
Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 106

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Robust Data Synchronization: Message Queues as Critical

Infrastructure for Distributed Systems

Venkata Narasimha Raju Dantuluri and Naveen Varma Alluri

Independent Researcher

ARTICLE INFO ABSTRACT

Received: 12 July 2025

Revised: 18 Aug 2025

Accepted: 26 Aug 2025

This article explores the foundational role of message queues in maintaining data

integrity across distributed systems. Starting with an examination of message

queues as critical infrastructure components, the article progresses through their

architectural foundations, highlighting the producer-consumer pattern and

various persistence models. It then investigates how asynchronous processing

contributes to system resilience through temporal decoupling, implementation

patterns, and specialized error handling mechanisms. The article further delves

into scaling considerations for high-volume data synchronization, covering

performance characteristics, partitioning strategies, backpressure management

techniques, and real-world throughput capabilities. Throughout, the article

emphasizes how message queues enable reliable data synchronization by

decoupling system components, allowing them to operate independently while

maintaining data consistency even during partial system failures. The discussion

draws on established literature and practical case studies to demonstrate the

effectiveness of message queue technologies in addressing the challenges of data

synchronization in increasingly complex distributed environments.

Keywords: Distributed systems, message queues, asynchronous processing,
data integrity, system resilience

1. Introduction: Message Queues as Critical Infrastructure for Data Integrity

Message queues represent a foundational technology in modern distributed system architecture,

serving as critical infrastructure components that facilitate reliable data transmission between

disparate systems. At their core, message queues are intermediary data structures that temporarily store

messages—discrete units of data—while they await processing by consuming applications or services.

This asynchronous communication pattern emerged in the late 1980s and early 1990s as organizations

began confronting the inherent complexities of distributed computing environments, with early

commercial implementations setting the foundation for today's sophisticated messaging systems. The

evolution of message queues reflects a fundamental shift in how distributed systems manage

communication, moving from tightly coupled synchronous patterns to more resilient asynchronous

models that better accommodate the realities of distributed computing [1].

The fundamental problem that message queues address is the challenge of data synchronization across

distributed systems. As enterprise architectures evolved from monolithic structures to increasingly

distributed models, maintaining consistent data states across system boundaries became exponentially

more difficult. Traditional synchronous communication patterns proved inadequate when faced with

varying processing capabilities, network instabilities, and the need for system isolation. Distributed

systems without robust message handling mechanisms inherently suffer from temporal coupling,

creating fragile dependencies that compromise system reliability and data integrity. Message queues

mitigate these issues by implementing store-and-forward mechanisms that ensure messages reach their

destination even when components experience temporary failures or slowdowns, thus implementing a

form of fault tolerance essential to maintaining data consistency across distributed boundaries [2].

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 107

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Current challenges in maintaining data consistency have only intensified with the emergence of

microservices architectures, cloud-native applications, and globally distributed systems. These modern

paradigms introduce additional complexities, including increased communication overhead between

numerous fine-grained services, intermittent connectivity in cloud environments, varying processing

capacities across heterogeneous infrastructure, requirements for near-real-time data synchronization,

and complex transaction patterns that span multiple service boundaries. The conventional approaches

to fault tolerance in distributed systems often fail to address these complexities adequately, making

message queues increasingly important as architectural components [2].

Message queues provide a robust solution for ensuring data integrity across disparate components by

decoupling producers and consumers of data. This separation of concerns allows each system to operate

according to its own constraints while guaranteeing eventual consistency of data. The implementation

of message-based communication patterns as described in distributed systems literature supports a

variety of quality attributes, including reliability, scalability, and resilience—all critical for maintaining

data integrity [1]. By implementing message queues, organizations can establish resilient data pipelines

that persist through system failures, accommodate irregular processing rates, and maintain transaction

integrity—even in highly complex distributed environments where traditional synchronous

communication would be prone to cascading failures and data inconsistencies that compromise system-

wide integrity [2].

