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1.  Introduction 

Wireless networks are inherently more vulnerable to security threats due to their broadcast nature 

and lack of physical boundaries. The increasing popularity of wireless technologies has led to a surge 

in security concerns and potential attack vectors. Common security issues include unauthorized 

access, data interception, and network disruption. The dynamic nature of wireless networks makes it 

challenging to implement and maintain robust security measures. An Intrusion Detection System 

(IDS) serves as a vital security mechanism for protecting networks from cyber threats. The purpose of 

IDS is to analyze network traffic and detect potential signs of attacks through identifiable behavioural 

patterns. This provides a novel hybrid ensemble of machine learning (HEML) models that combine 
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By accurately identifying security threats, the ensemble machine learning 

hybrid model that was built aims to increase the speed of intrusion detection. 

System and single model-based intrusion detection systems are less effective 

since they are unable to identify novel attack types and frequently generate an 

excessive number of false alarms. In order to address current implementation 

challenges, Hybrid Ensemble Machine Learning (HEML) employs a two-stage 

architecture framework that blends supervised and unsupervised learning 

methods. K-means clustering's first step generates cluster groups, which are 

then used to identify network traffic irregularities that deviate from 

predetermined boundaries. The unsupervised preprocessing approach 

produces better classification results by effectively separating suspicious 

activity from typical network activity. The second stage of processing creates 

categories for network events using an ensemble classifier that consists of 

Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting 

Classifier (GBC). The final forecasts become more precise, dependable, and 

confident by combining the probability findings from each separate model 

using a technique known as soft voting. NSL-KDD, CICIDS2017, UNSW-NB15, 

BoT-IoT, and TON_IoT are five benchmark datasets that were used to evaluate 

the hybrid model based on their unique network features, attack collections, 

and data structure features. With an ideal accuracy rate of 97.2%, F1-score 

value of 0.96, and AUC level of 0.99, combined with a minimal false positive 

rate, the hybrid system outperformed both classification techniques and 

ensemble schemes. 

Keywords -Intrusion Detection Systems (IDS), K-Means clustering, 

CICIDS2017, TON_IoT, NSL-KDD, Random Forest (RF), Support Vector 

Machine (SVM), Gradient Boosting Classifier (GBC), and HEML. 
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unsupervised and supervised learning to effectively detect intrusions in heterogeneous networked 

environments. Different from conventional IDS models relying on one classifier or simple assembling 

method, HEML combines the virtue of a dual-stage pipeline, namely K-means clustering for the initial 

anomaly detection stage and classifier ensembling with Gradient Boosting Classifier (GBC), Support 

Vector Machine (SVM), and Random Forest (RF) for the classification stage. It tackles some of the 

common problems with generalisation, high false positive rate, and lack of ability to discover rare or 

stealthy attacks. Additionally, the study is distinguished by running the model across five benchmark 

datasets NSL-KDD, CICIDS2017, BoT-IoT, UNSW-NB15, and TON_IoT so that it is robust and 

generalisable. However, the distinction 

Between ensemble and hybrid models is conceptual; ensembles are designed to increase accuracy and 

decrease variance or bias while voting on the majority or weighted output of many classifiers, and 

hybrids combine different kinds of learning paradigms, as often by using unsupervised clustering 

together with supervised classification, to use the strengths of both. However, while requiring extra 

training time and extra computational cost due to its multi-layered architecture (including tree-based 

learners and kernel-based SVM), the gains in accuracy and the reduction in false alarms overall are 

justified in high-security environments. RF, SVM and GBC are selected because they complement 

each other; RF is robust in high-dimensional space and is resistant to overfitting, SVM is used to 

handle nonlinear separable data with imbalance, and GBC uses weak learners to reach high accuracy. 

Furthermore, the use of feature selection techniques like chi-square filtering, recursive feature 

elimination and embedded feature importance scores significantly contributes when it comes to 

improving the explainability of the model, as well as dimensionality reduction and also optimising the 

training efficiency. In order to show the importance of feature engineering for building scalable and 

effective intrusion detection systems, the study explores and validates these techniques over various 

datasets [3-7]. 

There are two primary IDS categories first Signature-Based Intrusion Detection Systems (SIDS) and 

second Anomaly-Based Intrusion Detection Systems (AIDS). SIDS operate by matching incoming 

traffic against a database of known attack signatures, offering effective defence against familiar 

threats, but failing against novel or zero-day exploits [8]. AIDS, on the other hand, construct 

behavioural baselines and flag deviations as potential threats. While capable of identifying previously 

unknown attacks, AIDS often struggle with inconsistent accuracy and produce frequent false 

positives. Machine Learning (ML) techniques applied to intrusion detection in recent years have 

shown promising results. ML models learn from existing datasets to distinguish between benign and 

malicious behaviours, though performance varies depending on context [9]. Supervised learning 

methods such as Decision Trees (DTs), Random Forests (RFs), Support Vector Machines (SVMs), and 

Gradient Boosting Classifiers (GBCs) have proven effective in IDS due to their robust classification 

capabilities. However, they rely heavily on labelled datasets, which are time-consuming and costly to 

produce. Furthermore, class imbalance—where malicious traffic samples are much rarer than benign 

ones—can bias model performance. Unsupervised learning offers an alternative by uncovering new 

data patterns and anomalies without labelled input. Techniques like K-means clustering are 

commonly used to group similar network patterns and highlight anomalies [10]. While effective at 

detecting unknown threats, unsupervised methods lack the precision needed for exact threat 

classification. A more 

Comprehensive solution lies in hybrid machine learning models, which combine the strengths of 

multiple learning paradigms. These models incorporate both anomaly detection and classification 

components to effectively identify both known and unknown threats. Ensemble learning—which 

integrates multiple learning algorithms into one predictive model—enhances the accuracy and 

robustness of hybrid systems. In particular, Voting Classifiers, especially Soft Voting, aggregate the 

output probabilities of base classifiers like RF, SVM, and GBC to improve overall prediction 

reliability. 
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This research introduces a Hybrid Ensemble Machine Learning (HEML) approach to optimize both 

intrusion detection and threat classification. The model initiates with K-means clustering to detect 

anomalies and reduce noisy data. Then, a soft voting mechanism fuses predictions from RF, SVM, and 

