
Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 124
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Scalable Microservices Architectures for High-Traffic Event

Ticketing Platforms

Vinay Chowdary Duvvada

California State University, East Bay

ARTICLE INFO ABSTRACT

Received: 10 July 2025

Revised: 15 Aug 2025

Accepted: 22 Aug 2025

Event ticketing platforms face extraordinary technical hurdles when massive

audiences concurrently pursue access to coveted event admissions. Conventional

unified application structures typically falter under such concentrated request

volumes, causing operational slowdowns, uncompleted transactions, and

compromised user satisfaction. Distributed component architecture presents an

advantageous alternative, separating ticketing functions into autonomous,

independently connected service modules capable of individualized capacity

adjustments according to particular operational demands. This structural

framework delivers enhanced stability through compartmentalized failure zones,

superior responsiveness through calibrated resource distribution, and greater

development flexibility through modular independence. Essential structural

elements facilitating effective implementations encompass centralized interface

management for streamlined connectivity, dispersed temporary storage for

inventory supervision, notification-based component interaction for functional

coordination, and protective interruption mechanisms for disruption limitation.

Deployment methodologies prioritize capability-oriented service delineation,

specialized storage technologies for optimized data management, and

comprehensive visibility systems for anticipatory performance evaluation. The

combination of these architectural elements produces an adaptable, durable

ticketing infrastructure capable of sustaining operational effectiveness during

extraordinary usage surges while remaining receptive to changing functional

requirements. These architectural fundamentals yield significant advantages

across various operational dimensions, from localized regional services to

international ticketing networks accommodating concurrent interactions from

countless simultaneous participants.

Keywords: Microservices, Scalability, Event Ticketing, Distributed Systems,
Traffic Management

1. Introduction

Event ticketing platforms face distinct technical challenges during high-demand sales periods when

thousands of customers simultaneously attempt to purchase limited-availability tickets. This "on-sale"

scenario creates infrastructure demands that surpass normal operational parameters [1]. When these

platforms cannot maintain service stability during traffic surges, substantial business consequences

follow—lost revenue opportunities, diminished brand reputation, and reduced customer satisfaction.

Recent high-profile ticket releases have illustrated that established providers encounter significant

difficulties maintaining service continuity during extraordinary demand periods. Monolithic ticketing

systems exhibit inherent architectural constraints that contribute to service disruptions. These

platforms operate as unified, tightly integrated applications where all components scale together

regardless of individual resource requirements. As system complexity grows and traffic patterns

become increasingly variable, this architectural approach proves progressively inefficient. When any

component reaches capacity thresholds, the entire application becomes susceptible to performance

degradation or complete failure [2].

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 125
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

The architectural paradigm of distributed, service-oriented design presents a substantial advancement

beyond traditional structural constraints. This methodology separates functional units into discrete,

autonomous components that interact via standardized communication protocols. Individual service

modules encapsulate distinct operational domains—reservation management, financial transactions,

credential verification—with each functioning as a self-contained entity. Core architectural principles

encompass component independence, business-aligned boundaries, and distributed information

governance. Through functional isolation within dedicated service boundaries, this structural

approach facilitates targeted resource allocation for specific system elements based on their particular

operational requirements and demand patterns. Architecture enables precise scaling of individual

components according to their specific resource demands.

The benefits of microservices for ticketing platforms extend beyond scalability improvements.

Advantages include enhanced fault isolation, increased technological flexibility, more efficient

deployment processes, and improved team organization around business capabilities rather than

technical specializations. Prominent event access management solutions have increasingly

implemented distributed service models to resolve the distinctive capacity challenges characteristic of

ticketing functionalities. The subsequent sections examine structural elements enabling expanded

capacity, strategies for accommodating substantial request volume variations, and practices for

ensuring uninterrupted service during concentrated usage intervals. The content advances

systematically from essential operational specifications through architectural principles, deployment

methodologies, and maintenance frameworks. This organized progression creates a thorough

blueprint for developing reliable transaction platforms that preserve functional stability during

periods of exceptional customer demand.

