
Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 809

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hybrid Machine Learning Model for Software Defect

Prediction

1Deepak Kumar Nishad, 2Lakshmi Shanker Singh, 3Neelam
1Research Scholar, Department of M-tech Computer Science, Sir Chhotu Ram Institute of Engineering and Technology, Chaudhary

Charan Singh University, Meerut, UP, India

Email: deepaknishad833@gmail.com
2Assistant Professor, Department of Information Technology, Sir Chhotu Ram Institute of Engineering and Technology, Chaudhary

Charan Singh University, Meerut, UP, India

Email: Shanker.laxmi@gmail.com
3Assistant Professor, Department of Information Technology, Sir Chhotu Ram Institute of Engineering and Technology, Chaudhary

Charan Singh University, Meerut, UP, India

Email: Neelam.scriet@gmail.com

ARTICLE INFO ABSTRACT

Received: 30 Dec 2024

Revised: 05 Feb 2025

Accepted: 25 Feb 2025

A portion of software created to fulfill a particular purpose is known as software application. At the

same time, engineering is focused on creating goods with specific technical methods and principles.

Software defects can be anticipated at several stages, including data input and pre- processing, attribute

extrication, and classification. This research study implements multiple classifiers to forecast software

defects. This work makes use of several classifiers namely RF (random forest), GNB, Bernoulli NB, and

MLP to forecast software faults. The development of an ensemble classifier increases the software fault's

reliability. Class balancing and the Principal Component Analysis (PCA) approaches have been

combined in the ensemble classifier that is being presented. Python is used for implementing the

architecture that has been introduced. Diverse measures are used to examine the findings with regard to

universal metrics (i.e. accuracy, precision, and recall).

Keywords: Software Defects, machine learning, PCA, MLP

1. Introduction

A set of executable programming code, related libraries, and documentation is referred to as software. A software

product is software designed to meet certain needs [1]. In the meanwhile, clear technical concepts and procedures

link engineering to product development. Thus, the engineering field that focuses on developing software products

through the application of accepted scientific concepts, methods, and procedures is known as software engineering.

The outcome of software engineering is a capable and dependable software product. Software engineering,

according to some experts, is the methodical design and creation of software products as well as the supervision of

the software development process. Creating programs that satisfy predetermined requirements, are observably

accurate, are delivered on schedule, and are under budget is one of the main purposes of Software development.

All of the terms used in this description highlight the fact that software development involves more than just

assembling a processor, a programming language, and a programmer; it also entails developing a methodology that

can satisfy predetermined requirements while taking quality, time, and cost into account. Software engineers

typically follow a systematic and structured approach to their work, which is seen to be the most efficient way to

create high-quality software products [3].

In addition to being a natural feature of software products, software flaws are also a critical component of

software quality. They are an unavoidable consequence of developing software. Furthermore, it takes a lot of

effort and time to provide software quality assurance. There are several approaches to defining flaws, most of

which are defined concerning of quality [2]. Defects, on the other hand, are usually defined as variations from

expectations or specifications that may result in malfunctions. Techniques for predicting software flaws help

focus quality assurance efforts on the areas of the code that are most vulnerable to errors.

mailto:deepaknishad833@gmail.com
mailto:Shanker.laxmi@gmail.com
mailto:Neelam.scriet@gmail.com

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 810

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

These methods devote greater energy to tackling complicated problems. Finding areas of a software system that

may have flaws is the method of DeP (Defect Prediction in Software). A fascinating area of study in software

engineering is the prediction of software flaws, or defects. Quality assurance teams can effectively allocate

available resources for software product testing and analysis by using lists of software components that are

prone to defects, generated by defect prediction models. Black box and white box approaches are the two main

types of methodologies used to forecast various kinds of errors. Black box defect prediction techniques forecast

future values by using historical metric values. For instance, it is possible to forecast the existence of hidden

flaws in the product by looking at the quantity of defects found during the creation of software or testing. Other

software features are not used by these models to forecast [3].