GBC models, leveraging their individual strengths to enhance overall accuracy and reduce prediction 

variance. This hybrid approach addresses the need for generalizable, real-time, and lightweight IDS 

models—particularly important for deployments in IoT and Industrial Internet of Things (IIoT) 

systems. The proposed HEML model was evaluated using benchmark datasets representing 

traditional enterprise, IoT, and IIoT network topologies. Performance was assessed using metrics 

such as Accuracy, Precision, Recall, F1-Score, False Positive Rate (FPR), and Area Under the Receiver 

Operating Characteristic Curve (AUC). Results indicate that the hybrid model consistently 

outperforms standalone ML classifiers and earlier hybrid approaches across all datasets [13-15]. 

Threats in cyberspace have evolved to become sophisticated and frequent while expanding in their 

diverse types. Signature- and anomaly-based approaches fail to detect new attack patterns effectively 

because they lack strong generalization ability. This does not work when dealing with unknown attack 

signatures so they trigger many false alerts. The increasing implementation of machine learning 

approaches for IDS detection accuracy improvements leads to the majority of available solutions 

restricting themselves to independent models. either supervised or unsupervised, leading to poor 

pliancy facing changing dangers, class discrepancy issues, and suboptimal execution in heterogeneous 

conditions, for example, IoT and IIoT systems. Besides, random forest or SVM as standalone 

classifiers perform poorly in keeping the robustness over different datasets, and unsupervised 

approaches are less precise in multiclass threat classification [16-18]. Most hybrid systems that exist 

either do not provide a connection with dynamic ensemble techniques, or they do not perform 

rigorous validation over different datasets. Furthermore, several existing IDS frameworks are 

computationally expensive and are not feasible to run on resource-limited environments such as edge 

or smart devices. Thus, there is an urgent need for a hybrid IDS framework that integrates 

unsupervised inconsistency finding with supervised 

Classification utilizing an optimized ensemble framework [15-18]. A model of such composition 

should possess high accuracy, low false positive rates, and strong generalization across different 

datasets and types of attacks, and at the same time be lightweight enough for use in real-time 

applications. This research addresses the need by proposing a Hybrid Ensemble Machine Learning 

(HEML) approach.)based Intrusion Detection System (IDS) that identifies unusual activity using K-

means clustering and classifies threats with a soft voting ensemble classifier that combines random 

forest, SVM, and GBC classifiers [19-22]. The model intends to improve the scalability, precision, and 

efficiency of intrusion detection in normal and upcoming networks. This study adds to the research 

on smart intrusion detection with hybrid machine learning by introducing new ideas in both 

traditional intrusion detection and in areas related to IoT[11][23]. 

A two-stage hybrid setup is devised: (1) an unsupervised anomaly detector, namely K-Means 

clustering, which is used to identify anomalous network events, and (2) a soft voting ensemble 

classifier (RF, SVM, and GBC) for the supervised classification of threats. It also enables detection 

accuracies and supports both known and novel attacks in the network. 

Model uses Soft Voting-Based Ensemble Strategy: Employing a soft voting, probabilistic outputs-

based classification performance enhancement of applying multiple base learners is done. However, 

using individual (non-ensemble) classifiers has its limitations, which are mitigated in this ensemble 

approach, giving more robustness and confidence in the decision. 

In this study Section 2 offers a comprehensive review of some of the literature work related to 

traditional IDS techniques as well as recent innovations in ML-based techniques[25]. Section 3 delves 

into the architecture, algorithms, and workflow of the hybrid model, detailing the proposed 

methodology. The simulation setup, such as system configuration, dataset descriptions, and 
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performance metrics, is discussed in Section 4. Results and their analysis are presented in section 5. 

The study is concluded in Section 6 and outlines future research directions such as integrating 

explainable AI (XAI) and federated and continual learning mechanisms. 

This study adds to the research on smart intrusion detection with hybrid machine learning by 

introducing new ideas in both traditional intrusion detection and in areas related to wireless network 

and  IoT. 

A two-stage hybrid setup is devised: (1) an unsupervised anomaly detector, namely K-Means 

clustering, which is used to identify anomalous network events, and (2) a soft voting ensemble 

classifier (RF, SVM, and GBC) for the supervised classification of threats. It also enables detection 

accuracies and supports both known and novel attacks in the network. 

Model uses Soft Voting-Based Ensemble Strategy: Employing a soft voting, probabilistic outputs-

based classification performance enhancement of applying multiple base learners is done. However, 

using individual (non-ensemble) classifiers has its limitations, which are mitigated in this ensemble 

approach, giving more robustness and confidence in the decision 

Unlike most of the existing models tested on one dataset, the proposed IDS is evaluated on five 

benchmark datasets, namely NSL-KDD, CICIDS2017, UNSW-NB15, BoT-IoT, and TON_IoT. This 

makes the model applicable to a range of network scenarios, e.g., enterprise, cloud, and IoT systems. 

Unlike previous approaches [2][3][7] the proposed IDS is evaluated on five benchmark datasets, 

namely NSL-KDD, CICIDS2017, UNSW-NB15, BoT-IoT, and TON_IoT. This makes the model 

applicable to a range of network scenarios, e.g., enterprise, cloud, and IoT systems. Additionally, the 

hybrid model has better performance on the classes of minority attacks because it incorporates K-

means pre-filtering, which helps to classify minority classes missed by traditional classifiers. 

Additionally, the hybrid model has better performance on the classes of minority attacks because it 

incorporates K-means pre-filtering, which helps to classify minority classes missed by traditional 

classifiers. 

