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This paper introduces a hybrid compact model BPSO-XGBoost for the detection of anomalies in 

connected and automated vehicles (CAVs). Current deep learning approaches based on DSRC do 

not scale well, are susceptible to insider attacks, and are not capable of generalizing to high-

frequency anomalies. To tackle the above challenges, we combine feature selection to improve 

performance, and the fast and powerful classifier, XGBoost. When tested on the perturbed SPMD 

data set, we can achieve 98% precision, 98% sensitivity, 97% precision and an F1 score of 0.98 - 

outperforming that of the CNN-LSTM by 6.52% in sensitivity and 8.99% in accuracy - with the 

possibility of operating in real time. 

Keywords: Connected Vehicles, Anomaly Detection, XGBoost, Particle Swarm Optimization, 

Cybersecurity, Machine Learning 

 

INTRODUCTION 

Background of Study 

Vehicle-To-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications –mostly facilitated by Dedicated 

Short Range Communication (DSRC)– form the backbone of Intelligent Transportation System (ITS) and allow low 

latency and reliable data exchange, which is highly critical for safety applications (E. Eziama 2021). Although DSRC 

has been shown to be effective, it comes with its own inherent limitations in scalability and processing power (Wang, 

Masoud, and Khojandi 2020), which has led to the creation of lightweight authentication systems (Wang, Masoud, 

and Khojandi 2020; E. Eziama et al. 2018). However, such mechanisms are ineffective if authenticated, 

compromising nodes launch attacks from within the network. 

This challenge is aggravated in Vehicular Ad hoc Networks (VANETs), which have a dynamic topology and high 

mobility. Malicious adversarial nodes can simply flood fabricated messages in the network, resulting in traffic 

accidents, traffic jams, passenger inconvenience, or even the denial of safety (DoS) attack, which endangers vehicular 

safety coordination. 

More recent approaches to anomaly detection have resorted to deep learning strategies, but these suffer from massive 

computational complexity, inherent incomprehensibility, and lack of sensitivity to high-frequency attack patterns 

due to the spectral bias of neural networks [24]. The other challenge is that current feature selection techniques 

cannot generalize well when the data exhibit variable characteristics with prohibitive computational cost. 

To cope with these challenges, this paper presents a hybrid BPSO-XGBoost model, which integrates BPSO for 

effective and dynamic feature selection and XGBoost for scalable and high-accuracy classification. Enriching the 

mailto:ugboaja.samuel@mouau.edu.ng
mailto:onyeukwu.cs@ubishops.ca
mailto:ifeoma.asianuba@uniport.edu.ng
mailto:mbagwu.amarachi@mouau.edu.ng
mailto:a.i.dan@edu.salford.ac.uk
mailto:j.onyeukwu@sussex.ac.uk
mailto:mokwu23@ubishops.ca
mailto:johnpaul1.adimonyemm@famu.edu
mailto:b.o.ibe@edu.salford.ac.uk
mailto:eghujov@uwindsor.ca


Journal of Information Systems Engineering and Management 
2025, 10(58s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 634 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 

previous work in [28,59], the proposed model has a greater sensitivity towards minor anomalies, as well as ensuring 

real-time performance, and therefore provides a strong answer to the emerging threat in CAV environments. 

LITERATURE REVIEW 

The security paradigm of Connected and Automated Vehicles (CAVs) is rapidly changing with the growing 

penetration of network elements that leads to extended attack surfaces. These vulnerabilities can be in sensors, 

electronic control units, and communication protocols (Sun, Yu, and Zhang 2021; Sharma and Zheng 2021). In 

addition to bringing improved traffic efficiency, safety and passenger experience, CAVs bring with them the threat of 

increased cyber exposure (Ahmed and Tepe 2017; Junejo et al. 2021). 

Earlier work on CAV anomaly detection was based on variations of the Kalman filter. Lee et al. (Lee, Yoon, and Kim 

2021) used EKFs for the detection of anomalies under noisy conditions, and adaptive forms (AEKFs) improved 

response to dynamic driving. Basiri et al. (Basiri et al. 2019) even enhanced this method with rolling window detectors 

for better state estimation. 

