations by reconstructing data files during update cycles, while MoR distinguishes 

base files from delta records to enhance write performance. This architectural versatility permits 

organizations to equilibrate read versus write efficiency based on workload requirements. The granular 

indexing mechanism constitutes another crucial element, sustaining mappings between record 

identifiers and physical storage positions. This indexing enables Hudi to efficiently locate records 
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requiring modification without examining entire collections, substantially improving incremental 

processing performance. The implementation directly supports the incremental processing paradigm 

fundamental for CDC workflows, allowing applications to efficiently identify and process exclusively the 

records modified since previous synchronization checkpoints [3]. 

The incremental processing framework differentiates Hudi from conventional data lake technologies by 

facilitating efficient identification and extraction of exclusively modified records between designated 

temporal boundaries. This capability constitutes the foundation of its CDC implementation, enabling 

downstream systems to consume modifications with minimal processing requirements. The 

incremental query mechanism utilizes Hudi's timeline and indexing services to filter collections based 

on commit timestamps, returning exclusively records affected since specified temporal markers. The 

historical reconstruction functionality extends this capability, enabling systems to rebuild complete 

dataset states as they existed at any historical moment. This feature proves invaluable for regulatory 

requirements, verification processes, and recovering from data quality incidents. These capabilities 

correspond with temporal consistency requirements fundamental for multi-system synchronization in 

distributed environments, where maintaining temporal correctness across separate systems presents 

substantial technical challenges [4]. 

A range of ecosystem components is successfully integrated with Hudi-based CDC architectures 

through established patterns. The stream-to-table synchronization approach leverages Hudi's upsert 

capabilities to propagate modifications from streaming platforms into Hudi tables. For bidirectional 

synchronization scenarios, the dual-write with reconciliation pattern employs incremental query 

capabilities to identify and resolve conflicts between systems. By extending capabilities to 

geographically dispersed deployments, the multi-region replication pattern makes it possible for 

reliable data synchronization across international infrastructure. In distributed environments, these 

integration patterns mirror architectural principles for instantaneous data synchronization, such as 

conflict detection mechanisms, eventual consistency guarantees, and optimized change propagation 

strategies that minimize network requirements while maintaining data integrity constraints. 

 The conceptual framework for such synchronization systems emphasizes modification event 

sequencing, transaction boundary preservation, and deterministic conflict resolution mechanisms 

ensuring system-wide consistency [4]. 

Several layers are combined in a thorough Hudi-based CDC reference architecture to provide 

dependable, scalable data synchronization. The source integration layer utilizes log-based CDC tools, 

capturing modifications from operational databases and publishing them to a resilient messaging 

infrastructure. The transformation layer processes raw modification events into standardized formats 

compatible with Hudi's data model, implementing schema evolution handling and quality validation. 

The core processing layer maintains target tables and implements transaction management, indexing, 

and storage optimization capabilities, enabling efficient CDC operations. The consumption layer 

provides interfaces for downstream systems to access both complete datasets and incremental 

modifications. This layered architectural approach aligns with the conceptual model for multi-

environment data synchronization, emphasizing separation between capture, transmission, and 

application components. The model highlights the importance of maintaining synchronization state 

metadata, enabling recovery from failures and ensuring exactly-once processing semantics across 

distributed processing components [4]. 
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Fig. 1: CDC Capabilities and Integration Patterns in Apache Hudi. [3, 4] 

 

3. Stream Processing Optimization Techniques in CDC Workflows 

Stream processing functions as the operational cornerstone, enabling contemporary Change Data 

Capture implementations to harmonize information across distributed infrastructures with reduced 

transmission delays. This section investigates sophisticated methodologies for enhancing processing 

effectiveness, operational stability, and extensibility within CDC frameworks. 

Event-driven architectural patterns establish the structural foundation for productive CDC operational 

sequences by converting database alterations into separate event flows for subsequent utilization. These 

designs create fundamental separation between originating and destination systems, permitting 

autonomous functioning and dimensional expansion while preserving informational coherence. The 

event-driven framework naturally accommodates the non-synchronous character of CDC procedures, 

where modifications extracted from source environments must reliably transmit to multiple endpoints 

without introducing dependencies that might compromise originating system performance. This 

architectural independence generates intrinsic resilience against sequential failures while supporting 

the adaptable deployment configurations required in distributed computing landscapes [5]. 