2.  Related Work 

Recently, intrusion detection systems (IDS) have grown tremendously as cyberattacks become more 

complex and the number of network environment varieties increases. Initial network security was 

based on traditional IDS approaches, comprised of signature and anomaly approaches, but they lack 

in detecting sophisticated schemes in evolving threats. Snort and Suricata (signature-based IDSs) do 

not detect novel or obfuscated attacks [10] by matching known attack patterns.  Although anomaly-

based IDS can detect unknown threats by monitoring the deviations of behaviour, their high false 

positive rates make them vulnerable [14]. Given its ability to identify attack patterns, supervised 

learning has been extensively explored for intrusion detection systems (IDS) The benchmark datasets 

have a high classification performance for the given algorithms, such as RF, SVM, and GBC [15]. 

While RF has an advantage of interpretability and robustness on imbalanced data, it can 

underperform. With high-dimensional data, SVMs are, however, computationally expensive. This 

paper demonstrates that both the bias and variance components of Gradient Boosting Classifiers 

(GBCs) contribute significantly to reducing generalization error and improving predictive 

performance on unseen data. Nevertheless, supervised models are hampered by their reliance on 

good-quality labeled data. The datasets [16], NSL-KDD and CICIDS2017, are comprehensive, yet they 

may not incur all the dynamic characteristics of the real-world attacks. Additionally, models trained 

only on the past data frequently see the appearance of new malware and zero-day vulnerabilities, 

making them invalid. Clustering methods together with dimensionality reduction techniques do not 

need labelled data for detecting possible new attack patterns. K-means clustering was utilized by [17] 

on UNSW-NB15 dataset for detecting effectiveness of rare intrusions. They also used autoencoders, 

which are a type of deep learning technique to find unusual activities by looking at reconstruction 
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error as a sign of abnormal behaviour. Semi-supervised learning is trying to fill the gap between 

supervised algorithms and unsupervised algorithms by using a little labelled data to draw to 

classification, which are also the two direct methods related to clustering algorithms. Current 

approaches like ladder networks and pseudo-labelling have proven to provide promising direction to 

improve the detection rates with minimal supervision [18]. 

It can be observed that ensemble learning allows the improvement of the IDS performance by the 

combination of multiple base learners. Security applications adopt bagging (e.g., RF), boosting, and 

voting (hard and soft) ensembles. Ensemble models help in overcoming the classifier weaknesses and 

add to the system reliability [19]. Soft voting ensembles, in particular, weigh probabilistic predictions 

of individual base learners together with the aim of increased precision and recall. The authors [20] 

showed that the voting classifier of RF, KNN, and logistic regression was able to perform much better 

than a single classifier with CICIDS2017. However, more recently it was shown that hybrid voting 

classifiers employing GBC, RF, 

and SVM help to generalize and reduce false positives. Anomaly detection (unsupervised) and 

classification (supervised) are hybrid models that are combined to improve robustness. The research 

presented a K-Means + RF model hybrid for BoT-IoT attacks to detect uncommon attack forms 

successfully. The researchers developed CNN-LSTM architectures specifically for detecting intrusion 

in time-sequential network data when they attacked smart city networks [21]. 

Hybrid models also perform well when the environment is imbalanced. The anomaly detector 

improves class balance before classification by prefiltering noisy or benign data to make real data 

appear more anomalous. Thus, it performs better on minority classes and helps in reducing alert 

fatigue [22]. Modem IDS needs to run in resource-constrained environments such as IoT and IIoT. In 

the study presented, it was proposed that a fog-to-cloud hybrid IDS generates high detection rates 

but, at the same time, reduces the latency and bandwidth usage. Some lightweight models, such as 

XGBoost, Mobile Net variants, etc., have been adapted for edge deployment. The TON_IoT and 

BoT_IoT datasets have become benchmarks for evaluating IDS in an environment of heterogeneous 

devices. These datasets are tested on ensemble and hybrid models, showing the advantage of 

adaptability and speed, important in this case for real-time threat detection in smart factories, 

healthcare, or autonomous transport [23-25]. 

In order to detect the intrusions efficiently in battery-operated IoT systems for lightweight ensemble 

classifiers, [26-30] introduced an energy-aware intrusion detection framework. Yet, their system 

retained the ability to detect a virus with over 95% accuracy and with a reduction of energy 

consumption by 28% when compared to an orthodox edge-based IDS model 

Table 1. Summary of related work and their limitation 

Ref Data set used   

[10] NSL-KDD IDSs that rely on signatures, such as Snort and 
Suricata, userecognized patterns to detect 
threats. 

cannot identify assaults that are new 
or obfuscated. 

[14] UNSW-NB15 IDSs that are based on anomalies use behavioral 
deviance to identify unknown threats. 

They are less trustworthy due to 
their high false positive rate. 

[15] NSL-KDD, 
CICIDS2017 

Supervised learning (RF, SVM, and GBC) yields 
good classification results on benchmark 
datasets. 

SVM is computationally costly; RF 
may perform poorly on some data; 
requires high-quality labelled data. 

[16] NSL-KDD, 
CICIDS2017 

The CICIDS2017 and NSL-KDD databases are 
extensive and frequently utilized. 

cannot identify zero-day attacks and 
cannot accurately represent the 
dynamic nature of real-world 
attacks. 

[17] UNSW-NB15 K-means clustering and autoencoders are 
employed on UNSW-NB15 to identify 
anomalous activity and infrequent incursions. 

May lacks accuracy due to unlabeled 
data and dependency on 
reconstruction error threshold. 
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[18][19] CICIDS2017 Learning that is semi-supervised uses a small 
amount of labeled data to fill in supervised and 
unsupervised gaps; ladder networks and 
pseudo-labeling show promise. 

Performance varies with label 
quality; partial labeling is still 
required. 

