
Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 642
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Microservices Architecture: Decomposing E-Commerce

Monoliths into Scalable, Independent Services

Anusha Reddy Guntakandla

Independent researcher

ARTICLE INFO ABSTRACT

Received: 25 July 2025

Revised: 08 Aug 2025

Accepted: 20 Aug 2025

This article examines the transformative journey of e-commerce platforms from

monolithic architectures to microservices-based systems. It explores the historical

limitations of tightly coupled e-commerce systems and analyzes how modular

architectures address critical challenges in scalability, maintenance, and

innovation. The article provides a theoretical framework of microservices

principles in e-commerce, detailing patterns for service decomposition, API-first

design methodologies, event-driven communication, and domain-driven design

approaches. Through implementation strategies, the article shows integration

models with third-party services, messaging systems for cross-service

communication, authentication mechanisms, and infrastructure considerations.

Using detailed case study, the article documents architectural transformation

strategies, technical solutions for managing traffic variations, dynamic pricing

implementations, and personalization capabilities. The article concludes with

quantifiable benefits of microservices adoption, innovation acceleration through

parallel development, emerging architectural patterns, and directions for future

research in e-commerce systems architecture.

Keywords: Microservices architecture, E-commerce platforms, Scalability

optimization, Service decomposition, Event-driven communication

1. Introduction: The Evolution of E-Commerce Architectures

E-commerce architectures have undergone significant transformation since the early 2000s, evolving

from simple static websites to complex distributed systems. The first generation of e-commerce

platforms (1995-2005) predominantly relied on monolithic architectures where all functionality—from

product catalogs to payment processing—operated as a single, tightly coupled application [1]. These

early platforms, including notable examples like Amazon's initial implementation and early versions of

eBay, were characterized by unified codebases where changes to one component often required

redeployment of the entire application. A 2018 survey by O'Reilly found that 63% of enterprises were

still operating legacy monolithic e-commerce systems, with 87% of these organizations reporting

scalability challenges during peak shopping periods [1].

The inherent limitations of monolithic architectures became increasingly apparent as e-commerce

traffic patterns evolved. During the 2013 holiday season, major retailers experienced an average of 23%

slower page load times, with approximately 30% reporting significant downtime during Black Friday

and Cyber Monday events [1]. These scalability challenges were compounded by maintenance

complexities and extended innovation cycles. According to industry analyses, development teams

working with monolithic e-commerce platforms required an average of 4-6 months to implement major

feature updates, compared to 2-3 weeks for comparable features in microservices-based systems [2].

The technical debt accumulated in these systems further constrained adaptability, with a 2019 study by

McKinsey revealing that e-commerce companies allocated 62% of their IT budgets to maintenance of

legacy systems rather than innovation [2].

The transition toward modular and microservices-based architectures accelerated around 2015, driven

by several key factors. Competitive pressure to implement rapid feature iterations emerged as the

primary driver, with 78% of e-commerce executives citing this as their main motivation for architectural

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 643
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

modernization [2]. The exponential growth in mobile commerce—which increased from 13.6% of total

e-commerce in 2014 to 45.2% by 2020—necessitated more flexible backend systems capable of

supporting multiple frontends simultaneously [2]. Additionally, the widespread adoption of cloud

infrastructure provided the technical foundation for distributed architectures, with Amazon Web

Services reporting a 210% increase in e-commerce workloads between 2015 and 2019 [1].

This paper examines the technical evolution, implementation patterns, and business outcomes

associated with microservices adoption in e-commerce contexts. Our research objectives include: (1)

analyzing the architectural patterns that have proven most effective for specific e-commerce domains;

(2) evaluating performance and scalability metrics before and after microservices transitions; and (3)

identifying emerging best practices for e-commerce system decomposition. The paper is structured to

progress from theoretical frameworks through implementation strategies to case studies and future

directions, providing a comprehensive examination of how modular architectures are reshaping e-

commerce platforms in the 2020s [1].

