
Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 625

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Serverless Architectures: Redefining Scalability and

Cost Optimization in Cloud Computing

Sudhir Saxena

Anna University, College of Engineering, Guindy, Chennai, India

ARTICLE INFO ABSTRACT

Received: 20 July 2025

Revised: 08 Aug 2025

Accepted: 20 Aug 2025

Serverless computing, especially the FaaS, has disrupted the development of cloud-

native applications by fundamentally changing the way organizations build their

infrastructure and deploy their applications. This is an architectural paradigm that

abstracts away the issue of provisioning servers and, as such, enables the developers

to simply think about business-related logic with cloud providers taking care of the

underlying execution environment. The article will look at the evolution path of cloud

computing using Infrastructure as a Service, Containerization, and the serverless

models. It will look at the major components that make up standard serverless

models, comprising event triggers, execution environments, handler functions, and

backend cloud services. Examples of strategic benefits that are discussed and factored

in alongside the technical concerns are automatic scaling, cost efficiency on a granular

level based on actual consumption, and the reduction in operation complexity. The

article will also deal with new trends defining the current state of serverless

environments, such as artificial intelligence as an element of workload prediction,

stateful function paradigm, multi-cloud deployment strategies, specialized workload

hardware acceleration, and sustainability. Exploring the real implementations and

up-to-date studies, this article will thoroughly describe how serverless architectures

can bring elastic computing at a low cost, with the considerations of benefiting

implementations in a variety of application landscapes.

Keywords: Function-as-a-Service, Event-driven Architecture, Cloud Abstraction,

Infrastructure Optimization, Microservice Orchestration

1. Introduction

In the modern, rapidly evolving cloud environment, serverless designs have become game changers that

effectively redefine how companies approach application creation, deployment, and expansion. The

task of this architectural approach, in particular, Function-as-a-Service (FaaS), is to offload the

provisioning of infrastructure onto developers, thus letting those developers focus entirely on code that

addresses particular events. Industry analyses reveal serverless adoption skyrocketing approximately

75% between 2020-2024, with roughly 68% of enterprises now embracing some form of serverless

technology [1].

The economic ramifications prove equally compelling. Rigorous benchmarking demonstrates that

organizations implementing serverless designs for suitable workloads have achieved operational

savings between 26-63% versus legacy deployment frameworks [2]. Such dramatic efficiency stems

from granular billing structures—where providers charge solely for consumed compute time in tiny

increments—effectively eliminating the wasteful "standby tax" inherent with continuously-running

virtual machines or containers.

From a technical standpoint, serverless platforms demonstrate exceptional scaling characteristics. AWS

Lambda, capturing roughly 47% market share as the leading FaaS solution, scales seamlessly from zero

to beyond 3,000 concurrent function executions within moments, each function potentially processing

upwards of 6 million events per minute [1]. This automatic scaling capability makes serverless

particularly well-suited for variable workloads showing unpredictable traffic spikes, like IoT sensor

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 626

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

systems, where telemetry might suddenly surge from hundreds to millions of events during specific

operational phases.

The abstraction provided through serverless computing yields substantial productivity advantages for

development teams. Research demonstrates technical teams typically spend approximately 31% less

time managing operational concerns when utilizing serverless designs, enabling greater concentration

on core business logic and feature development [2]. This shift aligns perfectly with broader industry

movements toward abstracting infrastructure complexity for accelerated innovation cycles and faster

market delivery for digital products.

2. The Evolution of Cloud Computing Models

The cloud computing arena has witnessed numerous radical changes over the last few years. Beginning

with Infrastructure-as-a-Service (IaaS) options, such as Amazon EC2, which provides the user with

operating system control and deployment strategy options, Platform-as-a-Service (PaaS) services, such

as Heroku and Google App Engine, are creeping in to allow abstraction of the operating system

intricacies. This evolutionary trajectory reveals persistent industry movement toward higher-level

abstractions and streamlined developer experiences [3].