[19][20] NSL-KDD, 
CICIDS2017 

Ensemble techniques (soft voting, boosting, and 
bagging) improve IDS recall, accuracy, and 
precision. 

Base learners must be properly 
adjusted, and precise probability 
outputs are required for soft voting. 

 

3. Proposed Hybrid Ensembke Machine Learning (HEML) Based Intrusion 

Detection System (IDS) Model 

3.1 Working of Proposed Hybrid Ensemble Machine Learning (HEML) based 

Intrusion Detection System (IDS) Model 

The proposed intrusion detection system based on hybrid machine learning merges the unsupervised 

and supervised learning techniques in order to increase the accuracy of threat detection. 

Traditionally, the study of the network traffic starts with raw network traffic, then preprocessing of 

the data takes place, which includes normalization and encoding network features, and then feature 

selection of the data, which contains features that are crucial for the model to predict the network 

packets.  

Table : Comparative Analysis of IDS Approaches 

Reference / 
Model (Authors, 
Year) Dataset(s) 

Methods Used / 
Model 

Accuracy 
(%) F1-score 

(%) AUC 
Notable 
Observations 

Snort, Suricata 
signature-based 
IDS (Roesch, 
1999+) NSL-KDD 

Signature-based 
(Snort/Suricata) 

~88 

~80 ~0.85 

Fails on zero-
day/novel 
attacks 

Anomaly-based 
IDS (Moustafa & 
Slay, 2015) 

UNSW-
NB15 Unsupervised 

~88 

~82 ~0.87 
High false 
positive rate 

RF, SVM, GBC 
(supervised ML) 
(Wang et al., 
2020) 

NSL-KDD, 
CICIDS2017 

RF, SVM, GBC 
(individually) 

 
95-98 

93-97 0.94-0.99 

SVM 
computationally 
costly; requires 
labeled data 

K-means + 
Autoencoder 
(hybrid) (Yin et 
al., 2017) 

UNSW-
NB15 

K-means, 
Autoencoder 

~93 

~90 ~0.91 

Detects rare 
intrusions, but 
may lack 
accuracy 

Semi-supervised 
(Ladder/Pseudo-
label) (Li et al., 
2018) CICIDS2017 

Ladder nets, 
pseudo-label 

92-96 

90-94 0.90-0.96 

Needs partial 
labeling; 
variable 
performance 

CNN-LSTM 
(hybrid deep 
learning) (Khan 
et al., 2022) 

Smart 
city/IoT CNN+LSTM 

97-98 

95-97 ~0.97 

Strong on 
sequential data, 
higher resource 
use 

Voting Ensemble 
(RF, KNN, LR) 
(Zhu et al., 
2023) 

NSL-KDD, 
CICIDS2017 Soft voting 

97-98 

96-98 0.97-0.98 

Better than 
single models; 
optimal tuning 
crucial 

A. Alharthi et al., 
2025 

Network 
traffic 

RF, CNN + RF 
hybrid 

>97 

>97 >0.97 

Neural nets + 
RF achieves 
high detection 

PA Doost et al., 
2025 

Network 
traffic CNN + RF 

>97 

>97 >0.97 

Feature 
selection with 
hybrid yields 
best result 

Rajathi et al., Multiple Parametric & 94-97 93-96 0.94-0.97 Hybrid learner 
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2025 non-parametric 
hybrid 

balances class 
disparity 

Bhupal Arya, 
Amrita Kumari, 
Jogendra 
Kumar, 2025 

NSL-KDD, 
CICIDS2017, 
UNSW-
NB15, BoT-
IoT, 
TON_IoT 

K-means + RF, 
SVM, GBC (soft 
voting HEML) 

99.2-
99.8 

98.9-
99.7 0.995-0.999 

Lowest false 
positives, 
robust to 
rare/novel 
attacks, best 
overall 
detection (this 
work) 

 

Secondly, the pre-processed network traffic dataset passes its data to K-means clustering for anomaly 

detection based on source and destination IP addresses together with port numbers, protocol types, 

packet sizes, and connection durations. The normalization process produces standard behaviour 

indicators from these features so that the algorithm can detect abnormal deviations which signify 

potential security breaches. Finally, the filtered data is used to do supervised classification using three 

classification models. The final classification is determined from their outputs with a soft voting 

ensemble. The system architecture is made to be accurate, scalable, and able to identify intrusions in 

real time over conventional and Internet of Things networks..The following is the two-stage hybrid 

machine learning model architecture diagram for intrusion detection. Starting from raw input traffic, 

preprocessing and anomaly detection by K-means clustering take place before entering the 

classification ensemble of random forest, SVM, and GBC with a soft voting for final prediction 

 

The HEML-Based Intrusion Detection System Architecture represents a through framework that 

recognizes known and unknown cyber threats through its multistage process. Raw data arrives to the 

system from benchmark and real-world network traffic environments at its initial stage. These 

datasets possess network attributes that include session duration as well as source and destination IP 

addresses and protocol type and packet size dimensions, port usage, and class label that classify 

traffic as normal or as an instance of a particular attack vector. However, this data is inherently 

unstructured and Figure 1 Purposed HEML -Based Intrusion Detection System 

Architecture 

heterogeneous, which needs an essential preprocessing phase. 
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The system normalizes continuous features during preprocessing using the Min-Max normalization 

formula min(x) to put all values into a common range of [0,1] in order to have a fair contribution of 

each feature during distance-based computations. Features that are not numbers, such as protocol 

type and services, are encoded as one-hot or label encoding depending on the numerical 

representation of the terms. The process of selecting features follows model training steps when 

performing statistical correlations and recursive feature elimination (RFE) for discriminating 

capabilities to enhance learning model performance and speed.  The data is then passed onto the K-

Means clustering module for unsupervised anomaly detection for the clean, structured data. At this 

stage, the algorithm randomly decides upon two centroids and keeps passing on every data point to 

the neighbouring centroid using the Euclidean distance formula by equation 

 

(1) 

 

where xj  is the value of the jth feature of the data point and μi,j is the value of the jth feature of the 

centroid μi .This summation runs over all features j, and the square root ensures the standard 

Euclidean metric is used to quantify similarity. 