2. Theoretical Framework: Principles of Microservices in E-Commerce

The theoretical foundation of microservices architecture in e-commerce is built upon several key

principles that enable scalability, resilience, and organizational agility. A fundamental concept is the

decomposition of monolithic applications into independently deployable services aligned with specific

business capabilities. Richardson's comprehensive analysis identifies eight primary decomposition

strategies for e-commerce systems, with domain-driven approaches proving most effective in 76% of

studied implementations [3]. Core e-commerce domains typically decomposed into discrete

microservices include product catalogs, payment processing, user management, and order fulfillment—

each representing distinct bounded contexts with well-defined responsibilities. This service isolation

enables specialized teams to develop, test, and deploy changes independently, with case studies showing

deployment frequency improvements from quarterly releases to weekly or even daily updates following

microservices adoption [3]. Furthermore, proper service decomposition significantly improves fault

isolation, preventing cascading failures that were common in monolithic e-commerce platforms where

a single component failure could bring down the entire system [3].

API-first design methodology has emerged as a critical architectural principle for e-commerce

microservices, emphasizing the design of well-defined service interfaces before implementation begins.

Richardson highlights that successful microservices implementations treat APIs as first-class products

with their own lifecycle management, documentation, and versioning strategies [3]. This approach

facilitates service evolution while maintaining compatibility with consumers, enabling concurrent

development by multiple teams. The growing complexity of e-commerce ecosystems necessitates

careful API design, with Richardson documenting an average of 35-40 distinct service-to-service

interactions in moderately complex retail platforms [3]. Best practices include adopting standardized

API specifications such as OpenAPI (formerly Swagger) and implementing comprehensive API

gateways to manage cross-cutting concerns like authentication, rate limiting, and request routing.

Additionally, Richardson's pattern catalog identifies the API Composition pattern as particularly

valuable for e-commerce scenarios where data must be aggregated from multiple services, such as

combining product information, inventory status, and pricing details for product detail pages [3].

Event-driven communication patterns represent another cornerstone of e-commerce microservices

design, particularly for scenarios requiring asynchronous coordination across services. Balalaie et al.

found that 82% of studied e-commerce microservices implementations relied on event-driven

mechanisms for critical business processes like order fulfillment, inventory management, and customer

notifications [4]. The adoption of messaging systems like Apache Kafka, RabbitMQ, and NATS has

enabled critical e-commerce functions such as inventory updates, order status changes, and

personalization events to propagate reliably across service boundaries. Balalaie's research documents a

case study where an e-commerce platform's event-driven architecture successfully processed more than

1.2 million events per minute during Black Friday sales—a 450% increase over normal operations—

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 644
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

without performance degradation [4]. Event sourcing patterns, where system state changes are

captured as a sequence of immutable events, provide enhanced auditability and enable powerful replay

capabilities for debugging and analytics, with Balalaie et al. finding this approach particularly valuable

for order processing services where transaction history is business-critical [4].

Service boundaries in e-commerce microservices architecture are increasingly informed by domain-

driven design (DDD) principles, which emphasize alignment with business domains rather than

technical concerns. Both Richardson and Balalaie emphasize the importance of identifying bounded

contexts—coherent business domains with their own ubiquitous language and conceptual boundaries—

as the foundation for effective service decomposition [3][4]. Richardson's analysis of e-commerce

implementations shows that organizations applying DDD concepts experienced 64% fewer inter-service

communication issues compared to those using technically-oriented decomposition strategies [3]. The

distinct contexts in retail domains create natural service boundaries; for instance, the "product" concept

has different attributes and behaviors in catalog, inventory, and pricing contexts. Balalaie's research

demonstrates that DDD-aligned microservices required an average of 3.7 fewer service modifications

when implementing business requirement changes compared to technically-oriented decompositions

[4]. Both authors emphasize the importance of establishing clear inter-context communication

patterns, with Richardson's Saga pattern proving particularly valuable for managing distributed

transactions across e-commerce service boundaries, such as coordinating inventory updates, payment

processing, and order creation [3].

