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A portion of software created to fulfill a particular purpose is known as software application. At the 

same time, engineering is focused on creating goods with specific technical methods and principles. 

Software defects can be anticipated at several stages, including data input and pre- processing, attribute 

extrication, and classification. This research study implements multiple classifiers to forecast software 

defects. This work makes use of several classifiers namely RF (random forest), GNB, Bernoulli NB, and 

MLP to forecast software faults. The development of an ensemble classifier increases the software fault's 

reliability. Class balancing and the Principal Component Analysis (PCA) approaches have been 

combined in the ensemble classifier that is being presented. Python is used for implementing the 

architecture that has been introduced. Diverse measures are used to examine the findings with regard to 

universal metrics (i.e. accuracy, precision, and recall). 
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1. Introduction 

A set of executable programming code, related libraries, and documentation is referred to as software. A software 

product is software designed to meet certain needs [1]. In the meanwhile, clear technical concepts and procedures 

link engineering to product development. Thus, the engineering field that focuses on developing software products 

through the application of accepted scientific concepts, methods, and procedures is known as software engineering. 

The outcome of software engineering is a capable and dependable software product. Software engineering, 

according to some experts, is the methodical design and creation of software products as well as the supervision of 

the software development process. Creating programs that satisfy predetermined requirements, are observably 

accurate, are delivered on schedule, and are under budget is one of the main purposes of Software development. 

All of the terms used in this description highlight the fact that software development involves more than just 

assembling a processor, a programming language, and a programmer; it also entails developing a methodology that 

can satisfy predetermined requirements while taking quality, time, and cost into account. Software engineers 

typically follow a systematic and structured approach to their work, which is seen to be the most efficient way to 

create high-quality software products [3]. 

In addition to being a natural feature of software products, software flaws are also a critical component of 

software quality. They are an unavoidable consequence of developing software. Furthermore, it takes a lot of 

effort and time to provide software quality assurance. There are several approaches to defining flaws, most of 

which are defined concerning of quality [2]. Defects, on the other hand, are usually defined as variations from 

expectations or specifications that may result in malfunctions. Techniques for predicting software flaws help 

focus quality assurance efforts on the areas of the code that are most vulnerable to errors. 
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These methods devote greater energy to tackling complicated problems. Finding areas of a software system that 

may have flaws is the method of DeP (Defect Prediction in Software). A fascinating area of study in software 

engineering is the prediction of software flaws, or defects. Quality assurance teams can effectively allocate 

available resources for software product testing and analysis by using lists of software components that are 

prone to defects, generated by defect prediction models. Black box and white box approaches are the two main 

types of methodologies used to forecast various kinds of errors. Black box defect prediction techniques forecast 

future values by using historical metric values. For instance, it is possible to forecast the existence of hidden 

flaws in the product by looking at the quantity of defects found during the creation of software or testing. Other 

software features are not used by these models to forecast [3]. 

In order to anticipate hidden software problems, white box defect prediction approaches combine the "uncovered 

defects" parameter with other software product attributes. Software defect classification techniques concentrate on 

classifying the flawed and non-defective components of a software product in addition to forecasting hidden flaws. 

These methods classify software artifacts by using different aspects of the software product. Software flaws are 

usually categorized at a lower degree of granularity, such at the file and class levels. Machine learning and logistic 

regression are two methods used for defect classification [4]. A type of statistics called logistic regression is used to 

categorize datasets with a number of independent variables in order to provide a result. Depending on the 

categorization output, which displays one of two possible outcomes, software modules are categorized as either 

defective or non-defective. Like previous regression algorithms, this technique classifies software parts using 

metric information. When the likely values of independent variables are 0 and 1, it can be employed in binary 

classification since it calculates the likelihood that an action will have one of two potential values [5]. This approach 

is helpful for analyzing data and figuring out how one or more independent variables relate to a dependent binary 

variable. 