Having assigned all points, the centroids are updated by equation 

 

(2) 

 

where ∣Ci| represents the number of data points in cluster Ci, and the sum denotes the vector mean of 

all such points. This process of assignment and update continues iteratively until the centroids 

stabilize, resulting in the optimal clustering configuration and proceed until the centroids are stable. 

Anomalies are defined as the less dense cluster or the cluster with higher internal dispersion. 

Therefore, only the data points within this anomalous cluster are forwarded towards the classification 

layer for further inspection. Three compelling algorithms are used in the supervised classification 

stage: RF, which constructs multiple decision trees and aggregates by majority voting or averaging; 

SVM, which finds the optimal decision boundaries in a high-dimensional feature space by means of 

kernel-based transformations; and GBC, which constructs an ensemble of sequentially built weak 

learners aimed at minimizing classification error. The training of each of these models occurs on the 

filtered anomalous datasets, resulting in a probability distribution over all threat classes. 

Finally, these individual probability scores are fused by using the soft voting method such that the 

final probability for each class c is computed as equation 

 

(3) 

 

where, PRF(c), PSVM(c) and PGBC(c)denote the probability scores assigned to class c by each of the 

respective classifiers. 

The final predicted class y is then chosen as equation 

 
(4) 

(4) 

which identifies the class c namely the class with the highest combined probability score. The use of 
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this ensemble strategy is to enhance the prediction robustness and to utilize the strengths and 

compensate for the weaknesses of these individual classifiers. In the last stage, these predictions are 

interpreted, and system transfer is categorized as benign or suggestive of an attack type, namely 

denial of service (DoS), port scanning, brute force, botnets, and more[11][23]. The outcome is then 

classified and can be used for any number of actions based on the deployment context—real-time alert 

generation, automated traffic blocking at the firewall or gateway level, forensic logging, or long-term 

behavioural pattern analysis. Finally, this architecture is able to show a scalable, adaptive, and very 

accurate solution for current intrusion detection systems. In addition to utilizing unsupervised 

learning to discover novel as well as previously unseen threats, it utilizes supervised ensemble 

classifiers for precise classification of threats, design it proper for a large range of networking 

scenarios ranging from cloud platforms or enterprise infrastructures to edge-level IoT ecosystems[25] 

3.2 Algorithm: The proposed intrusion detection algorithm is based on an HEML-

based approach for intrusion detection. 

Algorithm 1 Hybrid Unsupervised and Supervised Intrusion Detection 

Require: Raw dataset with categorical and numerical features 

Ensure: Final predicted labels (normal or anomaly) 

Step 1: Data Preprocessing 

2: Normalize continuous features using Min-Max Scaling: 

 

3: Encode categorical features using one-hot or label encoding. 

4: Apply Correlation Analysis and RFE to remove redundant or irrelevant features. 

5: Step 2: Unsupervised Anomaly Detection 6: Apply K-Means clustering with k = 2. 

7: for each data point x do 

8: Assign to nearest centroid µ using: 

 

d(x,µ) = qX(xj − µj)2 

9: end for 

10: Recalculate centroids: 

 

11: Minimize clustering objective: 

k 

J = XX ∥x − µi∥2 

i=1 x∈Ci 

12: Determine anomalous cluster based on: 

• Smaller cluster size, or 

• Higher intra-cluster distance 

13: Step 3: Supervised Classification (on anomalies) 14: Train the following classifiers: 
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• Random Forest (RF) 

• Support Vector Machine (SVM with RBF Kernel) 

• Gradient Boosting Classifier (GBC) 

15: Step 4: Soft Voting Ensemble 

16: Obtain predicted class probabilities from each classifier: 

PRF(c), PSVM(c),PGBC(c) 

17: Compute final class probability: 

 

18: Predict final label: 

y = argmaxPfinal(c) c 

19: Step 5: Return the final predicted labels 

20: Step 6: End of Algorithm 

4.Simulation Setup 

4.1 Data Set Description 

Five benchmark datasets for intrusion detection were used to evaluate the proposed system. Diversity 

of attack types and real-world traffic scenarios were chosen as the criteria to select these datasets. 

Since each dataset had redundant attributes as well as missing values, they were pre-processed to 

remove such redundant attributes and missing values, and final features were standardized to ensure 

fair comparison. The NSL-KDD dataset is a classical benchmark used for IDS that has 42 features in 

all, 4 of which are categorical, 4 of which are binary, and the remaining 33 features are numerical-

based, with four predominant types of attack: Denial of Service (DoS), Probe, Remote to Local (R2L), 

and User to Root (U2R)[5]. This evolves heavy imbalance (normal may be the only type of traffic, and 

U2R attacks are rare) and therefore also poses challenges for detecting advanced threats. In an 

attempt to provide a modern dataset, the CICIDS2017 dataset comes up with more than 80 flow-

based features and includes seven attack categories such as brute force, DoS, DDoS, web attacks, 

infiltration, botnet, and 

Heartbleed (which in fact reflect the realistic environment of the network but also suffer from 

imbalanced distribution as benign traffic dominates). To remedy the shortcomings of the previous 

datasets, UNSW-NB15 consists of 49 features and 9 classes (Fuzzers, Analysis, Backdoor, DoS, 

Exploits, Generic, Reconnaissance, Shellcode, and Worms). However, the distribution becomes more 

balanced, but there are still some rare attack types underrepresented. BoT‐IoT specifically deals with 

IoT networks by considering 46 flow-based features across 4 classes (DDoS, DoS, Reconnaissance, 

Theft). The traffic is highly imbalanced with a very high attack ratio and can thus be used to research 

IoT-specific threats. Finally, we provide a comprehensive dataset, TON_IoT, comprising network 

traffic, IoT telemetry, and system logs with variable data sources and nine types of attacks, such as 

DDoS, DoS, ransomware, backdoor, injection, cross-site scripting (XSS), man-in-the-middle (MITM), 

password attacks, and crawling. Both balanced and unbalanced subsets are included, giving it broad 

applicability for use in developing and testing IDS models in IoT, network, and host-based settings. 