Aspect Monolithic Architecture Microservices Architecture

System Structure
Encompasses all functionalities
within a single, unified application
package

Consists of multiple independent,
specialized services that
communicate via APIs

Development
Process

Features a tightly integrated
codebase where modifications can
introduce widespread risks

Maintains separate codebases for
each service, enabling isolated
updates and accelerated
development cycles

Complexity
Management

Can evolve into unwieldy systems
that become increasingly difficult
to understand and maintain

Distributes complexity across
smaller, more focused
components with clear
boundaries

Failure Resilience
Vulnerable to complete system
outages when critical components
fail

Contains failures within
individual services, preserving
overall system availability

Scaling
Capabilities

Primarily scales through vertical
expansion (adding resources to
existing instances)

Offers flexible scaling options,
allowing specific services to scale
independently based on demand

Team
Organization

Typically structured around
technical specializations (frontend,
backend, database teams)

Organized around business
domains with cross-functional
teams owning specific services

Deployment
Patterns

Generally follows infrequent
release cycles due to
comprehensive testing
requirements

Enables continuous deployment
practices with smaller, lower-risk
releases

Technology
Diversity

Restricted to a single technology
stack across the entire application

Supports polyglot
implementation, allowing teams
to select optimal technologies for
specific services

 Table 1: Comparing Monolithic and Microservices Architectures [2,8]

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 126
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

2. Essential Technical Foundations for Contemporary Ticketing Systems

Modern event access management platforms require robust technical underpinnings to ensure

uninterrupted functionality during periods of exceptional customer activity. The complex

infrastructure supporting these systems must adapt fluidly to handle transaction quantities that vary

significantly between standard operational levels and concentrated sales intervals. Real-time

inventory management constitutes a fundamental requirement, presenting substantial concurrent

access challenges. When numerous users simultaneously attempt to purchase limited tickets, systems

must prevent duplicate sales while maintaining responsive performance [3]. This necessitates

advanced inventory locking mechanisms that temporarily reserve seats during the purchase process

without creating system bottlenecks. These mechanisms require precise calibration of reservation

timeouts—intervals too short frustrate legitimate customers, while intervals too long unnecessarily

restrict available inventory. Seat allocation introduces additional complexity, particularly for venues

with intricate seating configurations or differentiated pricing structures. Systems must implement

sophisticated business rules governing seat selection while processing thousands of concurrent

requests. The temporary hold mechanism must integrate seamlessly with payment processing

workflows, ensuring that reservations automatically release if transactions remain incomplete within

defined timeframes. Payment processing represents another critical requirement, demanding both

transaction security and processing efficiency. Ticketing platforms must implement robust security

measures while completing transactions within specific time windows to prevent inventory hoarding.

This balance requires careful system design that maintains transactional integrity across distributed

service boundaries [4]. The challenges of distributed transactions become particularly acute during

peak traffic periods, when consistency and availability trade-offs require meticulous management.

Ticketing platforms demand faster response capabilities than traditional online retail environments

due to the urgency inherent in limited-availability event sales. Customers anticipate instantaneous

system feedback throughout their purchasing journey, despite thousands simultaneously engaging

with the platform.

During peak sales periods, advanced queue orchestration becomes essential to balance fair

distribution with operational integrity. Strategic implementations typically utilize structured waiting

environments, sophisticated access sequencing determined by established parameters, and

continuous communication of estimated processing timeframes. Transparent queue status

information proves particularly valuable during prolonged waiting intervals, substantially improving

customer satisfaction metrics despite inevitable delays. The varied engagement approaches of present-

day ticket buyers create supplementary technical demands. Contemporary platforms must deliver

consistent operational capabilities across mobile devices and traditional computers while

accommodating fluctuating connectivity conditions and hardware variations. Delivering uniform

experiences regardless of access method necessitates precise interface architecture and adaptable

implementation techniques. Effective systems deploy multi-layered protections against automated

purchasing applications, advanced transaction analysis to detect irregular activities, and

supplementary verification procedures to safeguard customer accounts. Optimal security frameworks

achieve equilibrium between robust protective measures and streamlined customer interactions,

minimizing authentication requirements that could discourage valid transactions. These defensive

mechanisms must expand in proportion to traffic intensity while adapting to counteract new

circumvention methods, consistently maintaining critical performance metrics during vital sales

windows.