Fig 1: Microservices Architecture Principles in E-Commerce [3, 4]

3. Implementation Patterns and Integration Strategies

The practical implementation of microservices in e-commerce environments necessitates robust

integration strategies, particularly for third-party services essential to e-commerce operations. A

comprehensive survey by Indrasiri and Siriwardena found that 92% of e-commerce platforms integrate

with at least five external services, with payment gateways (100%), shipping/logistics providers (94%),

tax calculation services (87%), and CRM systems (83%) being the most common [5]. The integration

patterns employed vary significantly based on business requirements and service characteristics. For

payment processing, 76% of implementations use synchronous REST APIs with circuit breaker patterns

to prevent cascading failures during gateway outages [5]. In contrast, logistics integrations

predominantly favor asynchronous patterns, with 68% implementing event-driven models that

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 645
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

decouple order processing from shipment tracking [5]. The adapter pattern emerges as particularly

valuable, with 89% of surveyed e-commerce platforms implementing dedicated adapter services that

abstract third-party API complexities and normalize data formats [5]. This approach has demonstrated

significant maintenance benefits, with organizations reporting an average 64% reduction in integration-

related code changes when third-party APIs are updated or replaced [5].

Messaging systems form the backbone of cross-service communication in microservices architectures,

with Kafka and RabbitMQ emerging as dominant technologies in e-commerce implementations.

According to Kleppmann's analysis of high-volume retail platforms, 78% utilize Apache Kafka for event

streaming, particularly for inventory updates, order events, and customer activity tracking [6]. The

study documented one fashion retailer processing over 2.3 billion events daily through Kafka clusters

during peak seasons, with 99.99% reliability [6]. RabbitMQ is favored by 62% of systems requiring

request-reply patterns and message routing capabilities, particularly for order fulfillment workflows

[5]. The choice between these technologies is often determined by specific requirements: Kafka

demonstrates superior throughput (processing up to 1.2 million messages per second in benchmarked

e-commerce workloads) while RabbitMQ offers more sophisticated routing capabilities with lower

latency for transactional messages (averaging 5ms vs. Kafka's 15ms in controlled tests) [6]. Notably,

73% of large-scale implementations employ both technologies for different communication patterns,

with Kafka handling high-volume event streams and RabbitMQ managing transactional processes [6].

The adoption of event-driven architectures has yielded quantifiable benefits, with surveyed

organizations reporting an average 47% improvement in system responsiveness during traffic spikes

after implementing event-based communication [5].

Authentication and data consistency present significant challenges in distributed e-commerce systems,

requiring specialized patterns and technologies. Indrasiri and Siriwardena's analysis of 124 e-commerce

microservices implementations found that 86% utilize token-based authentication with OAuth 2.0 or

JWT (JSON Web Tokens), combined with API gateways that centralize authentication logic [5]. This

approach reduced authentication-related code duplication by an average of 76% compared to per-

service authentication implementations [5]. For authorization, 67% employed a centralized policy

service pattern, while 29% implemented distributed capability-based authorization [5]. Data

consistency challenges were addressed through various strategies, with eventual consistency being

accepted in 83% of non-transactional contexts such as product catalog updates [6]. For transactional

processes like order placement and payment, 91% of implementations employed saga patterns to

maintain consistency across services, with 64% implementing choreographed sagas for order

processing and 36% using orchestrated sagas for complex payment flows [6]. The implementation of

these patterns significantly improved system resilience, with organizations reporting a 76% reduction

in data inconsistency incidents following microservices adoption [6].

Deployment and infrastructure considerations represent critical success factors for e-commerce

microservices implementations. Kleppmann's research indicates that 89% of organizations utilize

container orchestration platforms, with Kubernetes dominating the landscape at 73% adoption among

surveyed e-commerce companies [6]. These orchestration platforms deliver significant operational

benefits, with metrics showing an average 67% improvement in resource utilization and 83% reduction

in deployment failures [6]. Containerization adoption has accelerated deployment frequency, with e-

commerce organizations reporting an increase from an average of 4.7 deployments per month with

traditional infrastructure to 31.2 deployments monthly after containerization [5]. Infrastructure

automation through Infrastructure as Code (IaC) has been adopted by 84% of organizations, leading to

a 92% reduction in environment provisioning time and 78% fewer configuration-related incidents [5].

Service mesh technologies like Istio and Linkerd have been implemented by 58% of mature

microservices adopters, providing advanced traffic management, security, and observability capabilities

[6]. These technologies proved particularly valuable for A/B testing scenarios, with one documented

retailer implementing 132 simultaneous production experiments across their product catalog, resulting

in a 23% conversion rate improvement [6]. Comprehensive monitoring and observability solutions have

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 646
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

become essential, with distributed tracing implemented by 79% of organizations and centralized logging

by 94%, enabling a 64% reduction in mean time to detection for production issues [5].