Initially, IaaS models revolutionized IT operations through programmatic resource provisioning, yet

demanded substantial expertise in system oversight and infrastructure governance. Early adopters

typically achieved infrastructure cost reductions around 25-30% compared against traditional

datacenters, while still shouldering significant operational responsibilities, including security updates,

scaling configurations, and disaster recovery implementations. Despite these hurdles, IaaS adoption

accelerated markedly between 2010-2015 as enterprises recognized the competitive advantages offered

through programmable infrastructure [3].

The containerization movement subsequently introduced Container-as-a-Service (CaaS) platforms,

including Kubernetes and Docker Swarm, enabling sophisticated container orchestration. It involves

this paradigm shift, which fundamentally changed the methodologies of application packaging through

encapsulating software and related dependencies into lightweight and portable modules. Kubernetes,

first published by Google (2014), is the de facto orchestration standard, and adoption grew by about

300 percent between 2018-2021. CaaS platforms tackled critical challenges within microservice

deployment through declarative configuration, automated scaling capabilities, and self-healing

functions, yet still required considerable expertise for configuration and maintenance [4].

Towards the top of this abstraction pyramid sits Function-as-a-Service (FaaS) in the form of AWS

Lambda, Google Cloud Functions and Microsoft Azure Functions, and open-source options like

OpenFaaS. This model imparts the greatest abstraction concerning the issues of infrastructure, as the

developers can only implement discrete functions in response to a set of events without having to deal

with underlying compute resources. FaaS platforms typically provision execution environments within

milliseconds, automatically scale based on incoming requests, and charge solely for actual compute time

consumed. This event-driven approach demonstrates particular effectiveness for asynchronous

processing, API backends, real-time data transformation, and integration workflows [4].

3. Core Components of Serverless Architecture

Components common to most serverless architectures include four key components that work in

harmony to provide fully managed execution environments for application logic. Knowledge of these

elements is critical to successful serverless deployment and utilization of design patterns, including

event-driven processing, fan-out/fan-in designs, and backend-for-frontend (BFF) designs that best

optimize the benefits of this particular architecture [5].

Trigger/Event Source is used to kick off the execution of a purpose using different mechanisms. Such

initiators include HTTP requests through API gateways, database change events, message queue

notifications, file uploads into the object storage, IoT device telemetry, and scheduled tasks. Each type

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 627

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

of trigger has certain activation parameters, which are at the heart of the event-driven architecture

pattern, permitting systems to respond to real-world events with as low a latency as possible. The

serverless approach toward event processing eliminates wasteful polling overhead by invoking

functions exclusively when meaningful events materialize [5].

The FaaS Execution Environment embodies the serverless platform infrastructure managing function

lifecycles from deployment through execution and termination. This environment handles container

provisioning, scaling decisions, monitoring functions, and resource allocation. Research examining

serverless infrastructure reveals that most providers implement multi-tenant isolation through

lightweight virtualization technologies, creating secure boundaries between function instances while

minimizing resource overhead. These environments implement sophisticated auto-scaling capabilities,

handling thousands of concurrent executions with millisecond-level responsiveness [6].

The Function Handler comprises stateless application code crafted for processing specific event types.

These handlers follow prescribed patterns with language-specific implementations, receiving event

objects and context information as input parameters. Adopting single-purpose functions encourages

decomposition of complex logic into discrete, maintainable components, aligning with microservice

design principles while enabling more granular scaling and resilience patterns [5].

Backend Services constitute supporting infrastructure that functions interact with, including storage

systems, databases, authentication services, and external APIs. Since functions maintain no persistent

state between invocations, these backend services provide necessary state management capabilities.

Recent research demonstrates that optimized connections between functions and backend services

significantly impact overall performance, with connection reuse across invocations reducing latency

approximately 15-20% [6].

The execution model dynamically provisions ephemeral containers when functions receive triggers,

potentially causing "cold start latency" when no pre-warmed instances exist—a challenge particularly

relevant for latency-sensitive applications. Empirical studies across major cloud providers show cold

start latencies ranging from 100ms to several seconds, depending on runtime selection, memory

allocation, and code complexity [6].