In order to anticipate hidden software problems, white box defect prediction approaches combine the "uncovered

defects" parameter with other software product attributes. Software defect classification techniques concentrate on

classifying the flawed and non-defective components of a software product in addition to forecasting hidden flaws.

These methods classify software artifacts by using different aspects of the software product. Software flaws are

usually categorized at a lower degree of granularity, such at the file and class levels. Machine learning and logistic

regression are two methods used for defect classification [4]. A type of statistics called logistic regression is used to

categorize datasets with a number of independent variables in order to provide a result. Depending on the

categorization output, which displays one of two possible outcomes, software modules are categorized as either

defective or non-defective. Like previous regression algorithms, this technique classifies software parts using

metric information. When the likely values of independent variables are 0 and 1, it can be employed in binary

classification since it calculates the likelihood that an action will have one of two potential values [5]. This approach

is helpful for analyzing data and figuring out how one or more independent variables relate to a dependent binary

variable.

Data mining and statistically based algorithms are used by machine learning models to categorize flaws. Based on

input prediction factors, these frameworks generate classification results for software parts, indicating whether they

are problematic or not. Researchers are increasingly using machine learning methods to categorize software

components. The initial step in creating a software defect prediction model is to extract data patterns from software

databases, which often comprise issue tracking and version control systems. Source code and commit messages are

stored in version control systems, whereas defect information is stored in issue tracking systems [6]. These patterns

can represent a variety of granularities, such as a technique, class, source code file, package, or code change.

Usually, each pattern is linked to a collection of anticipated defect attributes that are gathered from the software

sources. The complexity of the software and its development process reflects in the metric values. Depending on

whether or not they have flaws, patterns can be classified as either defective or non-defective. The acquired metrics

and labels are then utilized to construct fault prediction models using a set of training patterns. Lastly, using the

knowledge it has gained from the training data, the prediction model can determine if a new pattern is flawed or not.

Various popular machine learning models, including Naïve Bayes, SVM and KNN, are commonly used for

software fault prediction. Naïve Bayes is well known for producing precise predictions with efficiency. It works

especially well for classification issues with several independent variables. When compared to more

sophisticated classifiers, this one frequently performs well and can handle big datasets [7]. The Naïve Bayes

classifier is predicated on the idea that variables are independent of one another and is based on Bayes' theorem.

The Bayes' theorem is a useful tool for computing conditional probabilities. The class with the highest posterior

probability is the one predicted by the Naïve Bayes. KNN is a straightforward classifier that considers all

possible outcomes. It uses a similarity approach to classify patterns. Pattern classification is determined by a

majority vote from neighboring patterns. Each pattern is assigned a class based on the class that receives the

most votes among its nearby patterns, typically determined using a distance metric like Euclidean distance.

SVM is a supervised learning technique that can be applied to applications involving regression and

classification. Its main goal is to find the optimal classification function that can differentiate between the

members of two classes in the training data. It is a generalized linear classification technique. SVM aims to

increase the geometric margin and reduce classification errors simultaneously. In order to make it simpler to

discern between the two classes, it maps input data into a higher- dimensional space and then defines a

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 811

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

separating hyperplane. Two parallel hyperplanes are created to quantify the margin on both sides of the

separating hyperplane, ensuring that it has the largest distance to the nearest data points from both classes.

Maximizing the margin helps reduce generalization errors.

2. Literature Review

M. Nashaat, et al. (2025) introduced a novel architecture for predicting software problems that made use of

transformer-based networks with attention mechanisms [8]. In order to create useful representations of software

modules, the framework encoded input vectors. Programming languages were modeled using a bidirectional

transformer encoder, and then the model was fine-tuned using labeled data to recognize flaws. Experiments on

numerous software projects were conducted to evaluate the framework's performance and compare it to baseline

methods. Furthermore, an ablation study and statistical hypothesis testing were carried out to evaluate the effects of

many parameter selections. The actual results demonstrated that, in comparison to conventional methods, the

suggested strategy improved the F1 score by up to 44.26% and enhanced classification accuracy by an average of

15.93%.