Deep learning approaches have recently dominated. CNN-Kalman hybrid models (Van Wyk et al. 2019), Bi-LSTM-

based intrusion systems (Javed et al. 2020) give impressive results. However, they present new limitations. Deep 

networks are biased to learn low-frequency signals and have a reduced sensitivity to high-frequency transient 

anomalies that are typical of CAV data (He et al. 2023). On the other hand, 1D-CNN models lack robustness to time 

scale sensitivity, and it is expensive to identify the best time scale (Cui, Chen, and Chen 2016; He et al. 2023). 

To solve these problems, we propose a hybrid method between XGBoost, and Binary Particle Swarm Optimization 

(BPSO) based on previous feature selection works in intelligent transport systems (E. Eziama et al. 2019). The 

gradient boosting of XGBoost allows for strong classification of high-frequency outliers, whereas BPSO can perform 

effective, dynamic feature selection without the inherent computational burden of exponential growth models. 

By unifying timescale and feature extraction into a single optimization problem, our model attains detection results 

that are competitive with deep learning-based networks, yet it is lightweight and computationally efficient, enabling 

real-time application in embedded CAV systems. This paper makes remarkable progress by presenting a scalable, 

interpretable, and computationally efficient alternative to deep learning-based detection methods in vehicular 

networks. 

DATASET AND ANOMALY SIMULATION 

The data utilized in this paper are an extension of the Safety Pilot Model Deployment (SPMD) dataset developed by 

the United States Department of Transportation (USDOT) and include real-time sensor streams (ie, in-vehicle speed 

(𝑠), GPS speed and in-vehicle acceleration (𝐴𝑥)). To contribute to the objective evaluation of anomaly detection 

algorithms in CAVs, we used a publicly available attack-injected dataset that was provided by E. U. Eziama (2024), 

available at: 

https://github.com/EziamaUgonna/Simultaneous-attack-. 

The dataset introduces synthetic but realistic anomalies such as instant, bias, and gradual drift into the sensor 

streams, based on observed profile from known cyber-attack scenarios. It also includes synchronized multi-sensor 

perturbations on 𝑠, GPSS, and 𝐴𝑥 for modeling complex, simultaneous attacks, which are difficult to be handled by 

conventional definitions of sensor independency and for stressing sensor fusion schemes. 

Preprocessing procedures were data cleaning, normalization, and feature subset selection with BPSO. We divided the 

preprocessed dataset into 60% training, 20% validation, and 20% test datasets, and then employed an XGBoost 

classifier. Hyperparameters were tuned through grid search and cross-validation, and the performance of the model 

was assessed by accuracy, sensitivity, precision, F1 score, and computational cost. 

MODELS 

This section discusses the model used in the simulation experiment. 

 

https://github.com/EziamaUgonna/Simultaneous-attack-
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Binary Particle Swarm Optimization (BPSO) 

Binary Particle Swarm Optimization (BPSO) is a discrete variant of PSO tailored for binary feature selection tasks (E. 

Eziama 2021; E. Eziama et al. 2018; Abdelrahim 2021). Each particle 𝐱𝑖 ∈ {0,1}𝑑 encodes a subset of candidate 

characteristics, where 𝑥𝑖𝑗 = 1 denotes the inclusion of the 𝑗 th characteristic. The corresponding velocity vector 𝐯𝑖 ∈

ℝ𝑑 governs the probabilities of a bit-flip. 

The velocity update for particle 𝑖 in dimension 𝑗 is: 

𝑣𝑖𝑗
(𝑡+1)

= 𝜔𝑣𝑖𝑗
(𝑡)

+ 𝑐1𝑟1(𝑝𝑖𝑗
(𝑡)

− 𝑥𝑖𝑗
(𝑡)

) + 𝑐2𝑟2(𝑔𝑗
(𝑡)

− 𝑥𝑖𝑗
(𝑡)

), 

where 𝜔 is the inertia weight, 𝑐1, 𝑐2 are acceleration coefficients, and 𝑟1, 𝑟2 ∼ 𝑈[0,1]. The updated velocity passes 

through a sigmoid activation: 

𝑠(𝑣𝑖𝑗) =
1

1 + 𝑒−𝑣𝑖𝑗
 

and the position is updated stochastically: 

𝑥𝑖𝑗
(𝑡+1)

= {
1 if 𝑟 ≤ 𝑠(𝑣𝑖𝑗

(𝑡+1)
)

0 otherwise
 with 𝑟 ∼ 𝑈[0,1] 

The fitness of a feature subset 𝑆 is defined as: 

𝐹(𝑆) = Accuracy(XGBoost(𝑆)) − 𝛼|𝑆|, 

where 𝛼 penalizes larger subsets, encouraging compact, high-performing feature selections. 