Fig 1: Key Elements in a Serverless Computing Model [5, 6]

4. Strategic Advantages of Serverless Computing

4.1 Automatic Scalability

Serverless platforms are especially successful when it comes to handling unpredictable workload with

auto-scaling of resources according to the changes in demand. This elasticity is particularly useful to

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 628

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

event-based applications, IoT data processing, and ad-hoc workloads with random traffic that is not

predictable. Organizations like Velocity Global have leveraged this capability throughout rapid business

expansion, implementing serverless designs that effortlessly accommodate growing transaction

volumes across multiple geographic regions without manual intervention. The implementation

demonstrates how serverless platforms dynamically allocate resources against fluctuating demand

patterns throughout business cycles, eliminating capacity planning exercises traditionally consuming

significant engineering resources. Automatic scaling capability proves particularly valuable for

businesses experiencing rapid growth or seasonal demand variations, as infrastructure transparently

adapts against changing requirements without developer involvement [7].

4.2 Granular Cost Efficiency

Perhaps the most disruptive aspect of serverless computing lies within its pricing model. Serverless

platforms replace traditional cloud services where payment is based on capacity provisioned (regardless

of real usage), with a model of charging only per consumed compute time, usually with a granularity as

small as 100ms. The model does away with the cost of idle resources, and this may significantly reduce

operational costs in a case where it is exploited with appropriate workloads. Research into financial

sector implementations reveals that organizations adopting serverless architectures for appropriate use

cases experience substantial cost optimization, particularly regarding workloads with variable

execution patterns or significant idle periods. Financial benefits extend beyond direct infrastructure

costs toward reduced operational overhead and faster market delivery, creating compelling total cost

advantages compared against traditional deployment approaches. This consumption-based pricing

model fundamentally aligns infrastructure expenses alongside business activity, transforming fixed IT

costs into variable expenses scaling directly against actual usage [8].

4.3 Reduced Operational Complexity

By abstracting infrastructure management, serverless architectures substantially reduce DevOps

overhead. Development teams no longer allocate resources toward OS patching, capacity planning, or

scaling configuration, allowing greater focus on core business logic and feature development. Velocity

Global's experience exemplifies this benefit, as serverless development environment adoption

eliminated multiple infrastructure management task categories previously consuming developer time

and attention. By offloading infrastructure to cloud providers, the engineering teams focused their

energy on business logic and feature creation processes, shortened the innovation and product cycles,

and overall productivity increased. This decrease in operational complexity is especially beneficial when

the aim is to better utilize the existing engineering resources of the organization by taking out the heavy

task of undifferentiated heavy lifting required to manage infrastructure and permitting specialized

talent to concentrate on building business value and instead of managing the systems on which they sit

[7].

Advantage

Category
Traditional Cloud

Serverless

Computing
Key Benefit Metric

Scalability
Manual configuration

required

Automatic and

immediate

Time to scale resource

capacity

Cost Efficiency Pay for provisioned capacity
Pay only for compute

time used (100ms)

Idle resource waste

elimination

Operational

Overhead

High (OS patching, scaling,

capacity planning)

Low (managed by

provider)

DevOps time

reduction

Resource

Utilization
Often <30% efficient

Near 100% during

execution

Infrastructure

efficiency

Development

Focus

Split between code and

infrastructure

Primarily on business

logic

Feature delivery

acceleration

Table 1: Comparative Benefits of Serverless Computing vs. Traditional Cloud Models [7, 8]

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 629

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

5. Technical Challenges and Limitations

5.1 Cold Start Performance Impact

When warm container instances remain unavailable, new function invocations might experience latency

while platforms download code, initialize runtime environments, and load dependencies. Such delays

are generally in the 100-ms to several-second range, which varies with implementation language,

dependency complexity, and platform details. Recent research regarding performance optimization

techniques identifies several factors significantly influencing cold start durations: runtime selection

(compiled languages generally outperform interpreted ones), memory allocation (higher allocations

typically reduce initialization times), package size (smaller deployment packages initialize faster), and

dependency complexity (minimal dependencies reduce startup overhead). The research highlights

effective mitigation strategies, including pre-warming techniques, optimized deployment packages, and

architectural patterns that maintain functional activity levels. With latency-sensitive applications,

provisioned concurrency, deployment artifact optimization, and the use of an effective runtime can

make a significant difference toward mitigating the effects of cold starts, though such optimizations

have tradeoffs between the performance, cost, and freedom to develop that need careful consideration

and balance under organizational constraints [9].