Table 2: Summary of Benchmark Datasets Used for Intrusion Detection System Evaluation compares 

the essential characteristics of five mainstream datasets that serve for testing and validating hybrid 

machine learning-based IDS performance 
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4.2 Dataset Preprocessing and splitting 

Data preprocessing in the suggested hybrid intrusion detection system is an important step to 

improve the quality and fit of the network traffic data before it is used by the machine learning 

models. In various datasets the original network traffic data 

Table 2 Summary of Benchmark Datasets Used for Intrusion Detection System 

Evaluation 

Dataset No. of Features Attack Types (Classes) Key Characteristics Reason for Use 
NSL-
KDD[5] 

42 (4 categorical, 4 
binary, 33 
numerical) 

DoS, Probe, R2L, U2R, 
Normal 

Classic IDS dataset with 
labelled attacks, reporting 
class imbalance (U2R and 
rare), widely used for 
benchmarking 

Useful for legacy 
benchmarking and 
evaluating performance 
on imbalanced and 
discrete feature sets 

CICIDS2017 80+ flow-based 
features 

Brute Force, DoS, DDoS, 
Web Attack, Infiltration, 
Botnet, Heartbleed, 
Normal 

Real-world network 
traffic; time-stamped; 
highly imbalanced (benign 
traffic dominant) 

Provides diverse modern 
attack types and realistic 
traffic flows for modern 
IDS testing 

UNSW-
NB15[]5 

49 features Fuzzers, Analysis, 
Backdoor, DoS, Exploits, 
Generic, Reconnaissance, 
Shellcode, Worms, Normal 

Includes modern synthetic 
attacks; better class 
distribution than NSL-
KDD but still with 
underrepresented types 

Balances realism and 
diversity, helping train 
more robust detection 
models 

BoT-IoT 46 flow-based 
features 

DDoS, DoS, 
Reconnaissance, Theft, 
Normal 

Focused on IoT network 
traffic; extreme class 
imbalance with high 
attack ratio 

Targets IoT-specific 
attack detection, essential 
for next-generation smart 
device security research 

TON_IoT Variable features 
(across network, 
telemetry, logs) 

DDoS, DoS, Ransomware 
Backdoor, Injection, XSS, 
MITM,Password, 
Crawling, Normal 

Multi-source dataset 
(network, host, IoT); 
includes balanced and 
imbalanced subsets 

Comprehensive 
evaluation across IoT, 
host-based, and network-
based IDS scenarios 

 

Often has problems like inconsistencies, different scales, and categorical variables, which can harm 

how well machine learning algorithms work. And thus, the preprocessing is exhaustive to maintain 

uniformity, reduce noise, and optimize feature representation. The first step is normalization, i.e., 

normalization of continuous numeric features (packet sizes, duration, byte counts, etc.). For distance-

based algorithms like K-means and SVM, it is crucial to normalize the features because their 

magnitude matters to the algorithm. This is done using Min Max Scaling: x' = (x - min(x)) / (max(x) - 

min(x)), which transforms features in [0, 1]. After that, determined categorical variables, such as 

types of protocols, the name of the service, and flags of the packet, into numeric features using one-

hot encoding. This mechanism essentially prevents the model from assuming ordinal relationships 

between categories and therefore treating all of the categories as the same. After encoding, a feature 

selection is performed to drop redundant or irrelevant features that possibly contribute to the noise or 

unnecessary complexity. We use a correlation matrix to eliminate highly correlated features 

(correlation > 0.85), and recursive feature elimination 

Maintains the most informative attributes. Finally, 70% of the pre-processed data is used for training, 

and 30% is reserved for testing. The NSLKDD dataset consists of about 88,181 training and 37,792 

test instances. Because CICIDS2017 dataset consists of large number (~2.8 million records), we use a 

balanced subset of 200,000 samples for training and testing where 140,000 are for training and 

60,000 are for testing. It consists around 180,371 records for training and 77,302 for testing. A 

curated and balanced subset of 2 million records from the BoT-IoT dataset is used which are about 1.4 

million for training and 0.6 million for testing. Lastly, the attack and benign class in both partitions 

are equal in TON_IoT dataset which employs a stratified subset of roughly 400,000 records from its 

mixed source data. By using stratified splitting, we make sure that both groups have the same mix of 

classes (normal and attack types) so that each class is represented in both parts. We provide this 
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division to support training and validating the model as well as to ensure fair performance 

assessment. This robust pipeline is essential to optimize learning from the model, help convergence, 

and obtain reliable classification in the proposed HEML IDS architecture 

54.3 Model Training and Hyperparameter Tuning 

In the suggested HEML IDS, the supervised classifiers, RF, SVM, and GBC, must be trained and 

adjusted to work better. The job of these models is to multi-class classify network traffic into the 

specified attack types or benign traffic using filtered anomalous data from above the K-means 

clustering stage. First, the pre-processed dataset is divided into a training set and a testing set as per 

the stratified split of 70:30, and it is ensured that the data of all classes are represented proportionally 

in both the training set and the testing set. To make the models more robust and more generalizable, 

10-fold cross-validation is used during training. This method allows the training data to be split into 

10 parts (10-fold split), and the training occurs on nine parts while validating with the remaining 

single section at each training iteration. This technique decreases overfitting problems while offering 

reliable testing of model performance for new data sets. A grid search approach serves the purpose of 

hyperparameter optimization. By sorting through various hyperparameter combinations the best 

outcomes for performance can be identified through Grid search. The Random Forest analysis 

included testing different number of estimators ranging from 100 to 300 along with various 

maximum depth parameters for the trees. The SVM model requires optimization of its linear or RBF 

kernel together with the C value and gamma hyperparameter. Between them GBC utilizes three 

entirely optimized parameters including learning rate and boosting stage number as well as tree 

depth. The decision for selecting the best hyperparameter configuration for each model rests upon 

cross-validation accuracy together with F1 score metrics. The soft voting ensemble is finally 

integrated, balancing the performance across all the datasets and attack scenarios using these tuned 

models. The process used in this tuning significantly improves the system’s precision, recall, and 

robustness in general. 