Data mining and statistically based algorithms are used by machine learning models to categorize flaws. Based on 

input prediction factors, these frameworks generate classification results for software parts, indicating whether they 

are problematic or not. Researchers are increasingly using machine learning methods to categorize software 

components. The initial step in creating a software defect prediction model is to extract data patterns from software 

databases, which often comprise issue tracking and version control systems. Source code and commit messages are 

stored in version control systems, whereas defect information is stored in issue tracking systems [6]. These patterns 

can represent a variety of granularities, such as a technique, class, source code file, package, or code change. 

Usually, each pattern is linked to a collection of anticipated defect attributes that are gathered from the software 

sources. The complexity of the software and its development process reflects in the metric values. Depending on 

whether or not they have flaws, patterns can be classified as either defective or non-defective. The acquired metrics 

and labels are then utilized to construct fault prediction models using a set of training patterns. Lastly, using the 

knowledge it has gained from the training data, the prediction model can determine if a new pattern is flawed or not. 

Various popular machine learning models, including Naïve Bayes, SVM and KNN, are commonly used for 

software fault prediction. Naïve Bayes is well known for producing precise predictions with efficiency. It works 

especially well for classification issues with several independent variables. When compared to more 

sophisticated classifiers, this one frequently performs well and can handle big datasets [7]. The Naïve Bayes 

classifier is predicated on the idea that variables are independent of one another and is based on Bayes' theorem. 

The Bayes' theorem is a useful tool for computing conditional probabilities. The class with the highest posterior 

probability is the one predicted by the Naïve Bayes. KNN is a straightforward classifier that considers all 

possible outcomes. It uses a similarity approach to classify patterns. Pattern classification is determined by a 

majority vote from neighboring patterns. Each pattern is assigned a class based on the class that receives the 

most votes among its nearby patterns, typically determined using a distance metric like Euclidean distance. 

SVM is a supervised learning technique that can be applied to applications involving regression and 

classification. Its main goal is to find the optimal classification function that can differentiate between the 

members of two classes in the training data. It is a generalized linear classification technique. SVM aims to 

increase the geometric margin and reduce classification errors simultaneously. In order to make it simpler to 

discern between the two classes, it maps input data into a higher- dimensional space and then defines a 
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separating hyperplane. Two parallel hyperplanes are created to quantify the margin on both sides of the 

separating hyperplane, ensuring that it has the largest distance to the nearest data points from both classes. 

Maximizing the margin helps reduce generalization errors. 

2. Literature Review 

M. Nashaat, et al. (2025) introduced a novel architecture for predicting software problems that made use of 

transformer-based networks with attention mechanisms [8]. In order to create useful representations of software 

modules, the framework encoded input vectors. Programming languages were modeled using a bidirectional 

transformer encoder, and then the model was fine-tuned using labeled data to recognize flaws. Experiments on 

numerous software projects were conducted to evaluate the framework's performance and compare it to baseline 

methods. Furthermore, an ablation study and statistical hypothesis testing were carried out to evaluate the effects of 

many parameter selections. The actual results demonstrated that, in comparison to conventional methods, the 

suggested strategy improved the F1 score by up to 44.26% and enhanced classification accuracy by an average of 

15.93%. 

Y. Tang, et al. (2025) proposed MOSIG, an instance gravity-based oversampling technique [9]. The first step in this 

method was to measure the similarity between instances using a new metric called instance gravity. After that, 

feature models and instance groups were built. Within many instance groups, instances that satisfied particular 

criteria determined by instance gravity were found. By assigning weights to instances based on their gravity, a new 

technique for creating faulty instances was put forth. MOSIG considerably improved the prediction performance of 

the CART decision tree and Naive Bayes models on 21 publicly accessible software fault datasets, according to 

experimental results. In order to confirm that MOSIG was statistically significant, the experimental data were 

further validated using the Nemenyi post- hoc test and Friedman ranking. 