5.2 Vendor-Specific Implementation Concerns

Serverless offerings frequently implement proprietary APIs and services. Migrating between

platforms—for instance, from AWS Lambda toward Azure Functions—typically requires significant

code modification and configuration changes, creating potential vendor lock-in scenarios. Each cloud

provider implements distinct event models, integration patterns, and supporting services, creating

implicit dependencies throughout application architectures. While functions themselves might follow

relatively standardized patterns, surrounding ecosystems—including event sources, authentication

mechanisms, and specialized databases—typically leverage provider-specific services, making it difficult

to abstract. This dependency extends toward deployment pipelines, monitoring infrastructure, and

security controls, creating technical debt that accumulates over time while potentially complicating

migration efforts. Organizations must carefully evaluate strategic implications behind these

architectural decisions, potentially implementing abstraction layers for critical components when

multi-cloud flexibility represents core business requirements [10].

5.3 Observability and Troubleshooting Complexity

The dynamic nature of serverless functions is one that complicates monitoring and debugging solutions

that are traditionally practiced. Although partial solutions are done through advanced tools, such as

AWS X-Ray and Google Cloud Trace, they are very difficult to achieve in a complex serverless

environment. Distributed tracing becomes necessary when targeting execution paths through several

functions, and among managed services; correlation identifiers that follow requests through chains of

asynchronous events are needed. Performance analysis presents particular challenges as conventional

profiling tools might introduce unacceptable overhead or fail to capture complete execution contexts

during short-lived function invocations. Effective serverless observability strategies must combine

multiple techniques, including structured logging, distributed tracing, metric aggregation, and

application performance monitoring adapted specifically for ephemeral computing models. Research

suggests implementing comprehensive observability requires intentional design patterns from the

earliest development stages rather than retrofitting monitoring into existing architectures [9].

5.4 Security Considerations

The transient execution model characterizing serverless functions introduces unique security

challenges. Ephemeral execution environments complicate forensic investigation following security

incidents, while multi-tenant architectures create potential side-channel attack vectors between

functions sharing underlying infrastructure. Security experts highlight several critical concerns specific

to serverless architectures: function permission configuration (applying least-privilege principles

across numerous discrete functions), dependency vulnerabilities (managing security across included

libraries), secure data handling (protecting sensitive information moving between functions and

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 630

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

services), and event injection (validating input from various event sources). The shared responsibility

model shifts significantly within serverless contexts, with providers managing infrastructure security

while developers retain responsibility for application security, access controls, and dependency

management. Implementing effective security within serverless environments requires adapting

traditional practices toward ephemeral computing models through automated scanning,

comprehensive IAM policies, encryption for data in transit and at rest, and security monitoring

designed for distributed, event-driven architectures [10].

Challenge

Category
Impact Severity

Mitigation

Complexity
Primary Affected Workloads

Cold Start Latency High Medium
Real-time APIs, User-facing

applications

Vendor Lock-in Medium High
Enterprise applications, Multi-

cloud deployments

Observability High High
Complex distributed systems,

Mission-critical applications

Security Medium Medium
Multi-tenant systems, Data-

sensitive workloads

Table 2: Serverless Challenges - Severity and Mitigation Effectiveness [9, 10]

6. Emerging Trends and Future Directions

6.1 AI-Driven Function Orchestration

Machine learning models, particularly Long Short-Term Memory (LSTM) networks, show promise in

forecasting workload patterns and proactively warming function containers before anticipated

invocations, potentially mitigating cold start issues. Recent research within predictive scaling explores

how temporal patterns across function invocation data might leverage demand fluctuation anticipation

before actual occurrence. Through integrating predictions into serverless platforms, providers optimize

resource allocation while maintaining performance during traffic spikes. These intelligent orchestration

systems represent a significant advancement beyond traditional reactive scaling approaches that

respond exclusively after demand changes have already materialized [11].

