
Journal of Information Systems Engineering and Management 
2025, 10(58s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 899 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Fusion of Deep Learning and Multi View Geometry for 

Robust Object Detection in Distributed Camera 

 

Prakrit Tyagi1*, Dev Singhal2 , Abdul Aziz3, Arushi Sajwan4 and Anant Kumar Jayswal5 
1,2,3,4 B. Tech. (CSE)-3C, Amity School of Engineering and Technology, Amity University, Noida, India 

5 Associate Professor, Amity School of Engineering and Technology, Amity University, Noida, India 

Email: 1* Corresponding Author: prakrittyagi@gmail.com 

 

ARTICLE INFO ABSTRACT 

Received: 28 Dec 2024 

Revised: 18 Feb 2025 

Accepted: 26 Feb 2025 

Object detection is a cornerstone of modern technologies, playing a pivotal role in applications 

such as autonomous driving, robotics, industrial automation, and the development of smart 

environments. The demand for robust and accurate detection systems has never been more 

critical, as even minor inaccuracies can lead to significant challenges, particularly in safety-

critical domains like automated driving where human lives are at stake. Addressing these 

challenges, this study introduces a novel approach that integrates multi-view geometry with deep 

learning techniques to develop a system capable of achieving superior object detection accuracy 

and reliability. 

The proposed system is built around a custom-trained YOLOv5 model, meticulously designed to 

enhance performance and achieve dimension estimation with an impressive margin of error 

within 2%. By utilizing multiple camera inputs, the system demonstrates substantial 

improvements over traditional single-camera setups in both detection robustness and spatial 

accuracy. The advantages of this multi-camera, geometry-aware approach are offering greater 

precision and consistency across diverse scenarios. This breakthrough has the potential to 

revolutionize multiple industries, enabling safer autonomous systems, more reliable security 

solutions, efficient industrial manufacturing processes, advanced robotics capabilities, and the 

creation of intelligent, adaptive environments. 

Keywords: Object Detection, Multi-View Geometry, Deep Learning, YOLOv5, Spatial Accuracy, 

Multi-Camera Systems 

1 Introduction 

Object detection and dimension estimation are integral components of modern computer vision, underpinning a wide 

range of applications from robotics and autonomous vehicles to industrial automation, augmented reality, and 

surveillance. Despite remarkable advancements in this field, conventional techniques often rely on single-camera 

setups, which suffer from inherent limitations. These include a lack of depth perception, occlusion-related challenges, 

and insufficient geometric context, which collectively impede accurate object detection and spatial understanding in 

dynamic or cluttered environments (Hartley et al. 2003; Szeliski 2010). 

The emergence of deep learning has revolutionized object detection by leveraging Convolutional Neural Networks 

(CNNs). Frameworks such as YOLO (You Only Look Once), SSD (Single Shot MultiBox Detector), and Mask R-CNN 

have set new benchmarks in 2D object detection, offering unprecedented levels of accuracy and speed (Redmon et al. 

2018; Liu et al. 2016; He et al. 2017; Girshick 2015). YOLO is particularly renowned for its real-time capabilities, as it 

simplifies object detection into a single step, integrating bounding box regression and class prediction seamlessly 

(Redmon et al. 2018). Similarly, SSD introduces multi-scale feature pyramids, enabling effective detection of objects 

of varying sizes (Liu et al. 2016). Mask R-CNN, building upon Faster R-CNN, extends object detection capabilities to 

include pixel-level segmentation, which is especially useful in tasks requiring high precision, such as medical imaging 

(He et al. 2017; Girshick 2015). However, these state-of-the-art models, while excelling in 2D object detection, are 
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inherently limited in their ability to estimate object dimensions and depth due to their reliance on single-view images 

(Guo et al. 2020). 

To address these limitations, researchers have increasingly explored multi-view geometry, a mathematical framework 

that leverages images captured from multiple viewpoints to infer 3D structures. Techniques such as triangulation and 

epipolar geometry enable the computation of spatial coordinates and object dimensions by analyzing correspondences 

between multiple 2D projections of the same object ( Wojke et al. 2020; Mildenhall et al. 2020). While these methods 

excel in controlled environments with precise camera calibration, they face significant challenges when applied in real-

world scenarios. Issues such as computational overhead, calibration errors, and occlusion complicate their practical 

implementation, especially in dynamic or cluttered settings (Chen et al. 2023; Lin et al. 2014). 

The integration of deep learning with multi-view geometry presents a promising solution to these challenges, 

combining the strengths of both approaches. Deep learning models excel in feature extraction and object classification, 

while multi-view geometry provides accurate spatial understanding and dimensional analysis (Selvaraju et al. 2017). 