3. Decomposing Ticketing Systems into Microservices

Converting a monolithic ticketing infrastructure into distributed service components requires

methodical division according to functional capabilities and logical business boundaries. Domain-

focused architectural approaches provide the structural framework for determining appropriate

service delineations within sophisticated ticketing environments. This methodology prioritizes

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 127
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

comprehension of fundamental business domains and their interrelationships, enabling technical

architects to establish component boundaries that correspond with natural business divisions [4]. By

emphasizing business models rather than technical specifications, development teams establish

services with strong internal cohesion and minimal external dependencies, supporting independent

enhancement and deployment cycles. Effective domain segmentation for ticketing platforms typically

reveals several distinct conceptual areas. Each operational context establishes a functional boundary

within which specific business logic applies, with clearly defined interfaces governing interactions

with adjacent contexts. The event context encompasses venue configurations, performance details,

and seating arrangements, while customer management handles patron profiles and preferences.

Identity verification functions operate within the customer domain but maintain concentrated

responsibility for credential validation and permission management. This separation enables

specialized security implementations without affecting broader customer management capabilities.

Purchase processing typically spans multiple operational domains, including order administration

and financial transactions. The order domain maintains responsibility for selection management,

fulfillment tracking, and confirmation delivery. Meanwhile, the payment domain handles secure

processing of monetary transactions, frequently integrating external financial processors while

shielding these complexities from associated services. This division allows dedicated teams to address

specialized requirements of financial processing without impacting related order management

functionality.

Information management components maintain event particulars, marketing materials, and location

details. These services deliver consistent content across customer interfaces while allowing

administrative personnel to modify information without affecting transactional elements. Inventory

administration represents a critical component in ticketing platforms, maintaining current seat

availability and processing reservation requests. This service must handle extreme concurrency during

popular events while preserving data integrity to prevent allocation conflicts [5]. Communication

services manage customer interactions across multiple channels, including confirmation messages,

alert notifications, and application updates. These components process events from other domains

and transform them into appropriate customer communications, maintaining message templates and

delivery preferences while ensuring coherent messaging. This pattern enables other services to

concentrate on core functionality without managing communication complexities. Information

storage presents particular challenges in distributed service architectures. Dedicated database

implementations provide data isolation, allowing individual services to maintain control over

persistence mechanisms and structural evolution. This approach enables diversified storage

strategies, where each service selects optimal technologies based on specific requirements. For

example, inventory services might utilize memory-optimized databases designed for high-volume

concurrent operations, while content services might implement document storage better suited for

flexible content structures. Preserving data consistency across service boundaries presents significant

challenges, particularly for processes spanning multiple components. Notification-driven structural

designs resolve these challenges through propagating condition modifications as informational

signals, enabling functional components to uphold ultimately harmonized representations of

interconnected data elements. Non-centralized interaction frameworks, where individual modules

react to occurrence messages without unified control mechanisms, deliver expandable methodologies

for administering sophisticated procedural sequences while maintaining operational independence. In

scenarios requiring heightened consistency assurances, approaches incorporating countervailing

procedural arrangements implement reversible functional actions to preserve commercial validity

without sacrificing component self-governance.

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 128
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Scalability Challenges Strategic Solutions

Performance Degradation
Implement a microservices architecture to allow

independent scaling of system components

Traffic Fluctuations
Deploy cloud infrastructure with auto-scaling capabilities

to adjust resources based on real-time demand

Database Bottlenecks
Utilize horizontal scaling (sharding) and read replicas to

distribute database load effectively

Request Overload
Implement load balancing strategies to distribute traffic

evenly across multiple servers

System Downtime
Design for resilience with redundant components and

failure isolation patterns

Inconsistent User

Experience

Leverage caching systems like Redis for frequently

accessed data to maintain performance

Security Vulnerabilities
Scale security measures proportionally with encrypted

data transmission and storage

Table 2: Challenges and Solutions in High-Traffic Systems [2,7,8]

4. Foundational Design Elements for Service Expansion and Reliability

Effective event access platforms necessitate purpose-built organizational frameworks that facilitate

demand accommodation while maintaining continuous availability. These architectural configurations

establish the essential foundation upon which dependable ticketing services operate during varying

transaction volumes. The unified interface layer functions as a fundamental element, establishing a

consolidated entry point for client applications while concealing the intricacies of underlying service

interactions [5]. This centralized access mechanism handles cross-functional concerns, including

identity verification, request distribution, and response consolidation, reducing client complexity

while supporting backend evolution without requiring client modifications. Contemporary interface

implementations incorporate advanced traffic governance capabilities, including request limitation

and throughput control, which shield backend functions from overwhelming volumes during

concentrated demand intervals.