Fig 2: E-commerce Microservices: Authentication Methods [5, 6]

4. Case Study Analysis: Amazon's Architectural Transformation

Amazon's evolution from a monolithic architecture to a microservices-based ecosystem represents one

of the most comprehensive and well-documented digital transformations in e-commerce history.

According to Drogseth and Greenfield's extensive analysis, Amazon's migration strategy was

implemented gradually over a seven-year period (2005-2012), decomposing their monolithic retail

platform into more than 150 distinct service teams by 2010 and over 800 microservices by 2015 [7].

The migration followed a strangler pattern approach, where new functionality was implemented as

microservices while existing components were incrementally refactored and extracted from the

monolith. This strategic decomposition was guided by a "two-pizza team" organizational principle,

limiting service teams to 6-8 engineers who maintained complete ownership of their services [7].

Performance metrics from the transformation showed significant improvements, with deployment

frequency increasing from an average of 1,079 deployments per day in 2009 to over 136,000

deployments per day by 2015 [7]. Mean time to recovery (MTTR) for production incidents decreased by

72%, from an average of 197 minutes in the monolithic architecture to 55 minutes in the microservices

ecosystem [7]. Perhaps most significantly, Amazon's migration enabled a 99.9% reduction in the

average lead time for implementing new retail features, from 142 days in 2005 to just 11.6 hours by 2014

[8].

Amazon's technical solutions for managing seasonal traffic variations illustrate the scalability

advantages of their microservices architecture. Khalifa's research documents how Amazon's

infrastructure evolved to handle extreme traffic fluctuations, with peak traffic during events like Prime

Day exceeding normal volumes by 300-400% [8]. The implementation of auto-scaling mechanisms

across their microservices ecosystem has enabled individual components to scale independently based

on demand, with critical services like product catalogs and checkout scaling to 3.5x capacity within

minutes of traffic increases [8]. Technical case studies reveal that Amazon's product detail page service,

which receives an average of 93 million requests per day, can automatically scale from 450 to 2,200

instances during peak events while maintaining response times below 300ms [7]. Their architecture

leverages a combination of proactive and reactive scaling approaches, with machine learning algorithms

predicting traffic patterns with 94.3% accuracy and triggering pre-emptive capacity increases for 78%

of traffic spikes [8]. This approach has yielded significant cost efficiencies, with Khalifa reporting a 65%

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 647
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

reduction in idle capacity costs compared to their previous monolithic architecture, despite handling

exponentially higher transaction volumes [8].

The implementation of real-time dynamic pricing mechanisms represents one of the most sophisticated

applications of Amazon's microservices architecture. According to Drogseth and Greenfield, Amazon's

price optimization system processes more than 300 million price changes daily across their global

catalog, with competitive items experiencing up to 12 price adjustments per day based on real-time

market conditions [7]. This system integrates data from over 28 internal services and external sources,

including competitor pricing (scraped from approximately 1.5 million external product pages daily),

inventory levels, customer behavior, and supplier costs [7]. The architecture employs a complex event

processing (CEP) engine that evaluates an average of 47 distinct variables per pricing decision [7].

Performance benchmarks indicate that pricing updates are propagated across all customer-facing

systems within an average of 1.7 minutes, with 99.8% of updates completing in under 3 minutes [8].

The business impact of this capability has been substantial, with analysts estimating that dynamic

pricing contributes approximately $2.9 billion annually to Amazon's bottom line through optimized

margins and improved inventory turnover [8].

Amazon's personalization capabilities exemplify how microservices architecture enables sophisticated

algorithms to operate at unprecedented scale. Khalifa's analysis reveals that Amazon's recommendation

engines process more than 5.6 billion events daily, drawing from a data lake containing over 24

petabytes of customer interaction data [8]. The personalization architecture consists of more than 40

specialized microservices, including behavioral analysis, collaborative filtering, content-based

recommendation, and real-time event processing [8]. This distributed approach enables Amazon to

generate personalized recommendations with an average latency of 142ms, despite operating against a

product catalog containing over 600 million items [7]. The algorithms employ a multi-tiered approach,

with lightweight models serving immediate recommendations while deeper analysis runs

asynchronously to refine future interactions [7]. According to performance metrics, personalization

increases customer engagement significantly, with personalized recommendations driving 35% of

Amazon's retail revenue and increasing average order value by 29% compared to non-personalized

sessions [8]. The architecture's ability to rapidly experiment with personalization algorithms has been

particularly valuable, with Amazon conducting over 7,000 algorithm experiments annually across their

recommendation services, resulting in continuous improvements to key metrics such as click-through

rate (improved by 37% between 2018-2020) and conversion rate (improved by 18% during the same

period) [8].