This synergy has the potential to unlock robust 3D object detection and precise spatial perception, making it 

particularly valuable for applications such as autonomous navigation, robotic manipulation, and industrial automation 

(Vaswani et al. 2017). It has also potential for 3D reconstruction when used in sensitive places such as high security 

rooms etc. 

This research proposes a novel framework that combines the power of deep learning and multi-view geometry to 

overcome the limitations of traditional object detection systems. The study employs a tripod mounted setup, where 

cameras are strategically positioned at any angle around the object to capture multi-view images. The system utilizes 

YOLOv5, a state-of-the-art object detection model, trained on a custom dataset. This dataset is tailored for daily use 

objects detection, ensuring robustness across diverse object types and orientations (Vaswani et al. 2020). Multi-view 

geometry principles such as triangulation and epipolar constraints are applied to reconcile measurements from the 

different camera perspectives, enabling accurate estimation of object dimensions. 

Beyond the initial configuration, this study explores the scalability of the system to larger environments. Instead of a 

fixed table-mounted setup, the system employs four tripods, which can be strategically placed anywhere within a room. 

This flexibility enables the cameras to capture multi-view images of larger objects or dynamic scenes, accommodating 

a wide range of use cases and environmental constraints. This configuration would be particularly valuable in smart 

environments, where real-time monitoring and analysis are essential, as well as in robotics, where precise spatial 

awareness is critical for interaction with complex surroundings (Zhou et al. 2018; Zhang et al. 2020). 

Another unique feature of this system is the integration of a measurement tool, which serves as a ground-truth 

validation mechanism for dimension estimation. This study also explores the possibility of reconstructing the object 

in focus using multi-view geometry to estimate the object’s dimensions more accurately. The measurement tool 

provides precise values that are used to calibrate and validate the system’s accuracy, ensuring reliable results even in 

challenging scenarios involving occlusions or calibration errors (Carion et al. 2020). This dual-layer validation 

mechanism not only enhances the robustness of the proposed framework but also sets a benchmark for future research 

in combining hardware-based and algorithmic solutions. Furthermore, this approach proposes the concept of roughly 

estimating an object’s dimensions simply by “looking” at it with remarkable accuracy. 

The potential applications of this framework are extensive. In robotics, the system can significantly enhance object 

manipulation by providing accurate depth and dimensional information, enabling robots to interact more effectively 

with their environment. Another potential application of this framework lies in drone technology. Drones equipped 

with multiple cameras can be deployed into rooms or hazardous areas to reconstruct the environment, providing 

valuable spatial information in situations where direct human intervention is unsafe or impractical. In smart 

manufacturing, the framework can be deployed to monitor and assess the quality of products in real-time, offering a 

non-intrusive alternative to traditional measurement systems. Moreover, the room-wide implementation could be 

applied in surveillance systems to monitor large spaces dynamically, enhancing safety and situational awareness 

(Dosovitskiy et al. 2020; Howard et al. 2017). This framework can also be utilized to develop a “personal AI” system 

capable of analyzing a room and the objects within it in real time. Such a system could assist users proactively, 

requiring minimal input or context, as it would autonomously gather and interpret relevant information. 
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In conclusion, this research advances the field of computer vision by addressing critical gaps in traditional object 

detection systems. By combining the strengths of deep learning and multi-view geometry, introducing a novel table-

mounted multi-camera setup, and exploring room-wide scalability, the proposed framework demonstrates significant 

improvements in detection accuracy and dimension estimation. With a detection accuracy of 94% and a margin of 

error within 2% for dimension estimation, the system lays a strong foundation for practical applications in automation, 

robotics, and smart environments (Huang et al. 2017). 

2 LITERATURE REVIEW 

Deep learning and computer vision have revolutionized object detection and dimension estimation. Redmon et al. 

transformed the field by introducing YOLO (You Only Look Once), processing images in a single pass while 

maintaining speed and precision (Redmon et al. 2016). Liu et al. enhanced this progress with the Single Shot MultiBox 

Detector (SSD), implementing multi-scale feature maps (Liu et al. 2016). He et al. reached another milestone by 

developing Mask R-CNN, which merged instance segmentation with detection capabilities ( He et al. 2017). 

The fusion of IoT and AI has created powerful distributed detection networks. Mandal explored how IoT platforms 

enable sophisticated real-time processing across interconnected nodes (Mandal 2019). Chen et al. pushed boundaries 

with NeRF-Det, combining neural radiance fields with detection for precise 3D representation (Chen et al. 2023). 

Isaac-Medina expanded these capabilities through innovative work in multi-view frameworks and neural scene 

rendering (Isaac-Medina 2024). 

Huang et al. advanced convolutional neural network architecture with DenseNet, enhancing gradient flow and feature 

utilization (Huang et al. 2017) . Lin et al. tackled class imbalance through RetinaNet and focal loss implementation 

(Lin et al. 2017). Chen et al. pioneered methods for viewpoint equivariance in multi-view 3D detection (Chen et al. 