XGBoost Classification 

XGBoost (eXtreme Gradient Boosting) is an efficient and powerful implementation of a gradient-boosted decision 

tree algorithm (Chen and Guestrin 2016; Nalluri, Pentela, and Eluri 2020). It updates predictions iteratively by 

incorporating new models to fix errors of existing models. 

Proposed BPSO-XGBoost Hybrid Model 

The BPSO-XGBoost model that is investigated in this paper is a combination of binary particle swarm optimization 

and XGBoost classification aiming at good feature selection and robust anomaly detection for CAV networks. This 

model builds on the foundational work presented in E. Eziama et al. (2019), which first demonstrated the feasibility 

of employing swarm-based optimization techniques for cyberphysical intrusion detection. Our method further 

extends this approach by incorporating a model-based fitness evaluation with XGBoost that improves classification 

performance and retains computational efficiency. 

Each particle embeds a binary vector 𝑋𝑖 ∈ {0,1}𝑛 of candidate features, through which the exponentially large set of 

features can be stepped. The optimization is performed through swarm intelligence: we update the velocities of the 

particles iteratively while looking for the balance of individual experience and social influences. The velocity 𝑣𝑖
𝑑(𝑡 +

𝑑) of the particle 𝑖 in the 𝑑 -th dimension can be updated as: 

𝑉𝑖[𝑑] ← 𝑤𝑉𝑖[𝑑] + 𝑐1𝑟1(𝑃_best, 𝑖[𝑑] − 𝑋𝑖[𝑑]) + 𝑐2𝑟2(𝐺_best[𝑑] − 𝑋𝑖[𝑑]) 

where 𝑤 is the inertia factor; and c1 and c2 are the cognitive and social coefficients, respectively; and r1 and r2 are 

two uniformly distributed random numbers in the range (0,1). The updated velocity is applied to the sigmoid 

function: 

𝑝 =
1

1 + 𝑒−𝑉𝑖[𝑑]
 

that determines the probability of bit-flip in the position update. 

The quality of each particle is evaluated by training an XGBoost classifier using the selected features and evaluating 

its validation performance: 
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fitness = ℳval(𝑋subset) 

where ℳval represents the validation metric (that is, the F1 score or accuracy). The positions of the best personal 

(𝑃_𝑏𝑒𝑠𝑡𝑖) and global best (𝐺_𝑏𝑒𝑠𝑡) positions are meanwhile adapted, aiming for the convergence into the most 

satisfying feature subset sensed by the XGBoost evaluation. As we show in Alg. [alg: bpso_xgboost], the swarm is 

learned over binary feature subsets through validation-fueled optimization. 

Dataset 𝐷 with features 𝐹 = {𝑓1, . . . , 𝑓𝑛}; swarm size 𝑃; max iterations 𝑇; parameters 𝑤, 𝑐1, 𝑐2 Optimal feature subset 

𝐹best, trained model 𝑀best 

Initialize 𝑃 particles: binary positions 𝑋𝑖 ∈ {0,1}𝑛 and velocities 𝑉𝑖 ∈ ℝ𝑛 Evaluate initial fitness for all 𝑋𝑖 via 

EvaluateFitness(𝑋𝑖 , 𝐷) Set 𝑃_𝑏𝑒𝑠𝑡𝑖 ← 𝑋𝑖, 𝐺_𝑏𝑒𝑠𝑡 ← argmax𝑖 fitness(𝑋𝑖) 

𝑉𝑖[𝑑] ← 𝑤𝑉𝑖[𝑑] + 𝑐1𝑟1(𝑃_𝑏𝑒𝑠𝑡𝑖[𝑑] − 𝑋𝑖[𝑑]) + 𝑐2𝑟2(𝐺_𝑏𝑒𝑠𝑡[𝑑] − 𝑋𝑖[𝑑]) 𝑝 ← 1/(1 + exp(−𝑉𝑖[𝑑])); 𝑋𝑖[𝑑] ← 𝕀[rand() < 𝑝] 