Y. Tang, et al. (2025) proposed MOSIG, an instance gravity-based oversampling technique [9]. The first step in this

method was to measure the similarity between instances using a new metric called instance gravity. After that,

feature models and instance groups were built. Within many instance groups, instances that satisfied particular

criteria determined by instance gravity were found. By assigning weights to instances based on their gravity, a new

technique for creating faulty instances was put forth. MOSIG considerably improved the prediction performance of

the CART decision tree and Naive Bayes models on 21 publicly accessible software fault datasets, according to

experimental results. In order to confirm that MOSIG was statistically significant, the experimental data were

further validated using the Nemenyi post- hoc test and Friedman ranking.

Yan Zhou et al. (2019) presented KPCA-SVM to predict software faults [10]. The framework first reduces the

dimensionality of software defect datasets and then employs the SVM algorithm to classify software defects,

addressing the dimensionality issue with KPCA. It was evaluated using the extensive NASA MDP dataset and

demonstrated effective handling of data redundancy issues, enhancing global attribute support and achieving high

precision.

Y. Jiang, et al. (2024) suggested BiCC-BERT, a new bi-modal change pre-training model. BiCC- BERT learned

bi-modal semantic representations by pre-training on a code change corpus [11]. RMI, a new pre-training

objective that learned the semantic relationship between commit messages and code changes, was created in

order to incorporate commit messages from the corpus. After BiCC-BERT was incorporated into JIT-DP, JIT-

BiCC a novel method to defect prediction was proposed. More profound change semantics were captured by

JIT-BiCC by using the bi- modal representations from BiCC-BERT. Eight cutting-edge JIT-DP techniques were

used to compare the performance of JIT-BiCC, which was trained using 27,391 code changes. With a 10.8%

improvement in F1-score, the results demonstrated that JIT-BiCC performed better than all baselines,

demonstrating its efficacy in teaching JIT-DP bi-modal semantics.

X. Fan, et al. (2024) proposed S-DCCA, a novel CPDP technique based on SMOTE and DCCA [12]. The problem

of non-linear correlations between the attributes of the source and target projects was resolved by using CCA.

By using the MlpNet model to extract features from the dataset, S-DCCA expanded on CCA. Then, using the CCA

loss function to maximize the associated feature subset, redundant features were removed. Using the SMOTE

data sampling technique, cross-project defect prediction was accomplished. Evaluation measures were F1

scores and AUC. To validate the suggested approach, experiments were carried out on 27 projects from four

publicly available datasets. The results showed that the suggested strategy had excellent performance

characteristics, outperforming all baseline approaches by at least 1.2% in AUC and 5.5% in F1 score on average.

Rituraj Singh et al. (2020) explored TLCV for extracting attributes from software source code text to predict

faults [13]. They used a pre-trained DL model to convert the code into vectors, followed by ML and DL

techniques to analyze these vectors. Their approach demonstrated superior performance in predicting

defects,achieving better weighted F1 scores compared to other methods.

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 812

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aqsa Rahim et al. (2021) proposed a model to predict software defects, consisting of three phases: data

preprocessing to eliminate noise and normalize data, correlation-based attribute extraction, and the use of NB and

LR algorithms for classification [14]. The model achieved an accuracy of approximately 98.7% with NB and

effectively reduced maintenance costs and code complexity while predicting software defects early.

3. Research Methodology

The presented approach is built on various classification algorithms, including RF, GNB, Bernoulli Naïve Bayes,

and decision tree DT. An ensemble classifier, which integrates GNB, Bernoulli Naïve Bayes, RF, and MLP, is

employed to predict software faults. PCA is used to extricate attributes within the ensemble classifiers with class

balancing. Each classification method is detailed as follows: -

3.1 Multilayer Perceptron

Frank Rosenblatt, an esteemed American neurologist, proposed the perceptron in the process of learning, which

was motivated by brain nerve cell adaptation principle, also referred to as cell assembly concept of synaptic plasticity.