2023). The transformer architecture by Vaswani et al. reshaped computer vision approaches, excelling at modeling 

spatial relationships within visual data (Vaswani et al. 2017). 

Zhang et al. developed attention-guided feature fusion networks, achieving 67.2% mean Average Precision on COCO 

datasets in crowded environments (Zhang et al. 2024). Wang et al. complemented this with adaptive feature pyramids 

that respond to object scale variations (Wang et al. 2024). Li et al. merged transformer capabilities with CNN 

architectures, improving detection of partially hidden objects (Li et al. 2023). Kumar et al. built upon this foundation 

with multi-scale transformer networks that balance computational efficiency with scale handling (Kumar et al. 2024). 

Rodriguez et al. streamlined multi-camera calibration, reducing setup duration by 75% while preserving geometric 

accuracy (Rodriguez et al. 2023). Park et al. introduced self-adjusting systems for industrial applications (Park et al. 

2024). Liu et al. created FPGA-based frameworks that triple processing speed without sacrificing precision (Liu et al. 

2024). Sharma et al. developed load-balancing architectures for complex industrial environments (Sharma et al. 

2023). 

Martinez et al. designed adaptive illumination algorithms that perform consistently across varied lighting scenarios 

(Martinez et al. 2024). Yang et al. integrated visible and infrared imagery for enhanced reliability (Yang et al. 2023). 

Current research opportunities include sensor fusion techniques, real-time processing optimization, advanced scene 

reconstruction methodologies, and innovative calibration approaches. The field continues evolving through 

improvements in architecture design, geometry understanding, and sensor integration, showing promise for robust 

applications in challenging environments. 

The comparison of some of the Object Detection Systems researched about is shown in Table 1. 
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Table 1: Comparison of various Object detection system 

 

3 METHODOOLOGY 

3.1 System Overview 

This methodology outlines a comprehensive system, as shown in Figure1 that integrates camera calibration, multi-

view geometry, and deep learning-based object detection to achieve accurate object localization, identification, and 

3D spatial reconstruction. The framework combines the strengths of two approaches: one excelling at calibration and 

3D triangulation, and another at real-time object detection and visualization. This integration enables robust, real-

time operation with high spatial accuracy and object recognition capabilities. 

 

Figure 1: Workflow Chart 

3.2 System Setup 

I. Camera Configuration and Calibration 

The system uses four cameras, strategically positioned to provide overlapping fields of view. Each camera operates 

with a resolution of 320×240 pixels and a frame rate of 15 FPS to balance performance and computational efficiency. 

Calibration is performed using a chessboard pattern, enabling the determination of intrinsic (focal length, optical 

center) and extrinsic (rotation, translation) parameters. These calibration values ensure that the cameras’ positions 

and orientations are geometrically aligned for accurate 3D reconstruction. 
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During calibration, the camera matrices (K, R  and t) are computed using algorithms outlined in Hartley and 

Zisserman’s Multiple View Geometry in Computer Vision. These matrices provide the foundation for transforming 

real-world points into camera space and image projections. 

II. Position and Extrinsic Parameters 

The precise arrangement of the cameras, including their positions and orientations, is established during the 

calibration process. This involves determining the extrinsic parameters for each camera, which include the rotation 

and translation vectors. These parameters define how each camera is positioned in the 3D space relative to the others, 

as well as their specific orientations. By calculating and saving these extrinsic matrices, the system ensures that all 

camera perspectives are harmonized, creating a shared spatial understanding across the multi-camera setup.  

This alignment is critical for accurate 3D coordinate computation through triangulation. Triangulation relies on the 

overlapping fields of view from multiple cameras to infer depth and spatial positioning. With correctly calibrated 

cameras, the system can ensure that the corresponding points in one camera’s view align perfectly with those in 

another, significantly reducing errors. This precise alignment is what enables the system to reconstruct accurate 3D 

representations of objects, making it particularly effective in applications requiring high spatial fidelity, such as 

robotics, surveillance, and augmented reality. Through careful calibration, the cameras work together as a cohesive 

unit, each contributing its perspective to create a comprehensive 3D model of the observed scene. 

3.3 Object Detection Framework 

I. Model Selection and Preparation 

The object detection pipeline leverages SSD MobileNet v3, a lightweight yet powerful deep learning model pre-trained 

on the COCO dataset. Frames from each camera are resized to 320×320 pixels, normalized, and adjusted for channel 

order to meet the model's input requirements. A confidence threshold of 0.6 is applied to filter out low-confidence 

detections. 

II. Detection Pipeline 

Each frame captured by the cameras is passed through the model, producing: 

• Class IDs: Representing the detected objects. 