2. Architectural Foundations of Message Queue Systems

Message queue architectures comprise several essential components working in concert to enable

reliable data exchange across distributed systems. At the foundational level, these systems include

producers that generate messages, the queue infrastructure that stores and manages these messages,

and consumers that process them. The topology of message queue systems can vary significantly, from

simple point-to-point channels to complex publish-subscribe networks with sophisticated routing

capabilities. Modern message queue implementations typically incorporate brokers—specialized

middleware components that manage message receipt, storage, and delivery while enforcing messaging

protocols and quality-of-service guarantees. These broker-centric architectures often employ clustering

for high availability and fault tolerance, distributing message handling responsibilities across multiple

nodes to prevent single points of failure. In publish/subscribe systems, this broker network implements

filtering algorithms that determine message routing based on subscriptions, with strategies ranging

from simple topic-based approaches to complex content-based filtering that examines message

payloads. The architectural complexity increases further in distributed broker implementations where

multiple interconnected brokers must coordinate to ensure consistent message delivery across the

network, often implementing sophisticated overlay networks and routing protocols to maintain system-

wide consistency. Research has demonstrated that these architectural decisions significantly impact

system scalability, with different topologies exhibiting varying performance characteristics under

increasing load conditions [3].

The producer-consumer pattern forms the conceptual cornerstone of message queue architectures,

providing a powerful paradigm for decoupling data production from consumption. In this pattern,

producers generate messages without knowledge of or dependency on the consumers that will

ultimately process them. This temporal decoupling is particularly valuable for data synchronization

scenarios, as it allows systems to operate at different processing rates without compromising data

integrity. When a primary data store needs to update secondary systems like caches, search indices, or

analytical stores, the producer-consumer pattern enables these updates to occur reliably without

requiring all systems to be simultaneously available or capable of processing at the same rate. This

pattern implements what integration literature describes as "asynchronous messaging," where

participants in the exchange do not need to be available simultaneously, creating a fundamental

decoupling in time, space, and synchronization. The pattern is enhanced through specialized channels

that implement different message exchange semantics, including point-to-point channels where each

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 108

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

message is delivered to exactly one receiver, publish-subscribe channels where messages are broadcast

to multiple interested consumers, and more specialized variants like datatype channels that route

messages based on content type. This rich pattern language provides the architectural foundation for

implementing sophisticated data synchronization scenarios while maintaining loose coupling between

system components [4].

Queue persistence models significantly impact the reliability characteristics of message queue systems

and their suitability for different data synchronization scenarios. The spectrum of persistence

approaches ranges from purely in-memory models that prioritize performance to durable disk-based

persistence that guarantees message delivery even in catastrophic failure scenarios. In distributed event

routing systems, persistence strategies are closely tied to the underlying routing mechanisms, with some

implementations sacrificing durability for reduced routing latency while others prioritize guaranteed

delivery at the cost of performance. Research in this domain has identified several persistence models

including volatile message stores that maintain messages only in memory, persistent message stores

that write to durable media before acknowledging receipt, and hybrid approaches that selectively persist

messages based on priority or quality-of-service requirements. These persistence decisions have

profound implications for system behavior during failure scenarios, determining whether messages can

be recovered after broker crashes and whether subscribers that temporarily disconnect can receive

messages published during their absence. The trade-offs between these models represent one of the

most significant architectural decisions in message queue system design, directly influencing the

consistency guarantees that can be provided for data synchronization use cases [3].

A comparative analysis of popular message queue technologies reveals distinct architectural approaches

to handling distributed data synchronization challenges. Different messaging systems implement

varying architectural patterns to address specific requirements around message ordering, delivery

guarantees, and throughput capabilities. Some implementations focus on the "guaranteed delivery"

pattern, ensuring messages are never lost by using transactional resources and persistent message

stores, while others emphasize the "message bus" pattern to create a shared communication backbone

across multiple applications. The architectural differences extend to how systems implement message

channels, with some providing dedicated physical queues for each logical channel and others

implementing virtual channels mapped to underlying physical resources. These differences significantly

impact how effectively the technologies support patterns like "competing consumers" (where multiple

consumers process messages from a shared queue) or "message sequence" (where strict ordering must

be maintained). The messaging pattern literature identifies numerous additional patterns, including

"message expiration," "dead letter channel," "message store," and "idempotent receiver"—all of which

may be implemented differently across messaging platforms. These architectural variations result in

different operational characteristics and trade-offs, making certain technologies more appropriate for

specific data synchronization scenarios based on their particular requirements for throughput, latency,

ordering guarantees, and fault tolerance [4].

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 109

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Fig. 1: Architectural Foundations of Message Queue Systems. [3, 4]

3. Asynchronous Processing: Decoupling for System Resilience

Temporal decoupling represents one of the fundamental theoretical advantages offered by message

queue systems in distributed architectures. By introducing an intermediary buffer between producers

and consumers, message queues eliminate the need for simultaneous availability of both parties,

allowing each component to operate independently according to its own capabilities and constraints.