The device-optimized backend pattern extends interface functionality by establishing purpose-specific

consolidation layers tailored for particular client categories. This methodology recognizes the varied

requirements across different interaction platforms, delivering customized interfaces that reduce

network requirements for mobile devices while supporting enhanced capabilities for browser

applications. These specialized interfaces transform and combine information from multiple sources,

minimizing client-side processing requirements and enhancing responsiveness across diverse

connectivity environments.

Distributed temporary storage represents another vital pattern for ticketing infrastructure,

particularly for commonly accessed, relatively unchanging information. Strategic temporary retention

implementation at various system tiers substantially decreases permanent storage demands while

improving response efficiency for routine operations. Global content distribution positions static

elements geographically nearer to end users, while application-level retention maintains frequently

requested business information such as event details and pricing data. The most critical retention

implementations address inventory information, where specialized memory-resident data structures

monitor seat availability with minimal processing delay. These retention strategies must manage

challenging invalidation scenarios to prevent outdated information while preserving performance

under high concurrent access [6].

Indirect communication patterns enable loose infrastructure elements to buffer requests during

volume surges, preventing slower components from creating system constraints while supporting

independent capacity adjustment between message creators and consumers. Component coordination

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 129
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

through these indirect channels follows either distributed or centralized patterns. Distributed control

divides responsibility among participating components, with each responding to relevant notifications

without centralized management. This approach improves scalability but increases complexity when

monitoring overall process status. Centralized control introduces dedicated elements for managing

complex procedural sequences, enhancing visibility, potentially at the expense of introducing scaling

limitations.

Complete historical recording and responsibility-divided access patterns address information retrieval

challenges in high-volume scenarios. Historical state recording maintains comprehensive transaction

logs rather than merely current conditions, supporting detailed auditing capabilities and

straightforward recovery from failures. Separated read-write responsibility divides retrieval and

modification operations, allowing specialized optimizations for each access pattern. These

complementary methodologies enable retrieval-intensive operations to expand independently from

modification operations, a particular advantage for ticketing systems where information requests

typically exceed updates by considerable margins. Protective patterns maintain system integrity

during partial malfunctions. Automatic circuit protection prevents cascading failures by monitoring

component health and temporarily suspending requests to degraded functions. Compartmentalization

patterns isolate essential system elements to contain failures, preventing resource depletion in one

area from impacting unrelated functionality. Functional prioritization strategies preserve core

capabilities during partial disruptions by deactivating secondary features, ensuring that critical

purchasing processes remain operational despite supporting service disturbances. Comprehensive

operational monitoring across all components enables automated recovery mechanisms to identify

and resolve issues before affecting customer interactions, maintaining system dependability during

extended high-traffic intervals.

5. Handling Extreme Traffic Spikes

Ticketing platforms experience demand variations unlike most digital services, with activity often

multiplying exponentially within moments of significant event announcements. Managing these

extraordinary traffic fluctuations requires specialized capacity strategies customized for different

component types [6]. Independent components benefit from horizontal expansion approaches,

introducing identical instances to distribute activity across multiple resources. Dependent

components like inventory management typically employ vertical enhancement for primary instances

while distributing information retrieval horizontally, preserving data consistency while improving

processing capacity. Advanced platforms implement both anticipatory and responsive capacity

mechanisms. Anticipatory approaches evaluate historical patterns and event characteristics to forecast

demand levels, allocating resources before traffic materializes. These proactive measures complement

responsive adjustments triggered by operational metrics, which modify capacity according to actual

utilization. Container management platforms facilitate these dynamic capacity operations, automating

deployment and adjustment decisions while optimizing resource allocation across variable workloads.

Thorough capacity validation confirms system behavior under extreme conditions before

encountering actual customer traffic. Artificial load generation replicates authentic user behavior at

scale, identifying performance constraints and system limitations before production implementation.

These evaluation methodologies establish performance references while confirming capacity

thresholds, ensuring appropriate resource planning for anticipated demand levels [7]. Precise capacity

forecasting combines historical utilization information with event-specific factors, enabling accurate

resource allocation that balances performance requirements against operational expenditures.

Structured entry management provides controlled access mechanisms during periods of extraordinary

demand, preventing system overload while delivering transparent user experiences. These specialized

request management systems organize users in sequential order when demand exceeds available

processing capacity, progressively admitting them to the transaction process as resources become

available. Advanced implementations incorporate equitable distribution mechanisms to prevent

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 130
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

technical advantages from compromising fair access, while providing continuous status updates that

sustain user engagement during waiting intervals.