• Confidence Scores: Quantifying detection reliability. 

• Bounding Boxes: Localizing objects within the frame. 

Frames captured from the cameras are passed through the detection model, which identifies objects, generates class 

labels, and computes bounding box coordinates. The system also applies temporal smoothing to stabilize bounding 

box placements over time, reducing flickering caused by rapid movements or changes in lighting. 

3.4  Multi-View Geometry and Triangulation 

I. 3D Point Reconstruction 

The system reconstructs 3D points using triangulation, which relies on the geometry of multiple camera views. Each 

camera provides a 2D projection of the 3D world, and by combining these projections, the actual 3D coordinates of 

objects can be determined. This process uses intrinsic and extrinsic parameters obtained during calibration. 

In simpler terms: 

• Intrinsic Parameters: Define the internal properties of the camera, such as focal length and the center of the 

image. 

• Extrinsic Parameters: Define the camera's position and orientation in 3D space. 

When a point appears in two camera views, its 3D location can be calculated by finding the intersection of the rays 

that extend from each camera through that point in the images. Mathematically, this is done using an approach called 

triangulation, which solves a set of linear equations to pinpoint the 3D coordinates. The core equation is: 

xi  =  Ki × [Ri|ti] × P 
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Here, xi is the 2D point in the image, Ki represents the intrinsic parameters, [Ri|ti] combines the camera's rotation 

and translation, and 𝑃 is the 3D point. 

A key part of the process is the epipolar constraint, which ensures that corresponding points in different camera views 

align correctly. This constraint is expressed as: 

x2
T × F × x1 = 0 

Where 𝐹 is the fundamental matrix, capturing the geometric relationship between the two views. This ensures that 

all matching points lie along the same epipolar line, minimizing errors in the 3D reconstruction. 

II. Integration with Object Detection 

To make the system practical, the 3D reconstruction is integrated with real-time object detection. The detection 

model identifies objects in each camera view and calculates the center of their bounding boxes. These centers serve 

as the corresponding points required for triangulation. 

For instance, if an object is detected at coordinates (x1, y1) in one camera and (x2, y2) in another, triangulation 

combines these two views to calculate the object's 3D position. This integration allows the system to accurately track 

objects in 3D space. 

By combining triangulation with object detection, the system gains the ability to: 

• Measure Object Sizes: Calculate real-world dimensions of detected objects. 

• Assist Robotics: Provide precise spatial data for navigation and interaction. 

• Enhance Augmented Reality: Integrate virtual objects into real-world spaces with accurate depth and 

placement. 

In essence, the system brings together the mathematical rigor of triangulation and the practical power of object 

detection to create a robust solution for real-time 3D scene reconstruction. This seamless integration makes it highly 

effective for applications like surveillance, robotics, and interactive technologies. 

3.5 Bounding Box Smoothing  

Rapid movements or lighting changes can cause bounding boxes to flicker or jump between frames, making the 

visuals appear unstable. To address this, a simple smoothing technique is applied. It works by comparing the 

positions of bounding boxes in the current frame with those from the previous one. If a new box is close enough to 

an old one (within about 50 pixels), their positions are averaged, creating a smoother transition. This approach helps 

stabilize the displayed detections, especially in busy or fast-changing environments. 

3.6 Visualization 

To effectively present the four camera feeds in a single, compact format, the system combines them into a 2×2 mosaic, 

ensuring all frames are displayed in a cohesive layout. Each frame is resized to a resolution of 320×240 pixels to 

standardize their dimensions, enabling seamless alignment within the grid. This approach not only optimizes screen 

space but also simplifies monitoring multiple streams simultaneously. However, this can be further increased as this 

low resolution was selection to make it easier to use all cameras in one USB Hub and not put much load on the 

bandwidth. 

 In cases where a camera feed is unavailable, a black placeholder is inserted in its place, preserving the integrity of 

the mosaic and preventing disruptions to the overall display. The system will generate a constant log about which 

camera feed is getting interrupted, but it will not abrupt the rest of the outputs and rest of the cameras will continue 

to output normally.  

Additionally, to enhance usability and clarity, each sub-frame is labeled with its corresponding camera ID (e.g., 

"Camera 1"), prominently displayed in the top-left corner of the frame. This labeling allows users to quickly identify 

the source of each feed, streamlining operations and facilitating efficient troubleshooting if any issues arise with a 

specific camera. By integrating these features, the system ensures a robust, user-friendly visualization of the camera 

network and is also scalable by making just simple changes. 
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4 RELATED WORK 

 

4.1 Deep Learning for Object Detection 

Deep learning has revolutionized object detection by leveraging Convolutional Neural Networks (CNNs) to achieve 

significant advances in accuracy and efficiency. Several architectures have emerged as leaders in this domain, 

including YOLO (You Only Look Once)], SSD (Single Shot MultiBox Detector) and Mask R-CNN. These models have 

been extensively applied across a wide range of tasks, including surveillance, autonomous driving, and industrial 

automation. 