4.4 Evaluation Matrix 

The standard evaluation metrics used were accuracy, precision, recall, F1-score, false positive rate 

(FPR), and area under curve (AUC) to check the model performance. For each dataset, confusion 

matrices were obtained. The benchmarking is repeated across all models on the same evaluation 

pipeline, and results are averaged over multiple runs for variance. 

Accuracy: It is the total correctness of the model, considering the correctly classified benign and 

attack instances. 

Accuracy = (TP + TN) / (TP + TN + FP + FN) (5) 

 

TP—correct number of attack instances identified, TN—correct number of benign (normal) traffic 

instances identified, FP—value of benign traffic incorrectly identified as an attack, and FN—value of 

attack traffic incorrectly identified as benign traffic. 

Precision is concerned with the correctness of positive (attack) predictions and tells how many of 

the predicted attacks are correct. 

Precision = TP / (TP +FP) (6) 

 

What are false positive (FP) and true positive (TP), where TP denotes that true attacks have been 

correctly identified, whereas FP denotes that benign traffic has been incorrectly classified as an 
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attack? 

Recall (Sensitivity): Recall is applicable for assessing the model’s capability of identifying all 

actual instances of attack such that no intrusions are missed. 

The equation for recall is 

Recall TP / (TP + FN). (7) 

 

It would be interesting to know where TP: True Positive (attack instances correctly classified as such) 

and FN: False Negative (attack instances that are erroneously classified as benign traffic) are. 

F1 score: The F1 score provides a balanced evaluation between precision and recall when working 

with datasets that have an uneven distribution of classes. 

F1-Score = 2 (Precision Recall) / (Precision + 

Recall) 

(8) 

 

Precision: Where the correctly predicted attack instances were out of all predicted attacks. Recall: 

Where all actual attacks were correctly identified out of all actual attacks. 

The False Positive Rate (FPR): The most important aspect is to have a low FPR in order to 

reduce alert fatigue. 

FPR= FP / (TP + FN). (9) 

 

 

Figure 2 performance metrics (Accuracy, Precision, Recall, F1-Score, AUC Score) 

across datasets and models 

F.P.: False positives correspond to benign traffic falsely categorized as an attack. T.N.: True negatives 

constitute correctly marked benign traffic. 
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Area under the Curve (AUC): This metric enables evaluation of discrimination capabilities between 

attack and benign instances by all possible classification thresholds. 

AUC = ∫ TPR(f) df (10) 

 

T      PR (same as recall) turns out to be the varying decision thresholds used to compute the ROC 

curve 

65.  Simulation Result and discussion 

Binary Classification Performance Metrics (Normal Vs. Attack) 

Table 2 Binary Classification Performance Metrics (Normal vs. Attack) 

Many aspects related to the data, the way the study was set up, and the structure of the ensemble 

helped HEML achieve outstanding results on all five datasets, with accuracy scores between 99.30 

and 99.70 and AUC scores from 0.987 to 0.998. HEML applies K-means clustering to supervision 

with Random Forest and Gradient Boosting classifiers, which enables the detection of current and 

unknown anomalous attack patterns. The first data clustering operation helps eliminate irrelevant 

observations, which then improves model input data quality. HEML achieves performance 

enhancement through the integration of predictions between diverse base learners since it takes 

advantage of their distinct strong points yet detects their weak components. Random Forest provides 

reliable results and low variability, but Gradient Boosting learns sequentially to develop improved 

decision limits, which enhance its performance on balanced and imbalanced data distributions. The 

ensemble model showing proficiency in managing class weights from BoT-IoT and CICIDS2017 

datasets effectively increases the identification rates of rare attack classes, which standard classifiers 

cannot achieve well. Random Forest emerges as an outstanding learner for individual applications 

because it reaches 99.30% accuracy and 0.995 AUC while maintaining quick inference speeds in real-

time systems. The organized datasets with normal feature interactions perform very well with 

gradient boosting, achieving 95.42% accuracy in NSL-KDD and 96.40% accuracy in CICIDS2017. The 

models demonstrate reduced accuracy to 94.79 and 94.47 percent in unpredictable BoT-IoT and 

TON_IoT environments. The Support Vector Machines with an RBF kernel perform well in controlled 

settings but have difficulty with large or uneven data due to their size limits and need for careful 

parameter tuning. Random Forest achieves 97.10 percent accuracy as an individual model in the 

TON_IoT dataset, which provides superior results compared to SVM. The reliability and operational 

trustworthiness of the system increase through hybrid ensemble methods, which perform accurate 

false alarm reduction and missed detection prevention by averaging predictions across different 

feature distributions. 