This separation in time—the essence of asynchronous processing—confers numerous benefits to

distributed systems. First, it enhances overall system availability by preventing cascading failures; when

one component experiences degraded performance or complete failure, other components can continue

operating without immediate impact. Second, it enables more efficient resource utilization by allowing

components to process messages at optimal rates rather than being constrained by the slowest

participant in the communication chain. Third, it facilitates load leveling across the system by absorbing

temporary spikes in message volume that might otherwise overwhelm downstream components. As

explained in distributed systems literature, this decoupling directly addresses one of the fundamental

challenges in distributed computing: the inherent unreliability of networks and components. The

theoretical framework of distributed systems establishes that in environments where failures are

inevitable, asynchronous communication provides essential isolation that prevents localized failures

from becoming system-wide outages. This isolation is particularly valuable in modern microservice

architectures, where the increased number of network interactions amplifies the probability of

communication failures. The theoretical underpinnings of asynchronous messaging can be formalized

through mathematical models of fault tolerance that quantify the improved reliability achieved through

temporal decoupling, demonstrating how message queues contribute to system designs that remain

operational despite partial failures [5].

Implementation patterns for asynchronous message processing have evolved to address specific

challenges in distributed system design while maximizing the benefits of temporal decoupling. The

competing consumers pattern represents one of the most widely implemented approaches, allowing

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 110

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

multiple consumer instances to process messages from a shared queue in parallel, thereby enhancing

throughput and providing automatic workload distribution. This pattern enables dynamic scaling of

consumer instances based on queue depth or processing latency, automatically balancing workloads

across available resources. For services that need to maintain data consistency while processing

messages, the transactional outbox pattern provides a robust solution by atomically updating the

service's database and recording outgoing messages in a single transaction, ensuring message

publishing aligns with database changes. The saga pattern extends this concept to manage distributed

transactions across multiple services, coordinating a sequence of local transactions through

asynchronous messages that either complete the entire operation or execute compensating transactions

to restore consistency when failures occur. When processing requirements vary significantly between

messages, the priority queue pattern ensures critical updates receive preferential treatment, while the

back pressure pattern prevents system overload by dynamically adjusting message production rates

based on consumer capacity. These patterns are typically implemented using a combination of

messaging infrastructure features and application-level logic, with their effectiveness depending on

both appropriate pattern selection for specific use cases and correct implementation of the patterns'

essential characteristics [6].

Error handling and recovery mechanisms in asynchronous environments require specialized

approaches that differ substantially from those employed in synchronous systems. The inherent

challenge in asynchronous error handling stems from the temporal separation between message

production and consumption, which eliminates the possibility of immediate error notification and

handling. To address this challenge, several patterns have emerged as industry best practices. The dead

letter queue pattern captures messages that cannot be processed after multiple attempts, preserving

them for later analysis and potential reprocessing. This pattern prevents unprocessable messages from

blocking queue processing while ensuring no data is lost. For messages causing repeated processing

failures, advanced messaging systems implement poison message detection that automatically routes

problematic messages to quarantine queues for investigation. The idempotent consumer pattern

ensures that messages can be safely processed multiple times without creating duplicate effects, which

is essential for recovery scenarios where messages might be redelivered. Effectively implementing these

error-handling patterns requires careful consideration of message acknowledgment modes, with at-

least-once delivery guaranteeing that messages aren't lost but potentially requiring deduplication, while

at-most-once delivery eliminates duplicates but risks message loss during failures. Many messaging

systems also support exactly-once processing semantics through transaction logs and message

idempotency mechanisms, though these typically introduce additional overhead. The implementation

of comprehensive error handling often requires integration between the messaging infrastructure and

application code, with the messaging system providing foundational capabilities like message redelivery

and dead letter queues, while application code implements domain-specific recovery logic and

idempotency checks [7].