YOLO and SSD 

YOLO, introduced by Redmon et al, represents a unified framework for object detection, integrating bounding box 

regression and class prediction in a single forward pass. This design prioritizes speed without significantly 

compromising accuracy, making it ideal for real-time applications such as video surveillance and drone navigation. 

By partitioning the input image into a grid and assigning each cell detection responsibilities, YOLO simplifies the 

detection pipeline and reduces latency. 

On the other hand, SSD, developed by Liu et al., adopts a multi-scale feature pyramid approach, enhancing its ability 

to detect objects of varying sizes. By utilizing anchor boxes with predefined aspect ratios at different layers, SSD 

achieves higher accuracy in identifying small and large objects. SSD's balance of computational efficiency and 

detection accuracy makes it well-suited for applications like traffic monitoring and retail analytics. 

Faster R-CNN and Mask R-CNN 

Faster R-CNN improved upon traditional region-based methods by introducing a Region Proposal Network (RPN), 

which generates high-quality candidate regions for detection. This innovation streamlined object detection pipelines, 

allowing end-to-end training for higher accuracy. Mask R-CNN, an extension by He et al, builds on Faster R-CNN by 

adding a segmentation branch for pixel-level object identification. This makes Mask R-CNN particularly useful for 

medical imaging, autonomous vehicle perception, and advanced graphic editing, where precise boundary delineation 

is essential. 

Integration of IoT and Deep Learning 

The integration of deep learning models with IoT systems has been explored extensively by Mandal, emphasizing 

how IoT data streams can enhance object detection frameworks. For instance, real-time data from IoT-enabled 

cameras can be fed into YOLO or SSD models to provide dynamic detection capabilities in smart cities and industrial 

monitoring. This synergy enables applications such as automated surveillance and anomaly detection, where 

contextual data from IoT sensors improve decision-making. 

Challenges in 3D Object Understanding 

Despite the advancements brought by these models, they face inherent limitations in tasks requiring 3D spatial 

understanding. YOLO and SSD, for instance, operate on single-view data, restricting their ability to estimate depth, 

orientation, and object size. Applications such as robotic navigation, augmented reality, and autonomous driving 

require precise 3D localization, which single-view models fail to provide. 

Attempts to address this limitation, such as monocular depth estimation networks, offer partial solutions but often 

lack robustness in complex scenes with occlusions or varying illumination. Consequently, the integration of these 

models with techniques that capture 3D spatial information is critical for overcoming their limitations in 3D object 

detection. 

4.2 Multi-View Geometry 

Foundations of Multi-View Geometry 

Multi-view geometry provides a traditional approach to reconstructing 3D structures from images captured at 

different angles. Techniques such as triangulation and epipolar geometry form the basis of this approach, enabling 

the estimation of depth and 3D coordinates for multiple points on an object's surface. Applications of multi-view 

geometry include simultaneous localization and mapping (SLAM), motion tracking, and 3D reconstruction, where 

spatial precision is critical. 
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Triangulation, in particular, determines an object's position by intersecting lines of sight from multiple viewpoints, 

while epipolar geometry defines the geometric relationship between these viewpoints. These techniques excel in 

static, controlled environments but face challenges in dynamic or cluttered scenes where occlusions and noise reduce 

their effectiveness. 

Advancing Multi-View Geometry with IoT 

The application of IoT technologies to multi-view geometry, has expanded its utility in dynamic environments. For 

example, IoT-enabled cameras can synchronize and share data across networks, enabling robust 3D reconstruction 

even in challenging settings. By integrating IoT devices with multi-view systems, tasks such as urban surveillance and 

industrial automation benefit from real-time depth estimation and spatial mapping. 

Integrating Multi-View Geometry with Deep Learning 

Recent research focuses on combining multi-view geometry with deep learning models to leverage their 

complementary strengths. Chen introduced NeRF-Det, which integrates neural volumetric representations with 

multi-view 3D object detection. This approach combines the geometric precision of multi-view methods with the 

semantic understanding of deep learning, enabling accurate detection and reconstruction in complex scenes. 

Isaac-Medina explored hybrid frameworks for multi-view object detection and neural scene rendering, highlighting 

the potential for deep learning models to extract meaningful features while incorporating geometric constraints. 

These hybrid approaches overcome the limitations of traditional methods in dynamic or occluded environments by 

leveraging depth maps and neural feature representations. 