Regional distribution strategies address both performance and reliability concerns for international

events. Geographic request routing directs users to the nearest available infrastructure, reducing

response delays while improving interaction quality. Multi-location deployments duplicate critical

services across geographically distributed processing centers, providing continuity capabilities while

distributing activity across multiple regions. These approaches prevent localized capacity constraints

from affecting global availability, maintaining consistent performance regardless of user location.

Boundary processing extends this distributed architecture by positioning selected functionality closer

to end users. By deploying services to peripheral locations, platforms can perform certain operations

with minimal delay while reducing demands on centralized infrastructure. Common boundary

implementations include request validation, initial queue positioning, and content delivery, enhancing

perceived performance while maintaining centralized control of critical inventory and transaction

processing functions.

Architectural

Component
Implementation Strategy

Microservices Design
Break monolithic applications into independent, function-

specific services that can scale individually

Cloud Infrastructure
Utilize cloud platforms that provide inherent scalability options

with global distribution capabilities

Database

Architecture

Implement horizontal scaling through sharding and vertical

scaling through resource upgrades

Load Distribution
Deploy advanced load balancing with round-robin, least

connections, or weighted distribution methods

Caching Framework
Implement multi-level caching strategies for data, sessions, and

static content

Monitoring Systems
Establish comprehensive performance monitoring to identify

bottlenecks before they impact users

Auto-scaling

Mechanisms

Configure dynamic resource allocation based on predefined

metrics and traffic patterns

Security

Infrastructure

Implement scalable security measures, including DDoS

protection and role-based access control

Table 3: Key Components of Scalable Software Architecture [2,8]

6. Observability and Operational Excellence

Maintaining comprehensive visibility across the distributed ticketing infrastructure constitutes an

essential foundation for service stability during concentrated sales periods. Complete transaction

pathway monitoring enables technical personnel to trace customer interactions as they navigate

multiple functional components, revealing performance constraints and inter-service dependencies

affecting purchase completions [7]. This comprehensive observability necessitates consistent

transaction identifiers maintained throughout service boundaries, providing contextual elements for

resolving intricate interaction patterns. Operational measurement systems consolidate critical

performance indicators across distributed services, establishing normative behavioral parameters

while facilitating prompt identification of operational deviations. Unified logging repositories

integrate diagnostic information from diverse sources, offering consolidated access to relevant

technical details during service interruptions. Sophisticated algorithmic evaluation identifies

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 131
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

unexpected system behaviors before they manifest as customer-facing disruptions, initiating

automated countermeasures or notifying technical teams about potential concerns.

Deliberate resilience validation through structured fault introduction confirms system durability

under compromised conditions. These orchestrated service disturbances confirm that defensive

mechanisms function appropriately when service modules encounter performance reduction or total

failure. Autonomous recovery systems identify functional irregularities and implement established

remediation sequences independently, significantly minimizing interruption timeframes and user

consequences [8]. A comprehensive assessment following service irregularities uncovers underlying

origins and structural enhancements, converting operational challenges into platform refinements.

Dynamic information displays deliver performance indicators to technical personnel, facilitating

prompt awareness of developing conditions. Proactive resource planning forecasts infrastructure

requirements derived from established usage trajectories, harmonizing performance necessities with

operational costs to establish optimal resource efficiency.

Service Domain Primary Responsibilities

User Management
Customer profile administration, preference

tracking, and authentication verification

Event Catalog
Performance details, venue information, and

promotional content management

Inventory Control
Real-time seat availability tracking, temporary

reservation handling, and allocation rules

Order Processing
Shopping cart management, purchase flow

coordination, and order status tracking

Payment Handling
Transaction processing, financial gateway

integration, and payment security

Notification System
Communication delivery across channels,

including email, mobile, and in-app alerts

Analytics Platform
Performance monitoring, customer behavior

analysis, and operational reporting

Table 4: Service Boundaries in Microservices Ticketing Architecture [4,8]

Conclusion

The architectural evolution from unified to distributed component frameworks constitutes a

substantial advancement for ticketing infrastructures confronting high-intensity transaction

scenarios. Dividing ticketing operations into separate, autonomously expandable service units enables

exact capacity allocation, superior disruption containment, and heightened development flexibility.