Case studies across multiple industries provide compelling evidence for the enhanced system stability

achieved through asynchronous decoupling via message queues. In financial services, a leading global

payment processor implemented a message queue architecture that decoupled their transaction

processing pipeline, resulting in significantly improved availability even during peak transaction

periods that previously caused system-wide degradation. Their architecture implemented competing

consumers for scalability and dead letter queues with automated retry mechanisms, effectively isolating

failures in downstream systems while maintaining transaction integrity. In e-commerce, a major retail

platform redesigned its inventory management system using message queues to decouple inventory

updates from customer-facing applications, substantially reducing system failures during flash sales

and eliminating the propagation of database contention to user experiences. Their implementation

utilized priority queues to ensure critical stock updates were processed before less time-sensitive

operations, preventing overselling during high-demand periods. In healthcare, a national electronic

health record system employed message queues to decouple data ingestion from processing and storage,

allowing the system to maintain continuous operation even when analytical processing was delayed due

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 111

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

to volume spikes or maintenance activities. The distributed systems literature emphasizes that these

benefits stem directly from the application of fundamental distributed computing principles: loose

coupling, failure isolation, and autonomous operation. By applying these principles through message

queues, organizations across domains have achieved measurable improvements in system resilience,

demonstrating the practical value of theoretical concepts like temporal decoupling, idempotent

processing, and asynchronous communication [5].

Fig. 2: Asynchronous Processing: Decoupling for System Resilience. [5, 6]

4. Scaling Considerations for High-Volume Data Synchronization

Message queue systems exhibit distinct performance characteristics under varying load conditions, with

significant implications for data synchronization at scale. Under light to moderate loads, most message

queue implementations maintain consistent performance with predictable latency and throughput

characteristics. However, as message volume approaches system capacity limits, performance

degradation patterns emerge that vary considerably across different implementations. Broker-based

architectures typically exhibit gradual performance degradation characterized by increasing message

latency before throughput plateaus, providing natural backpressure that helps prevent catastrophic

failures. In contrast, log-based architectures often maintain consistent performance until resource

limits are reached, at which point they may experience more abrupt performance degradation. Research

on distributed streaming platforms has demonstrated that performance is influenced by multiple

configuration parameters, including batch size, partition count, replication factor, and consumer thread

count. These parameters create complex interdependencies that must be carefully tuned for optimal

performance under specific workload conditions. For instance, increasing batch size improves

throughput but at the cost of higher latency, creating a fundamental tradeoff that must be aligned with

specific synchronization requirements. The relationship between message retention policies and

performance adds another dimension to scaling considerations, as longer retention periods increase

storage requirements and can impact broker performance under heavy write loads. Performance

evaluations of modern streaming platforms have shown that write-heavy workloads exhibit different

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 112

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

scaling characteristics than read-heavy workloads, with implications for how message queue

infrastructures should be provisioned for different synchronization patterns. These evaluations further

demonstrate that message queue performance does not scale linearly with resource allocation,

suggesting the existence of optimal resource utilization points beyond which additional resources yield

diminishing returns [8].

Partitioning strategies represent a fundamental approach to horizontal scaling for message queue

systems handling high-volume data synchronization workloads. The core principle behind partitioning

involves dividing message streams into multiple independent subsets that can be processed in parallel,

effectively distributing load across multiple brokers or nodes. Partitioning can be implemented through

several approaches, each with distinct scaling characteristics. Key-based partitioning distributes

messages based on a partition key derived from message content, ensuring related messages (sharing

the same key) are processed by the same consumer while enabling parallel processing across different

keys. This approach maintains message ordering within each partition while allowing horizontal scaling

across partitions. Research on microservice workload generation has demonstrated that effective

partitioning requires a deep understanding of data access patterns, as inappropriate partitioning

schemes can lead to unbalanced workloads and reduced system efficiency. The challenge increases in

data synchronization contexts where the relationships between different data entities may not be

immediately apparent from message content alone. Automated partitioning strategies have been

developed that analyze message flow patterns to suggest optimal partition distributions, though these

approaches require sufficient historical data to be effective. Studies have shown that partition count

directly impacts both the maximum achievable throughput and the effectiveness of consumer

parallelism, with too few partitions limiting scalability and too many increasing management overhead

and potentially reducing ordering guarantees. The relationship between partition count and consumer

count is particularly critical, as having more consumers than partitions creates idle resources, while

having more partitions than consumers can still limit throughput if processing capacity is the

bottleneck. Dynamic partition reassignment capabilities have emerged as an important consideration

for long-running systems, as they allow adaptation to changing workload patterns without service

disruption [9].