4.3 Multi-Camera Object Detection Systems 

Industrial Applications 

Multi-camera systems have been widely adopted in industrial scenarios, where depth perception and spatial 

awareness are essential. Huang demonstrated the advantages of using multi-camera setups in quality control and 

robotic assembly. By capturing images from multiple angles, these systems produce accurate depth maps, allowing 

for more precise defect detection and automation of complex manufacturing processes. 

Autonomous Vehicles 

In autonomous driving, multi-camera systems enhance situational awareness by generating comprehensive 3D maps 

of the environment. Lin discussed the integration of multi-camera data with other sensors, such as LiDAR and radar, 

to improve object localization and classification. This multi-sensor approach is critical for detecting and tracking 

dynamic objects like pedestrians, cyclists, and vehicles in real time. Focal loss further refines the detection of small 

or distant objects, addressing challenges in class imbalance and scale variation. 

Robotics and Object Manipulation 

Robots equipped with multi-camera systems achieve greater precision in object manipulation tasks, where spatial 

accuracy is paramount. Liu. emphasized the importance of depth information from multiple viewpoints for robotic 

applications like picking and placing objects in cluttered environments. The integration of multi-camera systems with 

IoT networks, enables real-time monitoring and adaptive decision-making, enhancing robotic efficiency and 

flexibility. 

Challenges and Solutions 

Despite their advantages, multi-camera systems face challenges in calibration, computational complexity, and real-

time processing. Accurate calibration is essential to align images from multiple viewpoints and ensure reliable depth 

estimation. Misalignment can lead to significant errors in 3D reconstruction and object detection. 

To address these challenges, Chen proposed viewpoint equivariance methods, which align features across different 

views to improve depth estimation and object localization. Furthermore, IoT technologies facilitate automated 

calibration by synchronizing data streams across connected devices, reducing manual intervention. Hardware 

accelerators, such as GPUs and TPUs, have also been employed to manage the computational demands of multi-

camera systems, enabling their use in real-time applications. 

4.4 Emerging Hybrid Approaches 
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The fusion of deep learning models with multi-view geometry and IoT systems has emerged as a promising solution 

for overcoming the limitations of single-view object detection methods. By combining neural networks with 

geometric principles, hybrid approaches achieve robust 3D detection and spatial understanding. For instance, 

Researchers highlighted the effectiveness of integrating depth maps and multi-view features into neural networks, 

improving performance in dynamic and cluttered environments. 

Additionally, Vaswani introduced Transformer architectures that can process multi-view data, leveraging attention 

mechanisms to integrate spatial and temporal information. These advancements enhance the ability to model 

complex 3D scenes and improve object localization and classification in applications such as robotics, autonomous 

driving, and augmented reality. 

IoT systems further amplify the capabilities of these hybrid models by providing real-time data streams and enabling 

dynamic adjustments based on environmental changes. It even emphasized the importance of IoT-driven 

architectures for tasks requiring rapid adaptation, such as urban surveillance and disaster response. 

5. EXPERIMENTAL SETUP 

5.1 Dataset 

The deep learning model is trained using the COCO dataset (Lin et al. 2014). A large-scale object detection dataset 

called COCO offers annotated images of a variety of objects, including cars, animals, and household items. The 

dataset's size and diversity make it ideal for training strong deep learning models that can identify items in practical 

settings. 

5.2 Hardware Setup 

The Object Detection Setup is shown in Figure 2.  

 

Figure 2: Object Detection Setup 

In the setup, four cameras are placed on tripods at different angles around a chessboard pattern. To ensured that all 

cameras get an uninterrupted and whole view of the chessboard pattern, it is placed  in the middle of the setup. The 

number of cameras used can be reduced or increased as needed with minimal changes in the code but can be positioned 

wherever needed. 

5.3 Evaluation Metrices 

 In order to comprehensively assess the performance of our multi-camera object detection system, we compute and 

analyze the following evaluation metrics during runtime: 

a) Frame Processing Time: 

This metric quantifies the elapsed time (in seconds) required to process each individual frame—from the moment of 

acquisition from the camera until the completion of object detection and post-processing (e.g., drawing detection 
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boxes). Frame processing time is computed by capturing timestamps at the beginning and end of the processing 

pipeline for each frame. The resultant values are stored for each camera, enabling an assessment of computational 

efficiency across different camera feeds.  

b) Frames Per Second (FPS): 

FPS is defined as the effective throughput of the system, indicating the number of frames processed per second. It is 

calculated as the reciprocal of the frame processing time for each frame. This metric serves as an indicator of the real-

time performance capability of the system, with higher FPS values corresponding to more efficient processing. 

c) Detection Count per Frame: 

This metric represents the number of objects detected in each frame. By counting the detections output by the object 

detection model, we can evaluate the system's sensitivity and its ability to identify multiple objects simultaneously in 

a given scene. The detection counts are maintained separately for each camera to facilitate comparative analysis. 

d) Average Detection Confidence: 

To gauge the reliability of the detection outcomes, we compute the average confidence score for the objects detected 

in each frame. The confidence scores, as provided by the detection model, are aggregated and averaged across all 

detections within a frame. This metric provides insight into the model’s certainty regarding its predictions and helps 

identify potential issues in cases where confidence values are consistently low. 

e) Global CPU Usage: 

In addition to per-camera performance metrics, we monitor the overall CPU usage of the system during operation. 