Synaptic plasticity refers to the link or synapse between cells in neuroscience. The initial framework incorporated a

supervised learning mechanism that allowed artificial neurons to be adjusted to the right weights determined by

training data. A binary perceptron, often referred to as a threshold function, converts an input vector 𝑥 ∈ 𝑅𝑑 into an

output (𝑥). The various elements of the input vector are represented by

𝑥 = [𝑥1, 𝑥2 … . 𝑥𝑑]𝑇. Also, the weights associated with all input elements linked to the perceptron correspond

 to 𝑤 = [𝑤1, 𝑤2 … . 𝑤𝑑]𝑇. Additionally, the perceptron incorporates a constant input

with an associated weight b, commonly referred to as the bias. An MLP is illustrated in Figure 3.

Figure 3 Multilayer Perceptron

The outcome of the perceptron is significantly affected by the magnitude of individual weights

𝑤, and the mathematical formulation is given as follows:

(1)

The behaviour of a neuron is determined by its activation function, which in this case is a sign function. The

sign function is mathematically represented as follows:

(2)

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 813

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The perceptron's decision boundary is expressed as Equation (3). Since the decision-making function is linear

with respect to the input x, it is referred to as a linear classifier.

 (3)

A multilayer perceptron (MLP) network consists of multiple layers, each composed of several perceptrons. The

hidden layers play a crucial role in extracting features from the input data. The dimensionality of the data can

be adjusted either increased or reduced, based on the number of perceptrons in these layers, which are

determined by the network's learning process from the given data.

3.2 Bernoulli Naive Bayes

Naive Bernoulli, based on Bayes' Theorem, is a probabilistic classification method that works well with

binary or boolean input. It presupposes that each feature in the class is conditionally independent and has a

Bernoulli distribution. The existence or lack of characteristics is used by the model to calculate the probability

that the data belongs to each class. Bernoulli Naive Bayes, which is widely employed in text classification tasks

such as spam detection, is efficient and successful on large datasets. Its performance is based on the

assumption that the features are binary or can be transformed to binary.

The multinomial NB's rule, which helps penalize the absence of attribute i for a class 𝑦 sign, differs from this. The

multinomial version, however, ignores a non-occurring characteristic. During the text classification process, this

classification technique is developed and trained using word occurrence vectors. Some datasets, especially those

with shorter documents, perform better on the BNB. If time permits, this is necessary for the models' analysis.

3.3. Gaussian Naive Bayes

A probabilistic classification method called Gaussian Naïve Bayes assumes that each class's characteristics have a

Gaussian (normal) distribution. Each feature 𝑥𝑖 is associated with a mean 𝜇𝑖 and a standard deviation 𝜎𝑖 unique to

y. The Gaussian probability density function is used to calculate the likelihood of a feature 𝑥𝑖 for a given class y.

𝑃(𝑥𝑖 ∨ 𝑦)

1 −(𝑥𝑖 − 𝜇𝑖)2

under the Gaussian distribution. The model classifies the input data via choosing the class with the highest

posterior probability. Gaussian Naive Bayes is most successful for continuous data and performs well when the

characteristics within each class have a normal distribution, while its performance may suffer if the distribution

assumption is compromised.

3.4 Random Forest

In contrast to previous classifiers, Random Forest, a variation of decision tree-based techniques, allows for the

random growth of branches within a chosen subspace. A set of random base regression trees serves as the basis

for the model's predictions. The method chooses a random subset of traits to split at each node, enabling the

development of more branches. Because it combines many decision trees to increase prediction accuracy,

Random Forest is notable as an ensemble learning technique. When the outcomes of several decision trees are

combined to enhance overall performance, it can be seen as a type of bootstrapping.

The 𝑖𝑡ℎ bootstrap denotes the specific sample that is selected, and the process first selects a

bootstrap sample 𝑆(𝑖) from the sample space. Next, using a version of the normal decision tree algorithm, the

algorithm learns a conventional decision tree. This alteration is implemented methodically as the tree develops.