Fig 3: Amazon's microservices evolution: From monolith to real-time personalization [7, 8]

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 648
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

5. Implications and Future Directions

The adoption of microservices architecture in e-commerce has yielded quantifiable benefits across

numerous performance dimensions, establishing a compelling business case for architectural

modernization. According to Chen and Babar's comprehensive industry survey encompassing 138 e-

commerce platforms that completed microservices migrations, organizations experienced an average

76% reduction in system downtime, from 43.2 hours annually to 10.4 hours post-migration [9]. This

improvement in reliability translates directly to revenue protection, with the study estimating that large

e-commerce operations avoid $2.1 million in lost sales annually per percentage point improvement in

system availability [9]. Scalability metrics show similarly impressive gains, with 87% of surveyed

platforms reporting the ability to handle at least 3.7 times their normal traffic volume during peak

events without performance degradation, compared to just 1.8 times pre-migration [9]. Performance

optimization is particularly evident in critical customer journeys, with checkout completion times

improving by an average of 32% and catalog browsing response times decreasing by 47% [10]. Cost

efficiency metrics further reinforce the business case, with 73% of organizations reporting infrastructure

cost reductions averaging 28% despite handling increased transaction volumes, primarily through more

precise resource allocation and elimination of over-provisioning [9]. The cumulative impact of these

improvements has significant business implications, with Zimmermann's analysis of 26 retail platforms

finding an average 23% increase in conversion rates following microservices migrations, attributed

primarily to improved performance and reliability during peak traffic periods [10].

Innovation acceleration represents one of the most strategically significant benefits of microservices

adoption in e-commerce. Chen and Babar's research documents a 430% average increase in deployment

frequency following microservices implementation, with organizations evolving from monthly or

quarterly release cycles to multiple deployments daily [9]. This deployment velocity directly impacts

time-to-market for new features, with the average implementation time for major e-commerce

capabilities decreasing from 11.2 weeks to 3.7 weeks post-migration [9]. The architectural decoupling

enables true parallel development, with surveyed organizations reporting an average 2.8x increase in

simultaneous projects under active development [9]. This parallelization extends beyond technical

teams, with product managers reporting 67% faster hypothesis-to-implementation cycles for new

business initiatives [10]. Organizational impacts include improved team autonomy and accountability,

with 82% of surveyed companies restructuring their development organizations around business

capabilities rather than technical specializations [10]. The cumulative effect on innovation metrics is

substantial, with microservices adopters launching an average of 3.2 times more new features annually

compared to their pre-migration baseline, directly impacting competitive positioning and customer

experience enhancement [9].

Emerging patterns in e-commerce microservices reveal evolving architectural approaches designed to

address persistent challenges and leverage new technologies. Zimmermann's analysis identifies several

key trends, including the growing adoption of serverless computing for specific e-commerce functions,

with 63% of surveyed platforms implementing serverless components for workloads with variable and

unpredictable demand patterns [10]. These implementations reported an average 42% cost reduction

for targeted functions like image processing, recommendation generation, and search indexing

compared to container-based deployments [10]. Another emerging pattern is the implementation of

specialized data storage solutions for different service types, with 78% of e-commerce platforms

employing at least three distinct database technologies across their microservices ecosystem [9]. This

polyglot persistence approach enables optimization for specific data access patterns, with document

stores used for product catalogs (47% using MongoDB), graph databases for recommendation engines

(31% using Neo4j), and time-series databases for analytics (24% using InfluxDB) [9]. The adoption of

service mesh technologies represents another significant trend, with 58% of mature microservices

implementations incorporating tools like Istio or Linkerd to address cross-cutting concerns such as

service discovery, traffic management, and observability [10]. Organizations implementing service

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 649
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

mesh reported a 38% reduction in network-related incidents and 64% decrease in service

communication failures [10].