Effective structural implementations carefully balance numerous critical factors, including component

granularity, information consistency requirements, and management complexity. More compact

platforms potentially benefit from blended approaches, maintaining selected unified elements while

strategically deploying distributed components for capacity-critical functions, including inventory

supervision and access sequencing. Expansive platforms derive benefits from comprehensive

distributed component adoption, though this methodology necessitates sophisticated coordination

and surveillance capabilities. Ticketing infrastructure continues progressing alongside nascent

technical innovations. Function-oriented computing without persistent infrastructure offers

possibilities for remarkable adaptability during demand fluctuations without continuous

configuration management. Distributed edge processing creates opportunities to position certain

ticketing operations nearer to end participants, diminishing response delays and strengthening

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 132
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

regional service resilience. Concurrently, progressive temporary storage technologies and purpose-

built information management systems for inventory supervision promise additional performance

enhancements. The principles of segmented, independently expandable components remain essential

regardless of specific technological implementations. Through the adoption of these architectural

methodologies, ticketing platforms can provide consistent operational effectiveness and dependability

even during the most intensive transaction periods, ultimately elevating customer contentment and

operational achievements throughout the ticketing environment.

References

[1] Alam Rahmatulloh et al., "Event-Driven Architecture to Improve Performance and Scalability in

Microservices-Based Systems," in 2022 International Conference on Advancement in Data Science, E-

learning and Information Systems (ICADEIS), ResearchGate, Nov. 2022.

https://www.researchgate.net/publication/368431218_Event-

Driven_Architecture_to_Improve_Performance_and_Scalability_in_Microservices-Based_Systems

[2] Mastura Diana Marieska et al., "Performance Comparison of Monolithic and Microservices

Architectures in Handling High-Volume Transactions," Jurnal RESTI (Rekayasa Sistem dan

Teknologi Informasi), ResearchGate, Jun. 2025.

https://www.researchgate.net/publication/392834604_Performance_Comparison_of_Monolithic_a

nd_Microservices_Architectures_in_Handling_High-Volume_Transactions

[3] Biman Barua and M. Shamim Kaise, "Cloud-Enabled Microservices Architecture for Next-

Generation Online Airlines Reservation Systems," Research Square, Oct. 2024.

https://www.researchsquare.com/article/rs-5182678/v1

[4] Mani M, Shrivastava P, Maheshwari K, Sharma A, Nath TM, Mehta FF, Sarkar B, Vishvakarma P.

Physiological and behavioural response of guinea pig (Cavia porcellus) to gastric floating Penicillium

griseofulvum: An in vivo study. J Exp Zool India. 2025;28:1647-56. doi:10.51470/jez.2025.28.2.1647

[5] Bachhav DG, Sisodiya D, Chaurasia G, Kumar V, Mollik MS, Halakatti PK, Trivedi D, Vishvakarma

P. Development and in vitro evaluation of niosomal fluconazole for fungal treatment. J Exp Zool

India. 2024;27:1539-47. doi:10.51470/jez.2024.27.2.1539

[6] Biman Barua et al., "Building Scalable Airlines Reservation Systems: A Microservices Approach

Using AI and Deep Learning for Enhanced User Experience," IEEE, Mar. 2025.

https://ieeexplore.ieee.org/abstract/document/10933362

[7] Vishvakarma P, Kaur J, Chakraborthy G, Vishwakarma DK, Reddy BBK, Thanthati P, Aleesha S,

Khatoon Y. Nephroprotective potential of Terminalia arjuna against cadmium-induced renal toxicity

by in-vitro study. J Exp Zool India. 2025;28:939-44. doi:10.51470/jez.2025.28.1.939

[8] Shatanik Bhattacharjee, "Microservices architecture and design: A complete overview," vFunction,

Nov. 2024. https://vfunction.com/blog/microservices-architecture-guide/

https://www.researchgate.net/publication/368431218_Event-Driven_Architecture_to_Improve_Performance_and_Scalability_in_Microservices-Based_Systems
https://www.researchgate.net/publication/368431218_Event-Driven_Architecture_to_Improve_Performance_and_Scalability_in_Microservices-Based_Systems
https://www.researchgate.net/publication/392834604_Performance_Comparison_of_Monolithic_and_Microservices_Architectures_in_Handling_High-Volume_Transactions
https://www.researchgate.net/publication/392834604_Performance_Comparison_of_Monolithic_and_Microservices_Architectures_in_Handling_High-Volume_Transactions
https://www.researchsquare.com/article/rs-5182678/v1
https://ieeexplore.ieee.org/abstract/document/10933362
https://vfunction.com/blog/microservices-architecture-guide/