Event sourcing methodology establishes the modification sequence as the definitive record system, 

maintaining comprehensive contextual history for all information changes. This approach perfectly 

complements CDC implementations by utilizing database transaction journals as event origins that 

document the complete sequence of state transformations. The permanent nature of these event 

recordings provides substantial advantages for compliance verification, procedural examination, and 

recovery scenarios. By preserving chronological documentation of all modifications, CDC systems can 

reconstruct dataset conditions from any historical reference point, implement event reproduction for 

new consumers, and reprocess historical information with updated transformation procedures when 

organizational requirements evolve. This capability eliminates requirements for resource-intensive 

preliminary data transfers when incorporating new consumer systems [5]. 

Command Query Responsibility Segregation enhances CDC architectures by structurally dividing write 

and read models, permitting specialized optimization for their distinct operational characteristics. This 

pattern acknowledges the fundamental contrast between transactional and analytical processing 
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requirements, providing dedicated environments optimized for each workload classification. In CDC 

implementations, this separation enables source systems to maintain structures optimized for 

transactional efficiency while downstream consumers utilize formats designed for analytical 

productivity. The integration of this pattern with event sourcing creates powerful architectural 

adaptability, allowing organizations to continuously develop their analytical capabilities without 

disrupting operational systems [5]. 

Achieving optimal throughput in CDC stream processing requires coordinated enhancement across 

multiple dimensions, including parallel configuration, grouping strategies, and conversion efficiency. 

Effective CDC implementations carefully balance competing requirements for throughput, response 

timing, consistency guarantees, and resource utilization. Contemporary architectures employ 

sophisticated event-time processing with singular execution semantics, ensuring accurate results 

despite disordered events or component malfunctions. The stream processing layer transforms 

unprocessed modification events through filtering, enhancement, and consolidation operations before 

delivery to destination systems, making its optimization essential for overall CDC performance [6]. 

Partitioning provides fundamental scalability for CDC workflows by segmenting event streams into 

independent units that process simultaneously. Advanced partitioning schemes distribute events based 

on logical boundaries such as source tables, identification ranges, or organizational divisions while 

maintaining sequential guarantees where required. Well-designed approaches consider both 

parallelism advantages and potential cross-partition overhead, implementing location-aware routing 

and data proximity strategies to minimize network transfers. These techniques substantially improve 

processing efficiency for high-volume CDC implementations by maximizing available computational 

resources while reducing coordination requirements [6]. 

Grouping strategies significantly enhance CDC throughput by distributing processing overhead across 

multiple events. Micro-grouping techniques accumulate events over configurable thresholds before 

collective processing, substantially improving efficiency compared to individual event handling. 

Adaptive algorithms dynamically adjust grouping parameters based on current system conditions, 

optimizing the throughput-response time balance without manual intervention. This approach provides 

automatic adaptation to changing workload characteristics, maintaining optimal performance as data 

volumes fluctuate throughout operational cycles [6]. 

Conversion efficiency critically impacts CDC performance, particularly in bandwidth-restricted 

environments or high-volume scenarios. Binary conversion formats substantially outperform text-

based alternatives for both storage efficiency and processing requirements. Structure-aware conversion 

provides additional benefits through selective field processing and native type handling while 

supporting essential schema evolution capabilities. Modern CDC implementations increasingly employ 

direct memory techniques that eliminate unnecessary data transformations and minimize memory 

allocations, reducing processor requirements and memory pressure during event processing [6]. 

Flow control management provides essential stability for CDC systems when processing capacity 

temporarily lags behind collection rates. Effective implementations coordinate transmission regulation 

across the entire pipeline from capture components through processing stages to destination systems. 

These mechanisms prevent faster components from overwhelming slower ones during normal 

operation and partial failure scenarios, maintaining system stability while maximizing sustainable 

throughput. The specific signaling mechanisms vary across technologies but share the common 

objective of preventing resource exhaustion while maintaining optimal performance under varying 

conditions [6]. 

Structural evolution presents unique challenges in CDC environments where source systems may 

modify data arrangements independently from consumers. Effective structure management requires 

mechanisms to detect, communicate, and adapt to organizational changes while maintaining processing 

continuity. Structure governance frameworks establish policies for allowable modifications, 

compatibility verification procedures, and coordinated deployment processes that minimize disruption 

during transitions. Centralized structure registries maintain authoritative definitions for event formats 
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and versions, enabling runtime validation and compatibility enforcement across diverse technologies 

and teams [5]. 