Yan Zhou et al. (2019) presented KPCA-SVM to predict software faults [10]. The framework first reduces the 

dimensionality of software defect datasets and then employs the SVM algorithm to classify software defects, 

addressing the dimensionality issue with KPCA. It was evaluated using the extensive NASA MDP dataset and 

demonstrated effective handling of data redundancy issues, enhancing global attribute support and achieving high 

precision. 

Y. Jiang, et al. (2024) suggested BiCC-BERT, a new bi-modal change pre-training model. BiCC- BERT learned 

bi-modal semantic representations by pre-training on a code change corpus [11]. RMI, a new pre-training 

objective that learned the semantic relationship between commit messages and code changes, was created in 

order to incorporate commit messages from the corpus. After BiCC-BERT was incorporated into JIT-DP, JIT-

BiCC a novel method to defect prediction was proposed. More profound change semantics were captured by 

JIT-BiCC by using the bi- modal representations from BiCC-BERT. Eight cutting-edge JIT-DP techniques were 

used to compare the performance of JIT-BiCC, which was trained using 27,391 code changes. With a 10.8% 

improvement in F1-score, the results demonstrated that JIT-BiCC performed better than all baselines, 

demonstrating its efficacy in teaching JIT-DP bi-modal semantics. 

X. Fan, et al. (2024) proposed S-DCCA, a novel CPDP technique based on SMOTE and DCCA [12]. The problem 

of non-linear correlations between the attributes of the source and target projects was resolved by using CCA. 

By using the MlpNet model to extract features from the dataset, S-DCCA expanded on CCA. Then, using the CCA 

loss function to maximize the associated feature subset, redundant features were removed. Using the SMOTE 

data sampling technique, cross-project defect prediction was accomplished. Evaluation measures were F1 

scores and AUC. To validate the suggested approach, experiments were carried out on 27 projects from four 

publicly available datasets. The results showed that the suggested strategy had excellent performance 

characteristics, outperforming all baseline approaches by at least 1.2% in AUC and 5.5% in F1 score on average. 

Rituraj Singh et al. (2020) explored TLCV for extracting attributes from software source code text to predict 

faults [13]. They used a pre-trained DL model to convert the code into vectors, followed by ML and DL 

techniques to analyze these vectors. Their approach demonstrated superior performance in predicting 

defects,achieving better weighted F1 scores compared to other methods. 
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Aqsa Rahim et al. (2021) proposed a model to predict software defects, consisting of three phases: data 

preprocessing to eliminate noise and normalize data, correlation-based attribute extraction, and the use of NB and 

LR algorithms for classification [14]. The model achieved an accuracy of approximately 98.7% with NB and 

effectively reduced maintenance costs and code complexity while predicting software defects early. 

3. Research Methodology 

The presented approach is built on various classification algorithms, including RF, GNB, Bernoulli Naïve Bayes, 

and decision tree DT. An ensemble classifier, which integrates GNB, Bernoulli Naïve Bayes, RF, and MLP, is 

employed to predict software faults. PCA is used to extricate attributes within the ensemble classifiers with class 

balancing. Each classification method is detailed as follows: - 

3.1 Multilayer Perceptron 

Frank Rosenblatt, an esteemed American neurologist, proposed the perceptron in the process of learning, which 

was motivated by brain nerve cell adaptation principle, also referred to as cell assembly concept of synaptic plasticity. 

Synaptic plasticity refers to the link or synapse between cells in neuroscience. The initial framework incorporated a 

supervised learning mechanism that allowed artificial neurons to be adjusted to the right weights determined by 

training data. A binary perceptron, often referred to as a threshold function, converts an input vector 𝑥 ∈ 𝑅𝑑 into an 

output (𝑥). The various elements of the input vector are represented by 

𝑥 = [𝑥1, 𝑥2 … . 𝑥𝑑]𝑇. Also, the weights associated with all input elements linked to the perceptron correspond

 to 𝑤 = [𝑤1, 𝑤2 … . 𝑤𝑑]𝑇. Additionally, the perceptron incorporates a constant input 

with an associated weight b, commonly referred to as the bias. An MLP is illustrated in Figure 3. 