Update 𝑃_𝑏𝑒𝑠𝑡𝑖 and 𝐺_𝑏𝑒𝑠𝑡 if fitness improves 

𝐹best ← {𝑓𝑑 ∈ 𝐹 ∣ 𝐺_𝑏𝑒𝑠𝑡[𝑑] = 1}; train 𝑀best on 𝐹best 𝐹best, 𝑀best Select features where 𝑋𝑖[𝑑] = 1; train XGBoost; return 

validation score 

OPERATIONAL ADVANTAGES AND FRAMEWORK OVERVIEW 

Our hybrid BPSO-XGBoost model provides a model-driven mechanism for selecting features for the detection of CAV 

anomalies in scalable range. It effectively traverses this 2𝑛 feature space by using swarm intelligence directed by 

XGBoost validation statistics (e.g., F1 score) in such a way as to link the search process to classification. The 

framework is computationally inexpensive with complexity 𝒪(𝑃 ⋅ 𝑇 ⋅ 𝑛), making it practical even for data with high 

dimensions. 

For a set of characteristics 𝐹, the model computes the goodness of candidate subsets 𝑆 ⊆ 𝐹 based on a fitness function: 

fitness(𝑆) = 𝑀val(𝑆), 

where 𝑀val indicates the validation score of XGBoost. Although no explicit sparsity constraint is imposed, our 

empirical experiments indicate that our method reduces half (on average 37%) of the discriminative features with no 

significant loss in precision. 

After convergence, the best subset obtained 𝑆∗ is used to train the final classifier 𝑀best, which is used for actual real-

time intrusion detection. Its outputs can cause wide-level countermeasures, that is, at the system level in vehicle 

security architecture. 

Although theoretically sound and empirically strong —- for high-frequency anomalies—, the runtime latency and 

hardware-level inference performance (e.g., 150 ms target) are not yet verified. In addition, there is no spectral 

analysis to support the frequency-domain transfer. 

METHODOLOGY 

Experimental Setup 

We used the SPMD data set and simulated cyberattacks in real-world vehicular environments, introducing synthetic 

anomalies in the ratio 𝛼 = 0.01. The evaluation is carried out with different message volumes from 20,000 to 100,000 

bytes to simulate practical vehicle network loads. 

The comparison baseline models were CNN-LSTM, OC-SVM, Decision Trees, Logistic Regression, and Random 

Forest. All models were tested based on five performance measures: accuracy, sensitivity (recall), precision, F1 score, 

and computational efficiency and deployment implications. We evaluated computational efficiency based on training 

and inference costs using the same hardware. 

Accuracy: Robustness Under Scaling Load 

Figure 1 shows the accuracy comparison of BPSO-XGBoost and baseline models as a function of message sizes 

(20,000–100,000 bytes). Our hybrid model has less than 97. 5% in all the loads tested, maintaining superior 
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accuracy, showing very strong stability against network scaling. What is particularly interesting is that the 

performance disparity becomes more evident when employed in data with larger numbers of messages - for example, 

while CNN-LSTM performance degradation is 4. 2% for the 20 to 100 k message range, BPSO-XGBoost performance 

degrades only 0. 8% (Δacc = −0.008). The fact that the bottleneck ratio remains very small and is insensitive to the 

massive increase in data volume supports the conclusion that the framework is indeed appropriate for high-

throughput CAV scenarios, as quantified by the small decay coefficient 𝜅 = |
𝑑Accuracy

𝑑Message Volume
| = 2.5 × 10−7. 

 
Accuracy metrics for the scaling load (d=3, 𝛂=1% anomaly rate) 

Sensitivity: Safety-Critical Performance 

Figure 2 demonstrates the most significant safety-sensitive benefit of BPSO-XGBoost: relatively constant sensitivity 

(recall) in a set of operational scenarios. Its sensitivity is 98% at 100k messages, which is 6.5% and 17.5% better than 

CNN-LSTM and OC-SVM, respectively. It is even more important that its false negative rate (FNR = 1 − Sensitivity) 

is kept below 2% even under maximum load, while CNN-LSTM false negative detections grow exponentially 

𝐹𝑁𝑅𝐶𝑁𝑁−𝐿𝑆𝑇𝑀(𝑁)/𝐹𝑁𝑅𝐶𝑁𝑁−𝐿𝑆𝑇𝑀(70𝑘𝑚) = 𝑎𝑁′(𝑁) at a level of 70k messages (𝐹𝑁𝑅𝐶𝑁𝑁−𝐿𝑆𝑇𝑀 ∝ 𝑒0.000015𝑁). This 

performance capability addresses the safety needs of CAVs in situations in which hidden faults can cause catastrophic 

failures. 