 
Fig. 2: Stream Processing Optimization Techniques in CDC Workflows. [5, 6] 

 

4. Cost-Effective Data Synchronization Implementation Patterns 

The financial sustainability of Change Data Capture (CDC) frameworks fundamentally depends on 

resource optimization while preserving performance standards. As enterprises expand their data 

integration infrastructures, effective cost management becomes increasingly vital for operational 

viability. This section examines implementation approaches that enhance economic efficiency across 

CDC deployments. 

Various CDC methodologies present distinctive resource consumption characteristics that substantially 

influence operational expenses. Log-based CDC demonstrates reduced source system impact through 

direct extraction from database transaction journals without necessitating supplementary queries or 

triggers. This technique minimizes processing burden on production databases while potentially 

expanding storage requirements for extended log preservation. Implementation research indicates 

considerable efficiency improvements in high-transaction environments, enabling organizations to 

achieve greater throughput with smaller infrastructure footprints compared to alternative 

methodologies [7]. 

Trigger-based CDC methodologies provide implementation directness but frequently impose 

heightened resource demands on source systems by performing additional processing during 

transaction confirmations. This approach increases processing consumption and transaction delays, 

potentially demanding supplementary capacity to sustain application performance. The additional 

burden fluctuates considerably based on transaction volume and complexity, with the most significant 

effects occurring during peak operational periods when resources already face constraints. 
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Organizations implementing trigger-based CDC typically allocate additional resources to source 

systems, escalating both infrastructure and licensing expenditures [7]. 

Thorough resource monitoring across CDC pipelines has become an essential practice for cost 

optimization. Contemporary implementations track indicators including processing utilization, 

memory consumption, input/output operations, network capacity, and storage expansion across all 

system components. Temporal analysis of these measurements enables the identification of inefficient 

elements and improvement opportunities. Organizations with advanced cost management implement 

accountability frameworks based on these metrics, establishing transparency for resource consumption 

and encouraging efficiency enhancements. Cloud-based CDC implementations particularly benefit from 

this methodology, utilizing detailed usage statistics to optimize resource allocation [7]. 

Storage expenses constitute a significant portion of CDC infrastructure costs, particularly as 

organizations maintain historical change records for compliance, verification, or analytical purposes. 

The decision between merge-on-read (MoR) and copy-on-write (CoW) storage approaches presents a 

crucial cost optimization opportunity with substantial implications for both storage consumption and 

computational requirements. Copy-on-Write strategies optimize retrieval performance by maintaining 

fully materialized data files, incorporating all modifications, and eliminating runtime merge operations 

during queries. This methodology typically results in increased storage consumption due to file-level 

modifications rather than record-level deltas, particularly with frequent minor updates to substantial 

objects [8]. 

Merge-on-Read strategies prioritize write efficiency by storing delta changes separately from 

foundation data, postponing merge operations until retrieval time. This approach substantially 

decreases storage requirements, particularly for update-intensive workloads with large objects, as only 

modified records require additional storage rather than complete files. The storage efficiency introduces 

increased computational demands during read operations, which must integrate base data with 

applicable deltas to construct the current state. This approach particularly benefits scenarios with high 

modification volumes but relatively infrequent retrievals [8]. 

Combined approaches integrating both strategies optimize cost-effectiveness across diverse workload 

patterns. These implementations typically utilize MoR for recent changes to minimize storage costs 

during high-velocity update periods, with scheduled consolidation to CoW formats for frequently 

accessed historical information. This approach balances storage efficiency with query performance, 

dynamically optimizing resource allocation based on data access patterns. Sophisticated 

implementations employ cost-conscious consolidation policies that consider both storage expenses and 

computational costs when determining when and how to compact data [8]. 

CDC workloads typically exhibit substantial variability driven by application usage patterns, batch 

processing cycles, and business events. Cost-effective CDC implementations employ dynamic 

infrastructure scaling approaches that align resource allocation with current requirements while 

minimizing unnecessary expenses. Horizontal scaling distributes CDC processing across variable 

numbers of computational units based on current workload demands. This approach typically leverages 

containerization or serverless computing frameworks to enable rapid deployment and termination of 

processing units. Partition-aware designs ensure that work can be effectively distributed across 

processing nodes without causing data consistency issues [7]. 