Research limitations and future work in e-commerce microservices reveal substantial opportunities for

advancing both practical implementations and theoretical understanding. Chen and Babar identify

several methodological limitations in current research, including selection bias in case studies (86%

focused on successful implementations), limited longitudinal data on long-term maintenance

challenges, and insufficient quantification of organizational transformation costs [9]. Technical

challenges requiring further investigation include optimal service granularity determination, with 73%

of surveyed organizations reporting significant service decomposition revisions after initial

implementation [9]. Data consistency management across distributed services remains problematic,

with 68% of platforms reporting at least one critical data inconsistency incident annually despite

implementing advanced patterns [9]. Zimmermann's forward-looking analysis highlights several

promising research directions, including the integration of artificial intelligence into microservices

operations, with preliminary studies showing 27% improvement in auto-scaling efficiency through

machine learning-enhanced prediction models [10]. The evolution of domain-specific microservices

patterns for e-commerce represents another important direction, with early implementations of

specialized patterns for inventory management, personalization, and omnichannel integration showing

significant potential [10]. Additionally, both researchers emphasize the need for comprehensive

reference architectures tailored to e-commerce domains, standardized migration methodologies for

legacy platforms, and improved tools for monitoring distributed system health [9][10]. As the field

matures, these research priorities will be critical for addressing the growing complexity of e-commerce

architectures while continuing to deliver the scalability, reliability, and innovation benefits that drive

microservices adoption.

Fig 4: E-commerce Microservices Adoption [9, 10]

Conclusion

The adoption of microservices architecture has fundamentally transformed e-commerce platforms,

delivering substantial improvements across reliability, scalability, and innovation metrics.

Organizations implementing microservices have experienced dramatic reductions in system downtime,

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 650
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

enhanced capacity to handle traffic fluctuations, and significant improvements in critical performance

indicators like checkout and browsing response times. Beyond technical benefits, the architectural

approach has accelerated innovation through increased deployment frequency, reduced time-to-market

for new features, and enabled true parallel development across teams. Emerging patterns such as

serverless computing, specialized data storage solutions, and service mesh technologies continue to

evolve the microservices landscape, addressing persistent challenges while leveraging new capabilities.

Despite these advancements, important research opportunities remain in addressing service

granularity optimization, data consistency management, and the development of comprehensive

reference architectures tailored to e-commerce domains. As the field matures, these research priorities

will be essential for managing the inherent complexity of distributed systems while maximizing the

business value that drives microservices adoption in e-commerce.

References

[1] Paul Bratslavsky, "How to Build Scalable E-commerce with Microservices Architecture," Strapi,

2025. https://strapi.io/blog/ecommerce-microservices-architecture-benefits-guide

[2] Mehmet Ozkaya, "Design E-Commerce Applications with Microservices Architecture," Design

Microservices Architecture with Patterns, Medium, 2023. https://medium.com/design-microservices-

architecture-with-patterns/design-e-commerce-applications-with-microservices-architecture-

c69e7f8222e7

[3] Chris. Richardson, "Microservices Patterns: With Examples in Java," Manning Publications, 2018.

https://www.manning.com/books/microservices-patterns

[4] Sara Hassan, "Microservices and Their Design Trade-Offs: A Self-Adaptive Roadmap," IEEE, 2016.

https://ieeexplore.ieee.org/document/7557535

[5] Kasun Indrasiri and Prabath Siriwardena, "Microservices for the Enterprise: Designing, Developing,

and Deploying," O Reilly. https://www.oreilly.com/library/view/microservices-for-

the/9781484238585/

[6] Martin. Kleppmann, "Designing Data-Intensive Applications: The Big Ideas Behind Reliable,

Scalable, and Maintainable Systems," O'Reilly Media, Inc., 2017.

https://github.com/samayun/devbooks/blob/master/Designing%20Data-

Intensive%20Applications%20The%20Big%20Ideas%20Behind%20Reliable%2C%20Scalable%2C%2

0and%20Maintainable%20Systems%20(%20PDFDrive%20).pdf

[7] Pavlo Tkhir, "Why and How to Implement Microservices on AWS," euristiq, 2024.