 

Figure 3 Multilayer Perceptron 

The outcome of the perceptron is significantly affected by the magnitude of individual weights 

𝑤, and the mathematical formulation is given as follows: 

 

(1) 

The behaviour of a neuron is determined by its activation function, which in this case is a sign function. The 

sign function is mathematically represented as follows: 

 

(2) 
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The perceptron's decision boundary is expressed as Equation (3). Since the decision-making function is linear 

with respect to the input x, it is referred to as a linear classifier. 

 (3) 

A multilayer perceptron (MLP) network consists of multiple layers, each composed of several perceptrons. The 

hidden layers play a crucial role in extracting features from the input data. The dimensionality of the data can 

be adjusted either increased or reduced, based on the number of perceptrons in these layers, which are 

determined by the network's learning process from the given data. 

3.2 Bernoulli Naive Bayes 

Naive Bernoulli, based on Bayes' Theorem, is a probabilistic classification method that works well with 

binary or boolean input. It presupposes that each feature in the class is conditionally independent and has a 

Bernoulli distribution. The existence or lack of characteristics is used by the model to calculate the probability 

that the data belongs to each class. Bernoulli Naive Bayes, which is widely employed in text classification tasks 

such as spam detection, is efficient and successful on large datasets. Its performance is based on the 

assumption that the features are binary or can be transformed to binary. 

 

The multinomial NB's rule, which helps penalize the absence of attribute i for a class 𝑦 sign, differs from this. The 

multinomial version, however, ignores a non-occurring characteristic. During the text classification process, this 

classification technique is developed and trained using word occurrence vectors. Some datasets, especially those 

with shorter documents, perform better on the BNB. If time permits, this is necessary for the models' analysis. 

3.3. Gaussian Naive Bayes 

A probabilistic classification method called Gaussian Naïve Bayes assumes that each class's characteristics have a 

Gaussian (normal) distribution. Each feature 𝑥𝑖 is associated with a mean 𝜇𝑖 and a standard deviation 𝜎𝑖 unique to 

y. The Gaussian probability density function is used to calculate the likelihood of a feature 𝑥𝑖 for a given class y. 

𝑃(𝑥𝑖 ∨ 𝑦) 

1 −(𝑥𝑖 − 𝜇𝑖)2 

under the Gaussian distribution. The model classifies the input data via choosing the class with the highest 

posterior probability. Gaussian Naive Bayes is most successful for continuous data and performs well when the 

characteristics within each class have a normal distribution, while its performance may suffer if the distribution 

assumption is compromised. 

3.4 Random Forest 

In contrast to previous classifiers, Random Forest, a variation of decision tree-based techniques, allows for the 

random growth of branches within a chosen subspace. A set of random base regression trees serves as the basis 

for the model's predictions. The method chooses a random subset of traits to split at each node, enabling the 

development of more branches. Because it combines many decision trees to increase prediction accuracy, 

Random Forest is notable as an ensemble learning technique. When the outcomes of several decision trees are 

combined to enhance overall performance, it can be seen as a type of bootstrapping. 

The 𝑖𝑡ℎ bootstrap denotes the specific sample that is selected, and the process first selects a 

bootstrap sample 𝑆(𝑖) from the sample space. Next, using a version of the normal decision tree algorithm, the 

algorithm learns a conventional decision tree. This alteration is implemented methodically as the tree develops. 