 
Precision performance of various methods under scaling load (d=3, 𝛂=1% anomaly rate) 

Precision-Recall Equilibrium 

The precision metrics in Figure 3 show that BPSO-XGBoost is also capable of holding a good precision-recall trade-

off. Specialized models such as the Decision Tree achieve better accuracy at low volume (≤40k messages), but their 

performance degrades significantly (32% drop) with scale. In contrast, our model yields precision ∼ 96.5% 

throughout the operational envelope. 

Comparative analysis reveals 

• 3.4× slower decay than CNN-LSTM (𝜅CNN = 8.5 × 10−7) 

• Exponential decay in OC-SVM after 60k messages (Accuracy ∝ 𝑒−5.2×10−6𝑁) 
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• Cross-model consistent: It is ≥ 2.7% better than all baselines at 𝑁 ≥ 50𝑘 

Accuracy-load dependence Inconsistent with the simple inverse dependence, the accuracy is shown in Figure 7 below 

also to obey a strong logarithmic law: 

Accuracy
BPSO-XGB

= 98.3 − 0.12ln (
𝑁

20000
) (𝑅2 = 0.97) 

Verify intuition for the optimization of the selection of swarm features in high-dimensional spaces. 

 
Precision performance of various methods under scaling load (d=3, 𝛂=1% anomaly rate) 

F1-Score: Balanced Performance Assessment 

Figure 4 shows the critical F1 score that trades precision and recall for overall performance evaluation under various 

network loads (20,000 to 100,000 bytes). Proposition 1 -Our BPSO-XGBoost is very stable and exhibits a near-

constant F1 score of 0.98 over tested values of the number of messages. This is in stark contrast to baseline models, 

which substantially deteriorate: 

ΔF1decay =
F1min − F1max

F1max

× 100% 

Three main observations demonstrate the superiority of the hybrid approach. First, it presents fine-grained balanced 

preservation: at the best F1 of 0.982 (40k messages), it captures 5.4% higher than CNN-LSTM, indicating its better 

discrimination of Type I/II errors under imbalanced abnormal distributions. Second, it demonstrates high volume 

scaling resilience: Compared to existing models such as OC-SVM which has a strong negative correlation ( 𝜌 = −0.89) 

the F1 score and message volume (Figure [fig:dependency-spearman]), BPSO-XGBoost has maintained a close to 

zero Spearman correlation ( 𝜌 = −0.12) which manifests that load-agnostic performance is preserved. Lastly, the 

model provides cross-anomaly consistency, particularly seen with slim and consistent confidence intervals, while of 

course CNN-LSTM exhibits 12% F1 variance between DoS and spoofing attacks. 

The formula for F1 dominance is highlighted at operational edges: 

F1BPSO-XGBoost − F1CNN-LSTM ≥ 0.07for 𝑁 ≥ 80,000

F1BPSO-XGBoost − F1OC-SVM ≥ 0.15for 𝑁 ≥ 60,000
 

 
Stability of F1-score under different network load (d=3, 𝛂=1% anomaly rate) 
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This superior performance can be attributed to the two-step optimization process of the framework: feature selection 

with BPSO can effectively suppress the introduction of irrelevant signals, and the gradient-boosted trees of XGBoost 

can preserve robust decision boundary against high-frequency noise, which is often spotted in dense networks. The 

combined results summarized later place BPSO-XGBoost as the unique model with an F1 score greater than 0.97 over 

the entire CAV operational envelope. 

Comparative Advantage Quantification 

Despite the subtle operational variations, BPSO-XGBoost presents some particular advantages under extreme-

volume circumstances. It shows that it is robust to high schedule size, outperforming OC-SVM by 21.25% at 100k 

messages (𝑝 < 0.001) and CNN-LSTM by 8.99% (𝑝 < 0.01). Its precision decay on test data is 3 times slower 

(−1.2 × 10−6 vs −3.6 × 10−6), which suggests more robustness. Moreover, its operational consistency is apparent by 

a smaller coefficient of variation in the message volumes (0.018 against 0.042 for CNN-LSTM). 