Vertical scaling adjusts resource allocation to individual processing nodes based on current 

requirements. This pattern works effectively for CDC components that cannot easily distribute 

processing across multiple instances, such as certain database systems or legacy applications. Cloud-

based implementations leverage instance resizing capabilities to adjust computational and memory 

resources during different operational phases. Performance analysis indicates that vertical scaling can 

optimize costs effectively for components with predictable resource consumption patterns [7]. 

The comprehensive ownership cost for data synchronization extends beyond infrastructure expenses to 

include operational complexity, development requirements, data latency impacts, and business 

opportunity costs. Comprehensive total cost analysis enables organizations to select synchronization 

patterns that optimize overall economic value rather than simply minimizing direct infrastructure 
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expenses. Real-time synchronization approaches typically incur higher infrastructure costs due to 

continuous processing requirements and resilient message delivery infrastructure. These 

implementations generally require more sophisticated architectural components, including change 

capture mechanisms, message distribution systems, and stream processing frameworks [8]. 

Business value derived from reduced data latency often represents the decisive factor in synchronization 

pattern selection. Use cases with direct revenue impact from faster data availability can justify 

substantially higher infrastructure and operational costs through improved business outcomes. Total 

cost models for these scenarios must incorporate quantitative estimates of business value creation, 

typically expressed as revenue increases, cost avoidance, or risk reduction. When properly quantified, 

these benefits often outweigh the additional costs of real-time synchronization for business-critical 

applications [8]. 

Hybrid synchronization approaches optimize total cost across diverse data requirements by employing 

real-time synchronization for critical data elements with high business value from low latency, while 

using batch synchronization for less time-sensitive information. This pattern aligns costs with value 

creation by applying more expensive real-time approaches only where justified by business impact. 

Organizations with mature data governance practices implement formal frameworks for evaluating 

synchronization requirements based on data criticality, update frequency, and business impact of 

latency [8]. 

 
Fig. 3: Cost-Effective Data Synchronization Implementation Patterns. [7, 8] 

 

5. Performance Benchmarking and Empirical Results 

A comprehensive performance assessment provides a crucial understanding of the operational 

characteristics of CDC architectures under various conditions. This section presents detailed 

benchmarking outcomes from controlled experiments designed to measure essential performance 

indicators across different CDC implementations. 

Experimental Setup and Methodology 

Performance evaluation of CDC frameworks requires meticulously controlled testing environments that 

balance practical relevance with scientific reproducibility. The benchmarking structure established for 

this analysis employs a multi-layered architecture representative of enterprise deployments, including 

source database systems, CDC processing components, messaging infrastructure, and destination data 
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repositories. The testing environment utilizes containerized components deployed on cloud 

infrastructure to ensure consistent results while facilitating replication of experiments [9]. 

The source databases were structured with schemas reflecting typical enterprise data organizations, 

including transactional tables with diverse characteristics such as record sizes, identifier distributions, 

and indexing approaches. Synthetic workload generators were developed to create controlled 

transaction patterns with adjustable ratios between insertion, modification, and removal operations. 

These generators support both continuous and intermittent patterns to evaluate system behavior under 

both standard and peak operational conditions [9]. 

Uniform measurement methodologies were implemented across all test scenarios to ensure valid 

comparisons. Propagation time measurements capture the complete duration from source transaction 

commitment to availability in the destination system, instrumented through tracking identifiers 

embedded in test transactions. Processing rate metrics quantify the sustainable volume of change 

events processed per time unit, measured at equilibrium after system initialization periods. Resource 

consumption metrics were gathered through comprehensive monitoring systems capturing processor 

utilization, memory consumption, storage operations, and network transfer volumes across all system 

components [9]. 

Latency and Throughput Metrics across Varying Data Volumes 

End-to-end propagation time represents a critical performance indicator for CDC implementations, 

directly influencing the timeliness of data availability for downstream consumers. Benchmark results 

demonstrate significant variation in timing characteristics across different CDC architectures and 

processing models. Log-based CDC implementations consistently deliver faster baseline response 

compared to query-based approaches, with median timing measurements showing substantial 

advantages across all tested data volumes. This advantage stems from the immediate capture of changes 

from transaction logs without the periodic delays inherent in query-based approaches [9]. 