6.2 Stateful Function Models

Classic FaaS solutions are still stateless per se, but frameworks such as Azure Durable Functions and

AWS Step Functions are the first to experiment with enabling stateful workflow orchestration as part of

serverless workflows. These new solutions solve inherent challenges of first-generation serverless

platforms by providing persistent state between invocations on functions, whilst maintaining the core

advantages in terms of auto scaling and pay-as-you-go pricing. Introducing durable execution contexts

significantly expands suitable workload ranges for serverless architectures, making viable complex

business processes requiring transaction support and execution consistency [11].

6.3 Multi-Cloud Serverless Capabilities

Declarative, open-source frameworks, such as Knative, Kubeless, and OpenFaaS, promote vendor-

independent function deployment paradigms that run on top of Kubernetes, and which may ease lock-

in issues and facilitate cross-cloud serverless strategies. These systems put in standardized interface

functions that run uniformly in a wide range of infrastructure environments, including on-premises

infrastructures to multiple public clouds. This standardization addresses primary concerns regarding

serverless adoption by enabling portable implementations that adapt to changing business

requirements and infrastructure strategies throughout time [11].

6.4 Hardware-Accelerated Functions

Function runtimes evolve, supporting specialized hardware acceleration, particularly regarding AI/ML

workloads. Examples include AWS Lambda integration alongside NVIDIA GPUs for model inference

tasks. These specialized execution environments enable computationally intensive operations,

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 631

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

leveraging purpose-built hardware while maintaining operational simplicity within serverless models.

Hardware acceleration capability integration within serverless platforms represents convergence

between high-performance computing alongside operational simplicity, potentially enabling new

application categories within function-as-a-service paradigms [11].

6.5 Sustainability Implications

The event-driven nature characterizing serverless computing eliminates idle compute waste, potentially

reducing application energy footprints. This alignment alongside green computing principles makes

serverless architectures increasingly relevant within organizations prioritizing sustainability initiatives.

Research indicates fine-grained resource allocation models inherent within serverless platforms

significantly improve infrastructure utilization compared against traditional deployment approaches,

maintaining continuous server availability regardless of actual demand. As environmental

considerations become increasingly important throughout IT strategy development, efficiency

characteristics defining serverless computing position this approach as a potentially valuable

component within sustainable technology practices [11].

Trend
Current

Maturity

Potential

Impact

Primary Problem

Addressed

Key Enabling

Technologies

AI-Driven

Orchestration
Emerging High Cold start latency

LSTM networks,

predictive analytics

Stateful Functions Early adoption Very High
Limited workflow

complexity

Durable Functions,

Step Functions

Multi-Cloud

Capabilities
Developing High Vendor lock-in

Knative, Kubeless,

OpenFaaS

Hardware

Acceleration
Experimental Medium

Compute-intensive

workloads

GPU integration,

specialized processors

Sustainability

Features
Conceptual Medium Energy efficiency

Fine-grained resource

allocation

Table 3: Future Serverless Trends - Maturity and Impact Assessment [11, 12]

Conclusion

Serverless computing is an innovative technique in cloud-native application development and has been

able to provide organizations with strong benefits in terms of infrastructure abstraction, auto scaling,

and consumption-based costing models. Under this architectural paradigm, the operational duties are

moved to a cloud provider so that the development teams can focus on building business value instead

of maintaining underlying systems. Although serverless applications significantly improve overall

application overhead because of the amount of infrastructure-related overhead they eliminate and

speed up development processes, there is a list of inherent challenges that an organization must

consider, such as cold start latency, platform-related dependency issues, observability threats, and

security threats that should be considered in ephemeral environment applications. The serverless

ecosystem is fast evolving with the emerging capabilities weaving together the abilities to eliminate the

current constraints due to predictive scaling, stateful execution paradigm, cross-platform

standardization, integration of special-purpose hardware, and resource management within the context

of resource optimization with respect to sustainability. Serverless architectures will also provide more

and more support to more complex application patterns that have not been suitable for stateless

processing models based on event-driven execution. Serverless computing is an interesting functional

architectural choice for organizations interested in maximizing resource usage efficiency and developer

productivity, and represents a core piece of the future of distributed applications.