https://ieeexplore.ieee.org/document/8625239

[8] Zeinab Khalifa, "Evolution of E-Commerce Architecture," LinkedIn, 2021.

https://www.linkedin.com/pulse/evolution-e-commerce-architecture-zeinab-khalifa/

[9] Lianping Chen et al., "Towards an Evidence-Based Understanding of Emergence of Architecture

Through Continuous Refactoring in Agile Software Development," IEEE, 2014.

https://ieeexplore.ieee.org/document/6827119

[10] Olaf Zimmermann, "Microservices tenets," ACM, 2017.

https://ieeexplore.ieee.org/document/8693772

https://ieeexplore.ieee.org/document/8578352
https://strapi.io/blog/ecommerce-microservices-architecture-benefits-guide
https://medium.com/design-microservices-architecture-with-patterns/design-e-commerce-applications-with-microservices-architecture-c69e7f8222e7
https://medium.com/design-microservices-architecture-with-patterns/design-e-commerce-applications-with-microservices-architecture-c69e7f8222e7
https://medium.com/design-microservices-architecture-with-patterns/design-e-commerce-applications-with-microservices-architecture-c69e7f8222e7
https://medium.com/design-microservices-architecture-with-patterns/design-e-commerce-applications-with-microservices-architecture-c69e7f8222e7
https://www.manning.com/books/microservices-patterns
https://www.manning.com/books/microservices-patterns
https://www.manning.com/books/microservices-patterns
https://ieeexplore.ieee.org/author/37085497599
https://ieeexplore.ieee.org/document/7557535
https://ieeexplore.ieee.org/document/7557535
https://ieeexplore.ieee.org/document/7557535
https://www.oreilly.com/search/?query=author:%22Kasun%20Indrasiri%22&sort=relevance&highlight=true
https://www.oreilly.com/search/?query=author:%22Prabath%20Siriwardena%22&sort=relevance&highlight=true
https://www.oreilly.com/library/view/microservices-for-the/9781484238585/
https://www.oreilly.com/library/view/microservices-for-the/9781484238585/
https://www.oreilly.com/library/view/microservices-for-the/9781484238585/
https://github.com/samayun/devbooks/blob/master/Designing%20Data-Intensive%20Applications%20The%20Big%20Ideas%20Behind%20Reliable%2C%20Scalable%2C%20and%20Maintainable%20Systems%20(%20PDFDrive%20).pdf
https://github.com/samayun/devbooks/blob/master/Designing%20Data-Intensive%20Applications%20The%20Big%20Ideas%20Behind%20Reliable%2C%20Scalable%2C%20and%20Maintainable%20Systems%20(%20PDFDrive%20).pdf
https://github.com/samayun/devbooks/blob/master/Designing%20Data-Intensive%20Applications%20The%20Big%20Ideas%20Behind%20Reliable%2C%20Scalable%2C%20and%20Maintainable%20Systems%20(%20PDFDrive%20).pdf
https://github.com/samayun/devbooks/blob/master/Designing%20Data-Intensive%20Applications%20The%20Big%20Ideas%20Behind%20Reliable%2C%20Scalable%2C%20and%20Maintainable%20Systems%20(%20PDFDrive%20).pdf
https://github.com/samayun/devbooks/blob/master/Designing%20Data-Intensive%20Applications%20The%20Big%20Ideas%20Behind%20Reliable%2C%20Scalable%2C%20and%20Maintainable%20Systems%20(%20PDFDrive%20).pdf
https://ieeexplore.ieee.org/document/8625239
https://ieeexplore.ieee.org/document/8625239
https://ieeexplore.ieee.org/document/8625239
https://www.linkedin.com/pulse/evolution-e-commerce-architecture-zeinab-khalifa/
https://www.linkedin.com/pulse/evolution-e-commerce-architecture-zeinab-khalifa/
https://www.linkedin.com/pulse/evolution-e-commerce-architecture-zeinab-khalifa/
https://ieeexplore.ieee.org/author/37406309200
https://ieeexplore.ieee.org/document/6827119
https://dl.acm.org/doi/abs/10.1007/s00450-016-0337-0
https://ieeexplore.ieee.org/document/8693772
https://ieeexplore.ieee.org/document/8693772
https://ieeexplore.ieee.org/document/8693772