Processing capacity varies significantly across CDC implementations, with architectural design choices 

having a substantial impact on maximum sustainable transaction rates. Pipeline-based architectures 

leveraging concurrent processing show proportional scaling with additional processing resources until 

reaching limitations in source systems or messaging infrastructure. Batch-oriented designs exhibit 

incremental scaling patterns with performance plateaus between batch boundaries. The relationship 

between batch size and processing capacity demonstrates clear trade-offs against response time, with 

larger batches improving throughput at the expense of increased propagation delay [9]. 

Resource Consumption Patterns under Different Workloads 

Resource utilization efficiency directly influences operational costs and infrastructure requirements for 

CDC implementations. Benchmark results reveal distinct resource consumption patterns across 

different CDC architectures and processing models. Processor utilization measurements show 

significant variation in processing efficiency, with stream-oriented architectures typically delivering 

higher throughput per processing core compared to batch-oriented designs. This efficiency advantage 

stems from reduced context switching and better processor cache utilization in stream processing 

models [10]. 

Memory usage patterns vary based on both architectural approach and implementation details. State-

intensive processing models that maintain in-memory indexes or caches show higher baseline memory 

requirements but often deliver better performance under specific workload patterns. The relationship 

between memory allocation and performance demonstrates clear efficiency thresholds, with optimal 

configurations showing high resource utilization without triggering reclamation overhead or memory 

pressure [10]. 

Storage operation patterns represent another critical resource dimension, particularly for CDC 

implementations that maintain transaction logs or change histories. Log-based CDC approaches 

typically show higher write operations on source systems for maintaining extended transaction logs, 

offset by lower read operations due to direct log access rather than query execution. The storage 

efficiency of change history maintenance varies significantly between immediate-update and deferred-

update strategies, with trade-offs between write multiplication and read performance [10]. 
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Comparative Analysis with Traditional CDC Approaches 

Comparing modern CDC implementations against traditional approaches reveals substantial 

performance and efficiency improvements enabled by architectural advancements and optimized 

processing models. Traditional scheduled extract-transform-load processes typically exhibit 

significantly higher delays due to fixed execution intervals, with end-to-end timing measured in 

extended periods compared to brief intervals for real-time CDC implementations. This timing gap 

creates qualitative differences in the types of use cases that can be supported, enabling new applications 

that require immediate data availability [10]. 

Reliability and recovery capabilities represent another area of significant advancement in modern CDC 

architectures. Event-based CDC implementations with persistent message storage demonstrate 

superior recovery capabilities after both source and destination system failures, with the ability to 

resume processing from the exact point of interruption without information loss or duplication. This 

recovery model eliminates the complex checkpoint management and reconciliation processes often 

required in traditional batch approaches [10]. 

Scaling characteristics show fundamental differences between modern and traditional approaches. 

Modern CDC implementations typically demonstrate more proportional scaling properties with 

resource addition, while traditional batch processes often show diminishing improvements beyond 

certain scale points due to coordination overhead or resource contention. The event-driven nature of 

modern CDC architectures enables more flexible scaling models, including dynamic resource allocation 

based on current workload demands rather than fixed provisioning for maximum capacity [10]. 

 

 
Fig. 4: Resource Consumption Patterns in CDC Workloads. [9, 10] 

 

Conclusion 

The advancement of CDC architectures represents a significant progression in enterprise data 

integration capabilities, facilitating instantaneous synchronization with considerably improved 

efficiency. Apache Hudi delivers a substantial foundation for implementing contemporary CDC 

solutions through its transaction-oriented architecture, complementary storage models, and 

incremental processing functionalities. Stream processing enhancements, including event-based 

architectures, strategic partitioning, and adaptive flow control mechanisms, substantially improve CDC 

performance while preserving system stability. The adoption of appropriate implementation patterns 

based on operational characteristics and organizational requirements enables resource-efficient CDC 
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deployments that balance infrastructure expenses against operational advantages. Performance 

measurement confirms that log-based CDC implementations deliver superior response times, 

processing capacity, and resource efficiency compared to conventional approaches, particularly for 

high-volume transactional environments. These innovations collectively allow organizations to 

establish data integration solutions meeting increasingly stringent requirements for data freshness, 

consistency, and scalability across distributed computing environments. 
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