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 632

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

References

[1] Dhruv Kumar Seth and Pradeep Chintale, "Performance Benchmarking of Serverless Computing

Platforms," ResearchGate, 2024. [Online]. Available:

https://www.researchgate.net/publication/382374997_Performance_Benchmarking_of_Serverless_

Computing_Platforms

[2] Compunnel Digital, "Serverless Architectures: Redefining the Economics of Cloud Computing,".

[Online]. Available: https://www.compunnel.com/blogs/serverless-architectures-redefining-the-

economics-of-cloud-computing/

[3] GeeksforGeeks, "Evolution of Cloud Computing," 2025. [Online]. Available:

https://www.geeksforgeeks.org/cloud-computing/evolution-of-cloud-computing/

[4] Auday Al-Dulaimy et al., "The computing continuum: From IoT to the cloud," Internet of Things,

Volume 27, 2024. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2542660524002130

[5] Alexander Ospina, "Serverless Architecture Design Patterns For Cost Efficiency," CloudZero.

[Online]. Available: https://www.cloudzero.com/blog/serverless-architecture-design-patterns/

[6] Daniel Kelly, Frank G Glavin, and Enda Barrett, "Serverless Computing: Behind the Scenes of Major

Platforms," arXiv:2012.05600, 2020. [Online]. Available: https://arxiv.org/abs/2012.05600

[7] Nikhil Gopinath, "Serverless Development Environments: Velocity Global's Path to Scalability,"

Sedai Blog, 2024. [Online]. Available: https://www.sedai.io/blog/serverless-development-

environments-velocity-globals-path-to-scalability

[8] Anish Kumar Jain and Ms. Lalita Verma, "Benefits and Challenges of Serverless Architectures in

Financial Applications," ResearchGate, 2025. [Online]. Available:

https://www.researchgate.net/publication/390451848_Benefits_and_Challenges_of_Serverless_Arc

hitectures_in_Financial_Applications

[9] Anshul Sharma, "Performance Optimization Techniques For Serverless Computing Platforms,"

ResearchGate, 2024. [Online]. Available:

https://www.researchgate.net/publication/383563044_PERFORMANCE_OPTIMIZATION_TECHN

IQUES_FOR_SERVERLESS_COMPUTING_PLATFORMS

[10] Rohit Akiwatkar, "Serverless Security- What are the Security Risks & Best Practices?" Simform

Blog, 2021. [Online]. Available: https://www.simform.com/blog/serverless-security/

[11] Adel N. Toosi et al., "Serverless Computing for Next-generation Application Development, "Future

Generation Computer Systems, Volume 164, 2025. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0167739X24005375

https://www.researchgate.net/publication/382374997_Performance_Benchmarking_of_Serverless_Computing_Platforms
https://www.researchgate.net/publication/382374997_Performance_Benchmarking_of_Serverless_Computing_Platforms
https://www.compunnel.com/blogs/serverless-architectures-redefining-the-economics-of-cloud-computing/
https://www.compunnel.com/blogs/serverless-architectures-redefining-the-economics-of-cloud-computing/
https://www.geeksforgeeks.org/cloud-computing/evolution-of-cloud-computing/
https://www.sciencedirect.com/science/article/pii/S2542660524002130
https://www.cloudzero.com/blog/serverless-architecture-design-patterns/
https://arxiv.org/abs/2012.05600
https://www.sedai.io/blog/serverless-development-environments-velocity-globals-path-to-scalability
https://www.sedai.io/blog/serverless-development-environments-velocity-globals-path-to-scalability
https://www.researchgate.net/publication/390451848_Benefits_and_Challenges_of_Serverless_Architectures_in_Financial_Applications
https://www.researchgate.net/publication/390451848_Benefits_and_Challenges_of_Serverless_Architectures_in_Financial_Applications
https://www.researchgate.net/publication/383563044_PERFORMANCE_OPTIMIZATION_TECHNIQUES_FOR_SERVERLESS_COMPUTING_PLATFORMS
https://www.researchgate.net/publication/383563044_PERFORMANCE_OPTIMIZATION_TECHNIQUES_FOR_SERVERLESS_COMPUTING_PLATFORMS
https://www.simform.com/blog/serverless-security/
https://www.sciencedirect.com/science/article/pii/S0167739X24005375