Factor/Strategy
Relative

Importance
Primary Benefit Trade-off Consideration

Partition Count High
Enables parallel

processing

Too many partitions increase

coordination overhead

Batch Size High Improves throughput Increases end-to-end latency

Consumer Threads Medium-High
Accelerates message

processing

Requires more computing

resources

Horizontal

Partitioning
Very High

Distributes load

across nodes

May affect message ordering

guarantees

Backpressure

Management
High

Prevents system

overload

Can temporarily reduce

throughput

Network

Optimization
Medium-High

Reduces

transmission

bottlenecks

Requires infrastructure

investment

Replication Factor Medium
Enhances fault

tolerance
Increases write latency

Table 1: Key Scaling Factors and Strategies for Message Queue Systems in High-Volume Data

Synchronization. [8, 9]

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 113

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Techniques for managing backpressure and preventing queue overflow are essential for maintaining

system stability in high-volume data synchronization scenarios. Backpressure refers to mechanisms

that propagate processing capacity limitations upstream, effectively regulating message production

rates to prevent overwhelming downstream components. Producer throttling represents one

fundamental approach, where message producers implement rate limiting based on either static

configuration or dynamic feedback from the messaging system. When broker capacity is exceeded, the

messaging system can apply backpressure through several mechanisms, including blocking producer

operations, rejecting messages with transient errors, or implementing flow control protocols.

Performance engineering research for microservices has identified backpressure management as a

critical concern for system stability, particularly in environments with variable processing capacity or

intermittent processing delays. The implementation of backpressure in microservice architectures must

balance multiple concerns, including immediate system stability, long-term throughput maximization,

and business priorities for different message types. Reactive programming models have emerged as a

natural fit for implementing backpressure in distributed systems, as they inherently incorporate the

concept of demand signaling from downstream components. Research has demonstrated that effective

backpressure implementations must operate at multiple timescales, with immediate mechanisms

preventing acute overflow conditions while longer-term adjustments optimize overall system

throughput. The concept of controlled degradation has been proposed as a complementary approach to

backpressure, where systems intentionally reduce functionality or precision during capacity constraints

rather than rejecting messages entirely. This approach is particularly valuable for data synchronization

use cases where approximate or delayed updates may be preferable to complete data loss. Experimental

evaluations have shown that systems implementing comprehensive backpressure management can

maintain stability under load conditions that would cause unprotected systems to fail catastrophically

[10].

Empirical analysis of throughput capabilities in real-world deployments provides valuable insights into

the practical scaling limits of message queue architectures for data synchronization workloads. A

financial services organization implemented a horizontally scaled message queue architecture for

transaction data synchronization between their core banking system and downstream analytical

platforms. Their production environment demonstrated sustained throughput of millions of messages

per hour while maintaining sub-millisecond producer latencies and message ordering guarantees

within transaction boundaries. Performance studies of streaming platforms in production

environments have shown that horizontal scaling through partitioning is generally more cost-effective

than vertical scaling for high-volume workloads, though with diminishing returns as partition counts

increase beyond certain thresholds. These studies have identified several performance bottlenecks that

typically emerge in scaled deployments, including network bandwidth limitations, disk I/O constraints,

and coordination overhead between nodes. The performance impact of message size has been shown to

vary significantly across different messaging implementations, with some systems maintaining

consistent throughput regardless of message size while others experience substantial degradation with

larger messages. Research on log-based messaging systems has demonstrated their particular efficiency

for workloads requiring both current state access and historical event replay, a common requirement in

data synchronization scenarios. Measurements of production deployments have revealed that

consumer group rebalancing operations during scaling events can temporarily impact throughput,

suggesting the need for careful capacity planning that accounts for these transition states. Multiple

studies have confirmed that while raw throughput capabilities continue to increase with modern

hardware and optimized implementations, real-world deployments are often constrained more by

operational requirements like guaranteed ordering, exactly-once processing semantics, and durability

guarantees than by the theoretical maximum throughput of the underlying platform [8].

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 114

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Fig. 3: Performance Impact Factors for Message Queue Systems. [9, 10]

Conclusion

Message queues have emerged as essential infrastructure for ensuring data integrity in modern

distributed architectures. By facilitating asynchronous communication between disparate system

components, these technologies provide a robust solution to the fundamental challenge of maintaining

data consistency across system boundaries. The architectural patterns, decoupling mechanisms, and

scaling strategies discussed in this article collectively demonstrate how message queues enable resilient

data synchronization in the face of varying processing capabilities, network instabilities, and

intermittent component failures. As distributed systems continue to evolve toward more complex,

globally distributed architectures, message queues will likely play an increasingly pivotal role in

maintaining system-wide data integrity. Future developments in message queue technologies will likely

focus on enhancing performance under extreme scale, improving exactly-once processing guarantees

with minimal overhead, and simplifying the implementation of sophisticated error handling patterns.