Specifically, at each node, instead of considering all possible feature splits, Random Forest randomly selects a

subset of features 𝑓 ⊆ 𝐹 is smaller than the entire set of features (𝑓). The algorithm then splits based on the best

feature in the subset. By narrowing down the feature set, the subset size

remains smaller, which reduces the

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 814

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

𝑖

𝑖

= 𝑒𝑥𝑝 (

√2𝜋𝜎2

2𝜎2) (5)

computational burden. This smaller subset helps minimize the complexity of feature selection, especially for

datasets with many features and

Using Bayes' Theorem, the approach determines the posterior probability of each class based on the observable

attributes. This is expressed as follows:

thus speeds up the learning process of the algorithm.

3.5 Principal Component Analysis

𝑃(𝑦) ∏𝑑 𝑃(𝑥𝑖 ∨ 𝑦)

(𝑦 ∨ 𝑥) = 𝑖=1 (6)

𝑃(𝑥)

Where P(y) is the class's prior probability, and

(𝑥𝑖 ∨ 𝑦) is the likelihood of the class's features

PCA finds the 𝐾 major components by solving the characteristic equation of the correlation matrix of the

observed variables and obtaining the associated eigenvectors and unit eigenvectors. The eigenvalues are then

ranked

from largest to smallest, indicating the amount of variance in the observed data explained by each of the 𝐾 principal

components. These major component factors can be extracted using the following model:

𝐹𝑖 = 𝑇𝑖1𝑋2 + 𝑇𝑖2𝑋2

+ 𝑇𝑖𝑘(𝑖 = 1,2, … , 𝑚)(7)

In this case, 𝐹𝑖 stands for the 𝑖𝑡ℎ principal component factor, and 𝑇𝑖𝑗 represents the load of the i-th principal

component factor on the j-th indicator.

In this case, k is the number of indicators, and m is the number of primary component elements. Several original

indicators can be reduced to one or more composite indicators using the PCA technique. These reduced indicators

capture most of the information from the original data, are uncorrelated with each other, and help eliminate

redundancy. Additionally, the decrease in the number of indicators makes additional computations, study, and

assessment more efficient.

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 815

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 4: Proposed Methodology

4. Result and Discussion

This work analyzes and uses the PROMISE SE Library's "CM1/Software Defect Prediction" dataset. It has 22

attributes, three McCabe metrics, five distinct lines of code measurements, four basic Halstead measures, eight

derived Halstead measures, one goal field, and a branch count. There are 498 records in this collection.

Because it is independently accessible and comes from a reliable source, this sample data is chosen for the study.

Figure 5: Integration of Ensemble 1 and PCA

To maintain balance between classes, the above figure shows the use of the PCA with ensemble approach.

The accuracy, precision, and recall of each model's output are measured. The outcomes of every categorization

algorithm are shown in table 1.

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 816

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 1. Outcome Evaluation

Figure 6 Performance of Models

To anticipate the software defect, a variety of classification methods are used, including BNB, GNB, RF, DT,

MLP, and SVM. Figure 6

illustrates how a single classification method, without the use of a feature extraction tool like PCA or class

balancing, predicts the software error. The proposed technique incorporates BNB, GNB, RF, and MLP. While

preserving class balance, the attributes are extracted using PCA. The proposed method outperforms the current

independent classification models in software fault prediction.

Conclusion

Software defects and inherent features of software products are regarded as important aspects of software

quality. Defects in software are an unavoidable result of developing software. In addition, there is no assurance

of software quality, and it takes a long time. There are vaious methods to characterize the flaws in terms of

quality. However, the term "defects" refers to the variations from expectations or requirements that result in

malfunctions. This study uses several distinct models, such as GNB, BNB, RF, C4.5, SVM, and MLP, to forecast

software errors. The goal of ensemble strategy that integrates GNB, BNB, RF, and MLP is to anticipate software

defects. In order to anticipate the software flaw, the PCA is used in conjunction with ensemble 1 and class

balance. When compared to other models, the accuracy of the anticipated approach has reached 96.67%.