Specifically, at each node, instead of considering all possible feature splits, Random Forest randomly selects a 

subset of features 𝑓 ⊆ 𝐹 is smaller than the entire set of features (𝑓). The algorithm then splits based on the best 

feature in the subset. By narrowing down the feature set, the subset size 

remains   smaller,   which   reduces   the 



Journal of Information Systems Engineering and Management 
2025, 10(58s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 814 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

𝑖 

𝑖 

=  𝑒𝑥𝑝 ( 

√2𝜋𝜎2 

2𝜎2 ) (5) 

computational burden. This smaller subset helps minimize the complexity of feature selection, especially for 

datasets with many features and 

Using Bayes' Theorem, the approach determines the posterior probability of each class based on the observable 

attributes. This is expressed as follows: 

thus speeds up the learning process of the algorithm. 

3.5 Principal Component Analysis 

𝑃(𝑦) ∏𝑑 𝑃(𝑥𝑖 ∨ 𝑦) 

(𝑦 ∨ 𝑥) =  𝑖=1  (6) 

𝑃(𝑥) 

Where P(y) is the class's prior probability, and 

(𝑥𝑖 ∨ 𝑦) is the likelihood of the class's features 

PCA finds the 𝐾 major components by solving the characteristic equation of the correlation matrix of the 

observed variables and obtaining the associated eigenvectors and unit eigenvectors. The eigenvalues are then 

ranked 

from largest to smallest, indicating the amount of variance in the observed data explained by each of the 𝐾 principal 

components. These major component factors can be extracted using the following model: 

𝐹𝑖 = 𝑇𝑖1𝑋2 + 𝑇𝑖2𝑋2 

+ 𝑇𝑖𝑘(𝑖 = 1,2, … , 𝑚)(7) 

In this case, 𝐹𝑖 stands for the 𝑖𝑡ℎ principal component factor, and 𝑇𝑖𝑗 represents the load of the i-th principal 

component factor on the j-th indicator. 

In this case, k is the number of indicators, and m is the number of primary component elements. Several original 

indicators can be reduced to one or more composite indicators using the PCA technique. These reduced indicators 

capture most of the information from the original data, are uncorrelated with each other, and help eliminate 

redundancy. Additionally, the decrease in the number of indicators makes additional computations, study, and 

assessment more efficient. 
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Figure 4: Proposed Methodology 

4. Result and Discussion 

This work analyzes and uses the PROMISE SE Library's "CM1/Software Defect Prediction" dataset. It has 22 

attributes, three McCabe metrics, five distinct lines of code measurements, four basic Halstead measures, eight 

derived Halstead measures, one goal field, and a branch count. There are 498 records in this collection. 

Because it is independently accessible and comes from a reliable source, this sample data is chosen for the study. 

 

Figure 5: Integration of Ensemble 1 and PCA 

To maintain balance between classes, the above figure shows the use of the PCA with ensemble approach. 

The accuracy, precision, and recall of each model's output are measured. The outcomes of every categorization 

algorithm are shown in table 1. 
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Table 1. Outcome Evaluation 

 

 

Figure 6 Performance of Models 

To anticipate the software defect, a variety of classification methods are used, including BNB, GNB, RF, DT, 

MLP, and SVM. Figure 6 

illustrates how a single classification method, without the use of a feature extraction tool like PCA or class 

balancing, predicts the software error. The proposed technique incorporates BNB, GNB, RF, and MLP. While 

preserving class balance, the attributes are extracted using PCA. The proposed method outperforms the current 

independent classification models in software fault prediction. 

Conclusion 

Software defects and inherent features of software products are regarded as important aspects of software 

quality. Defects in software are an unavoidable result of developing software. In addition, there is no assurance 

of software quality, and it takes a long time. There are vaious methods to characterize the flaws in terms of 

quality. However, the term "defects" refers to the variations from expectations or requirements that result in 

malfunctions. This study uses several distinct models, such as GNB, BNB, RF, C4.5, SVM, and MLP, to forecast 

software errors. The goal of ensemble strategy that integrates GNB, BNB, RF, and MLP is to anticipate software 

defects. In order to anticipate the software flaw, the PCA is used in conjunction with ensemble 1 and class 

balance. When compared to other models, the accuracy of the anticipated approach has reached 96.67%. 
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