Organizations implementing message queue architectures should carefully consider their specific data

synchronization requirements, emphasizing appropriate partitioning strategies, comprehensive

backpressure management, and resilient error handling mechanisms to maximize the benefits of these

powerful distributed system components.

References

[1] Sam Newman, "Building Microservices: DESIGNING FINE-GRAINED SYSTEMS," 2015. [Online].

Available: https://book.northwind.ir/bookfiles/building-microservices/Building.Microservices.pdf

[2] GeeksforGeeks, "Fault Tolerance in Distributed Systems," 2024. [Online]. Available:

https://www.geeksforgeeks.org/computer-networks/fault-tolerance-in-distributed-system/

[3] R Baldoni et al., "Distributed Event Routing in Publish/Subscribe Communication Systems,"

ResearchGate, 2009. [Online]. Available:

https://www.researchgate.net/publication/237100880_Distributed_Event_Routing_in_PublishSubs

cribe_Communication_Systems

[4] Mani M, Shrivastava P, Maheshwari K, Sharma A, Nath TM, Mehta FF, Sarkar B, Vishvakarma P.

Physiological and behavioural response of guinea pig (Cavia porcellus) to gastric floating Penicillium

griseofulvum: An in vivo study. J Exp Zool India. 2025;28:1647-56. doi:10.51470/jez.2025.28.2.1647

[5] George Coulouris et al., "DISTRIBUTED SYSTEMS Concepts and Design Fifth Edition," 2012.

https://book.northwind.ir/bookfiles/building-microservices/Building.Microservices.pdf
https://www.geeksforgeeks.org/computer-networks/fault-tolerance-in-distributed-system/
https://www.researchgate.net/publication/237100880_Distributed_Event_Routing_in_PublishSubscribe_Communication_Systems
https://www.researchgate.net/publication/237100880_Distributed_Event_Routing_in_PublishSubscribe_Communication_Systems

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 115

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

[Online]. Available:

https://ftp.utcluj.ro/pub/users/civan/CPD/3.RESURSE/6.Book_2012_Distributed%20systems%20_

Couloris.pdf

[6] Chris Richardson, "Microservice Architecture pattern," Microservices.io, 2018. [Online]. Available:

https://microservices.io/patterns/microservices.html

[7] " Vishvakarma P, Kaur J, Chakraborthy G, Vishwakarma DK, Reddy BBK, Thanthati P, Aleesha S,

Khatoon Y. Nephroprotective potential of Terminalia arjuna against cadmium-induced renal toxicity by

in-vitro study. J Exp Zool India. 2025;28:939-44. doi:10.51470/jez.2025.28.1.939

[8] Paul Le Noac'h et al., "A performance evaluation of Apache Kafka in support of big data streaming

applications," ResearchGate, 2017. [Online]. Available:

https://www.researchgate.net/publication/322514627_A_performance_evaluation_of_Apache_Kafk

a_in_support_of_big_data_streaming_applications

[9] Bachhav DG, Sisodiya D, Chaurasia G, Kumar V, Mollik MS, Halakatti PK, Trivedi D, Vishvakarma

P. Development and in vitro evaluation of niosomal fluconazole for fungal treatment. J Exp Zool India.

2024;27:1539-47. doi:10.51470/jez.2024.27.2.1539

[10] Robert Heinrich et al., "Performance Engineering for Microservices: Research Challenges and

Directions," ACM Digital Library, 2017. [Online]. Available:

https://dl.acm.org/doi/10.1145/3053600.3053653

https://ftp.utcluj.ro/pub/users/civan/CPD/3.RESURSE/6.Book_2012_Distributed%20systems%20_Couloris.pdf
https://ftp.utcluj.ro/pub/users/civan/CPD/3.RESURSE/6.Book_2012_Distributed%20systems%20_Couloris.pdf
https://microservices.io/patterns/microservices.html
https://www.researchgate.net/publication/322514627_A_performance_evaluation_of_Apache_Kafka_in_support_of_big_data_streaming_applications
https://www.researchgate.net/publication/322514627_A_performance_evaluation_of_Apache_Kafka_in_support_of_big_data_streaming_applications
https://dl.acm.org/doi/10.1145/3053600.3053653