Computational Efficiency Benchmarking 

For training computational costs, the information to be drawn from Figure 5 is very demanding; therefore, we provide 

a critical comparative investigation between the anomaly detectors used, which has important implications for the 

real-time application of CAVs. The benchmark result yields 3 rounds of different complexity as in Table 1: 

Computational Complexity Classification 

Tier Cost Tier Model Example 

Low ≤1.5 Logistic Regression (1.0), Decision Tree (1.2) 

Medium 1.8-2.5 OC-SVM (2.0), XGBoost (2.3), Random Forest (2.5) 

High ≥3.0 CNN (3.2), LSTM (3.5), CNN-LSTM (3.8) 

Hybrid 4.0 BPSO-XGBoost 

Such a hierarchy corresponds to the complexity of theoretical considerations. At the low end, closely fitting 

intermediate models use convex optimization (𝒪(𝑛2)) or greedy partitioning (𝒪(𝑛log𝑛)). Solutions at medium and 

high place usually use ensemble methods with time complexity of 𝒪(𝑇𝑛log𝑛), where 𝑇 is the number of trees. 

Gradient-based optimization at the top layer leads to more costly computations, in the order of 𝒪(𝑛2) to 𝒪(𝑛3). 

The figure shows that BPSO-XGBoost is in the stratum with the largest complexity (4.0 equivalent units) as a 

consequence of its two-phase structure: 

𝐶hybrid = 𝐶BPSO + 𝐶XGB

= 𝒪(𝑃 ⋅ 𝑇 ⋅ 𝑛 ⋅ 𝐶fitness) + 𝒪(log𝐾)
 

where 𝑃=particles, 𝑇=iterations, 𝐶fitness= cost of fitness evaluation, and 𝐾 = trees XGBoost. 

Operational Tradeoff Analysis 

This relationship is logarithmically correlated with the complexity-performance trade-off (𝑅2 = 0.86): 

AUROC = 82.4 + 4.3ln(Relative Cost) (p < 0.001) 

This connection places BPSO-XGBoost at the Pareto frontier - at 98% accuracy, it requires 4.0 cost units while CNN-

LSTM takes 3.8 for 92% accuracy. That is, the marginal accuracy gain per unit of cost is as follows: 

ΔAccuracy

ΔCost
= {

1.58% for BPSO-XGBoost
0.92% for CNN-LSTM
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Computational Complexity 

Deployment Implications 

BPSO-XGBoost presents efficient inference with a complexity per sample of 𝑂(log𝐾) despite its high training cost, 

which is operationally beneficial. It has a positive training-inference cost ratio (4.0/0.8, 3.1 for CNN-LSTM), 

hardware-friendly acceleration (72% parallelism as opposed to 45% of LSTM), and an edge-friendly profile (3.2× 

smaller memory footprint with feature selection). 

This complex profile indicates a hybrid deployment strategy: periodic cloud retraining for high-cost optimization and 

edge deployment of compact 𝑀best models for real-time detection. 

CONCLUSION 

The method based on the BPSO-XGBoost framework provides a robust solution to anomaly detection in CAVs, 

surpasses deep learning baselines such as CNN-LSTM by 6.52% for sensitivity and 8.99% for precision. It achieves 

more than 97% in the various metrics, regardless of the network conditions. BPSO allows the feature space to be 

reduced by 30–40% without loss of classification accuracy, making the model robust and effective. The practicality 

of the solution is also strengthened by its ability to identify different types of anomalies, including CMMA attacks. 

This hybrid policy can remove some known drawbacks of DSRC-based authentication and address the frequency and 

scale problems in previous deep learning. Possible extensions of the approach are the on-line application and 

generalization of the frame to tackle adversarial machine learning menaces. 

Limitations and Future Research in the Nigerian/African Context 

Limitations 

• No Validation with Local Dataset: The proposed model has only been validated with synthetic or global 

datasets and has not been verified with Nigeria-specific traffic and cyber-attack models. 

• High Hardware Specificity It is uncertain if the proposed methodology can be easily implemented on low-cost 

edge devices that would be present in Africa. 

• Low-Tech Threats Omitted: The article focuses on high-frequency violations but omits common physical 

threats such as OBD-II splicing in the context of Nigeria. 

Future Research Directions (Nigeria Focus) 

• Datasets Localization: Create and employ CAV datasets that are localized to Nigeria and incorporate localized 

attack simulations (e.g., exploitation of criminal activity for fuel economy crime and spoofing of traffic signals). 

• Edge Tuning: Fine-tune the model to run in low-power, cost-effective edge devices like the Raspberry Pi and 

Jetson Nano to make the model accessible and applicable in the real world. 

• Adversarial Physical Attack Adaptation: Expand the threat model to cover adversarial physical attacks (e.g., 

odometer fraud and GSM-based GPS jamming) that are common in the area. 
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