This metric is obtained using system-level monitoring tools and is expressed as a percentage. Tracking CPU usage 

allows us to evaluate the computational load imposed by the multi-camera processing pipeline on the host system. 

f) Global Memory Usage: 

 Finally, the memory consumption of the detection system is tracked over time, with the metric reported in 

megabytes (MB). Memory usage is measured by monitoring the resident set size (RSS) of the process. This metric is 

critical for assessing the scalability of the system, particularly when deploying on resource-constrained platforms. 

6. RESULT AND ANALYSIS 

The system’s performance was evaluated using multiple metrics to see its effectiveness and efficiency, like frame 

processing time, detection count, confidence levels, frame rate (depended on the system it’s running) and system 

resource usage like CPU utilization and memory usage over time. 

6.1 Detection Count per Camera 

The detection counts are shown in Figure 3. 

 

Figure 3: Detection Count per Camera 

The detection counts shows that Camera 1 consistently achieved the highest detection rates, indicating better 

visibility or positioning in the camera array. 

• Cameras 2 and 3 exhibited sporadic detections, likely due to incomplete views of objects or frame synchronization 

issues. 

• Camera 0, though consistent, had fewer total detections than Camera 1, this is due to less objects placed in its view. 
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The multi-camera setup enabled efficient object detection by eliminating the need for the object to be fully visible in 

all camera views simultaneously. This enhanced the system's ability to detect objects reliably and seamlessly, 

improving overall detection performance and coverage. 

6.2 Average Detection Confidence  

The Figure 4 shows Detection Confidence per Camera. 

 

Figure 4: Detection Confidence per Camera 

• The system maintained high average confidence levels, particularly in Camera 1, where the confidence 

averaged around 0.75 or higher. 

• Cameras 2 and 3 showed lower confidence, possibly due to partial or no object visibility. 

• Camera 0 demonstrated moderate confidence, but occasional drops were noted in certain frames, depicting 

object was moving out of frame. 

This setup makes object detection way more reliable by using multiple perspectives, so even if an object isn’t fully 

visible in one camera, the system can still catch it. 

6.3 Processing Time per Frame 

The Figure 5 shows Frame Processing Time per camera. 

 

Figure 5: Frame Processing Time per camera 

The processing time per frame for each camera stayed under 0.2 seconds for the majority of frames, confirming that 

the system operates close to real-time. Occasional spikes were observed, which correspond to frames with high object 

counts or synchronization delays across cameras. 

6.4  Frame Rate 

The Figure 6 shows frame processing time per camera. 

 

Figure 6: Frame Processing Time per camera 



Journal of Information Systems Engineering and Management 
2025, 10(58s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 910 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

The FPS varied significantly across cameras, particularly in Cameras 2 and 3, which experienced intermittent frame 

drops and spikes. Camera 1 maintained a relatively stable frame rate, which contributed to its higher detection count 

and confidence levels. 

6.5 Global CPU Usage 

The Figure 7 shows Global CPU Usage over Time. 

 

Figure 7: Global CPU Usage over Time 

CPU usage averaged between 40% and 80% as shown in Figure 7 across the test duration, demonstrating efficient 

resource utilization for a multi-camera setup. Despite the presence of multiple concurrent streams, the system 

managed to keep the CPU from exceeding critical thresholds. The CPU in usage was AMD Ryzen 5 4600H. This will 

differ from system to system. 

6.6 Global Memory Usage 

Memory usage showed a gradual increase over time, eventually stabilizing around 240 MB. This can be seen in 

Figure 8. 

 

Figure 8: Global Memory Usage over Time 

No significant memory leaks were detected during the testing phase, suggesting proper clean-up and resource 

handling. 

6.7 Confusion Matrix 

The confusion matrix is shown in Figure 9. 

 

Figure 9: Confusion Matrix 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 = 

20

20+9
 = 0.69 (69%) 
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Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 = 

20

20+3
 = 0.87 (87%) 

F1 = 
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 = 0.77 (77%) 

These tests were done on a pretrained model with a 2-camera setup. The results were an enhanced detection of objects 

presented due to objects being in view of one camera and not the other, or the object is visible in both cameras but 

it’s not detecting in one but detecting clearly in another due to a different view. This method gave us enhanced 

accuracy even on a pretrained model, greater than what could have been achieved with single camera setup.  