References

[1] P Lakshmi, T. LathaMaheswari, “An effective rank approach to software defect prediction using software metrics”,

2016, 10th International Conference on Intelligent Systems and Control (ISCO)

[2] Prianka Mandal, Amit Seal Ami, “Selecting best attributes for software defect prediction”, 2015, IEEE

Journal of Information Systems Engineering and Management
2025, 10(58s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 817

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International WIE Conference on Electrical and Computer Engineering (WIECON- ECE)

[3] Misha Kakkar, Sarika Jain, Abhay Bansal, P.S. Grover, “Evaluating Missing Values for Software Defect

Prediction”, 2019, International Conference on Machine Learning, Big Data, Cloud and Parallel Computing

(COMITCon)

[4] A Shanthini, R M Chandrasekaran, “Analyzing the effect of bagged ensemble approach for software fault

prediction in class level and package level metrics”, 2014, International Conference on Information

Communication and Embedded Systems (ICICES2014)

[5] Ling-Feng Zhang, Zhao-Wei Shang, “Classifying feature description for software defect prediction”, 2011,

International Conference on Wavelet Analysis and Pattern Recognition

[6] Shiwang Agarwal, Sajal Gupta, Rishabh Aggarwal, Shashank Maheshwari, Lipika Goel, Sonam Gupta,

“Substantiation of Software Defect Prediction using Statistical Learning: An Empirical Study”, 2019, 4th

International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU)

[7] Jun Wang, Beijun Shen, Yuting Chen, “Compressed C4.5 Models for Software Defect Prediction”, 2012, 12th

International Conference on Quality Software

[8] M. Nashaat and J. Miller, “Refining software defect prediction through attentive neural models for code

understanding,” Journal of Systems and Software, vol. 220, p. 112266, Feb. 2025, doi:

https://doi.org/10.1016/j.jss.2024.112266.

[9] Y. Tang, Y. Zhou, C. Yang, Y. Du, and M. Yang, “Instance gravity oversampling method for software defect

prediction,” Information and Software Technology, vol. 179, p. 107657, Mar. 2025, doi:

[10] https://doi.org/10.1016/j.infsof.2024.107657.

[11] Yan Zhou, Chun Shan, Shiyou Sun, Shengjun Wei, Sicong Zhang, “Software Defect Prediction Model Based On

KPCA-SVM”, 2019, IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing,

Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City

Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/I OP/SCI)

[12] Y. Jiang, B. Shen, and X. Gu, “Just-in-time software defect prediction via bi-modal change representation

learning,” Journal of Systems and Software, vol. 219, pp. 112253–112253, Oct. 2024, doi:

https://doi.org/10.1016/j.jss.2024.112253.

[13] X. Fan, S. Zhang, K. Wu, W. Zheng, and Y. Ge, “Cross-Project Software Defect Prediction Based on SMOTE and

Deep Canonical Correlation Analysis,” Computers, Materials & Continua, vol. 78, no. 2, pp. 1687–1711, 2024,

doi: https://doi.org/10.32604/cmc.2023.046187.

[14] Rituraj Singh, Jasmeet Singh, Mehrab Singh Gill, Ruchika Malhotra, Garima, “Transfer Learning Code

Vectorizer based Machine Learning Models for Software Defect Prediction”, 2020, International Conference

on Computational Performance Evaluation (ComPE)

[15] Aqsa Rahim, Zara Hayat, Muhammad Abbas, Amna Rahim, Muhammad Abdul Rahim, “Software Defect

Prediction with Naïve Bayes Classifier”, 2021, International Bhurban Conference on Applied Sciences and

Technologies (IBCAST)

[16] Kumar, R., Singhal, N., & Chhabra, A. (2025). Revolutionizing Business Management Strategies for Enhanced

Output Through the Integration of Deep Learning and Cloud Computing. Journal of Information Systems

Engineering and Management, 10(58s).

[17] Kumar, R., Singhal, N., & Chhabra, A. (2025). Hybrid Optimization algorithm with the combination of PSO

and genetic algorithm for task scheduling in cloud computing. E-Learning and Digital Media, 0(0)