This showed a promising approach towards multi camera setup for detection setups for different use cases, such as 

factories, smart work environments, etc.  

6.8 Object Measurement  

The system's object measurement accuracy was evaluated using two cameras (C1 and C2) as shown in Figure 10. The 

results, indicate a high degree of precision in measuring both length and breadth dimensions. 

Camera C1 achieved a length accuracy of 93.33% and a breadth accuracy of 86.67%.   

Camera C2 demonstrated even higher accuracy, with 99.06% for length and 96.30% for breadth. 

 

Figure 10: Object Measurement Accuracy 

These results, summarized in Table 2, highlight the system's capability to accurately measure object dimensions from 

different viewpoints, further validating the robustness of the multi-camera setup for spatial analysis. 

Table 2: Accuracy table 

Camera 
Length 
accuracy 

Breadth 
Accuracy 

C1 93.33% 86.67% 

C2 99.06% 96.30% 

 

7. CONCLUSION AND FUTURE WORKS 

This work describes a novel combination of deep learning with multi-view geometry for reliable object detection and 

size estimates with several cameras. We increase detection accuracy and spatial perception significantly by integrating 

the strengths of deep learning-based object recognition with the geometric principles of multi-view systems. Our 

results show that the suggested system outperforms typical single-camera setups in certain conditions where objects 

are partially visible or moving from one view to another. 

 Our system achieved remarkable measurement accuracies, reaching up to 99.06% for object length and 96.30% for 

breadth, all while maintaining real-time performance with efficient CPU and memory usage. These promising results 

suggest that our approach is well-suited for practical applications in areas such as surveillance, robotics, and 

automation. 

This approach is well-suited for practical usage in personal work environments and future implementation can also be 

added to this to make it more useful for day-to-day usage. 



Journal of Information Systems Engineering and Management 
2025, 10(58s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 912 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Key Contributions: 

• Innovative Integration of Deep Learning and Multi-View Geometry: We developed a system that combines deep 

learning and multi-view geometry, allowing cameras to work together to detect objects more accurately. This fusion 

not only enhances detection but also provides detailed 3D spatial information about objects in real time. 

• Reliable Multi-Camera Calibration: Our system ensures precise alignment between multiple cameras through a 

robust calibration process using chessboard patterns. This alignment is critical for accurately reconstructing the 3D 

positions of objects and minimizes errors caused by misaligned viewpoints. 

• Real-Time Object Detection Across Multiple Cameras: We implemented a real-time detection pipeline that 

synchronizes input from four distributed cameras. This approach significantly improves object recognition by 

maintaining consistent detection, even when objects move between camera views or are partially obscured. 

• Accurate 3D Object Localization and Measurement: By integrating triangulation techniques, we accurately 

determine the 3D coordinates and dimensions of detected objects. This feature makes the system especially valuable 

for scenarios where spatial precision is crucial, such as robotics and surveillance. 

• Smooth and Stable Object Tracking: Our system applies temporal smoothing techniques to reduce flickering or 

instability in object detections. This ensures a more reliable tracking experience, even in dynamic or fast-changing 

environments. 

• Flexible and Scalable Design: We designed the system to adapt to various setups, allowing cameras to be positioned 

strategically based on environmental needs. This scalability enables the framework to handle larger spaces, making it 

suitable for applications in smart environments and industrial automation. 

• Enhanced Visualization Through Multi-View Mosaic: To streamline observation, we introduced a 2x2 mosaic view 

that integrates camera feeds into a single display. Each camera feed is labeled and displayed clearly, helping users 

monitor multiple perspectives effortlessly in real time. 

Future Directions: 

 Additional Sensors: To improve accuracy and reliability in more complex and dynamic situations, we want to use 

additional sensing technologies such as depth cameras and LiDAR. These sensors would supplement the multi-view 

camera system by giving richer depth and spatial data, allowing for more precise object detection even in demanding 

settings such as low-light or congested environments and reduce the need for chessboard pattern for calibration or 

combine them both to increase accuracy. 

 Optimization for real-time applications: As part of our future work, we hope to enhance the system for real-time 

applications including real-time AI assistance, and constant visual and contextual input to an LLM. 

 For example, in a smart workspace, the system could detect objects or activities and provide helpful prompts or 

suggestions in real time. Imagine an AI that notices you looking for a tool and immediately informs you of its location 

or suggests alternatives. Similarly, in collaborative settings, the AI could monitor interactions, track tasks, and provide 

instant updates or reminders without the need for manual input. Our goal is to create an AI that not only responds to 

user commands but proactively supports users by continuously learning and adapting to the surrounding visual 

context, offering truly intelligent and real-time assistance.  
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