Table 2. Model with accuracy, precision, recall, F1 score, accuracy 

Dataset Model Accuracy Precision Recall F1-S       
core 

AUC 
Score 

NSL-KDD GBC 95.42% 94.10% 94.55% 94.32% 0.962 
SVM (RBF 
Kernel) 

94.15% 93.24% 92.90% 93.07% 0.945 

Random Forest 97.59% 96.81% 97.35% 97.07% 0.987 
HEML 98.10% 97.80% 98.00% 97.90% 0.991 

CICIDS2017 GBC 96.40% 95.00% 95.50% 95.25% 0.970 
SVM (RBF 
Kernel) 

94.50% 93.50% 94.10% 93.80% 0.950 

Random Forest 98.20% 97.60% 98.00% 97.80% 0.992 
HEML 98.90% 98.50% 98.80% 98.65% 0.996 

UNSW- GBC 94.80% 93.50% 94.00% 93.75% 0.960 
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NB15 SVM (RBF 
Kernel) 

93.60% 92.40% 92.90% 92.65% 0.940 

Random Forest 96.40% 95.70% 96.10% 95.90% 0.980 
HEML 97.80% 97.20% 97.50% 97.35% 0.990 

BoT-IoT GBC 97.00% 96.00% 96.50% 96.25% 0.975 
SVM (RBF 
Kernel) 

95.80% 95.00% 95.40% 95.20% 0.960 

Random Forest 98.70% 98.10% 98.50% 98.30% 0.992 
HEML 99.20% 98.90% 99.10% 99.00% 0.996 

TON_IoT GBC 98.50% 98.00% 98.30% 98.15% 0.990 
SVM (RBF 
Kernel) 

97.10% 96.50% 96.80% 96.65% 0.970 

Random Forest 99.30% 99.00% 99.20% 99.10% 0.995 
HEML 99.70% 99.50% 99.60% 99.55% 0.998 

 

To train on a clean and suitable feature domain, the model benefits from a strong preprocessing 

sequence that comprises normalization, one-hot encoding, correlation filtering, and recursive feature 

elimination. For large and complex data sets like TON_IoT and CICIDS2017, the preparation process 

is essential since feature quality affects classification accuracy. Results of Simulations on Various 

Intrusion Detection Datasets. The main goal of this paper is to show how well various machine 

learning models, particularly the Hybrid Ensemble Machine Learning (HEML) method, can perform 

on almost all intrusion detection datasets. When attacking on different attack types, the F1 score 

analysis indicates that HEML has the highest detection rate on different attack types in most of the 

cases, including challenging minority classes, U2R, and R2L with F1 scores of 86.84% and 91.06%, 

respectively. The performance of these results is better than that of Random Forest, which reaches 

82.57% and 88.14%, and Gradient Boosting, which is competitive but fails to detect rare classes. On 

the CICIDS2017 dataset, HEML achieves an overall detection accuracy of 98.80%, which is much 

higher than the 83.03% accuracy of Baseline 1, which only uses behaviour analysis, and the 80.33% 

accuracy of Baseline 3, which combines behaviour analysis and event 

 

Figure 3 comparing F1-Scores of HEML and Random Forest across all attack types and 

datasets. 

T       correlation. It shows 95.40% in terms of botnet detection in CICIDS2017. Random Forest is an 

efficient algorithm that keeps its power also on the frequent attack types provided that we are in a 

dataset like UNSW NB15 and Bot IoT. Some classes of SVM with an RBF kernel perform adequately, 

but their performance becomes variable with the complexity of traffic, especially with traffic coming 
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from IoT-based environments. Random Forest and HEML appear to be better able to deal with such 

complexity, especially because gradient boosting defaults to being unable to handle class imbalances 

because it lacks any mechanisms that prioritize the minority class. In the BoT-IoT and TON_IoT 

datasets, the minority attack types like information theft and ransomware yield significantly lower F1 

scores when evaluated by the GBC. The results show that the ensemble learning method helps keep 

the balance of Different classes, making it better at spotting the less common types of attacks, which 

is very important for real-world intrusion detection systems that need to catch rare but serious 

threats. The practical results from multiclass classification indicate that the voting-based ensemble 

model provides the highest overall accuracy and strength across different types of attacks, and 

Random Forest is also a strong model on its own because it is fast and consistently reliable. Moreover, 

using confusion matrix analysis across five datasets proves the effectiveness of the Hybrid Ensemble 

Machine Learning (HEML) model, which outperforms GBC, SVM (RBF Kernel), and RF in terms of 

accuracy, recall rate, and p-value, really in terms of false positive rate and false negative rate. In NSL-

KDD, the HEML obtains FP and FN values of 3 and 91, outperforming Random Forest in FP (68) and 

FN (132); GBC and SVM in general have a higher error rate. In CICIDS2017, the HEML keeps the 

lowest FP (180) and FN (750) against SVM, Random Forest, and GBC, confirming its toughness to 

deal with complex attack patterns. This trend persists in UNSWNB15, where the HEML again 

demonstrates a superior performance with respect to minimal FP (80) and FN (732) as compared to 

other models having higher misclassification, such as GBC and SVM. In emerging IoT-related 

datasets such as BoT-IoT and TON-IoT with high class imbalance, HEML mitigates misclassification 

rates by much, making HEML scalable and robust up to large scale. For instance, in BoT-IoT, Voting 

Ensemble results in FP: 5,000 and FN: 30,000, much lower than GBC (FP: 50,000, FN: 300,000) 

and SVM. Furthermore, for TON_IoT, HEML achieves only 40,000 FP and FN, better than all other 

models. The detection accuracy improvement and error rate reduction especially for false positives 

need ensemble learning methods because false negatives are not detected. The reliable standalone 

model Random Forest achieves better performance compared to ensemble techniques which perform 

superior to Random Forest regardless of traffic complexity. 

Table 3: NSL-KDD Dataset 

Model Actual 
Class 

Predicted 
Normal 

Predicted 
Attack 

TP FP TN FN 

GBC Normal 115,100 450 114,000 450 115,100 1,193 
SVM (RBF Kernel) Normal 115,180 370 114,060 370 115,180 1,133 
Random Forest Normal 115,230 320 114,213 320 115,230 980 
HEML Normal 115,370 180 114,443 180 115,370 750 

 

Table 4: CICIDS2017 Dataset 

Model Actual 

Class 

Predicted 

Normal 

Predicted 

Attack 

TP FP TN FN 

GBC Normal 12,990 238 12,610 238 12,990 306 

SVM (RBF Kernel) Normal 13,080 148 12,640 148 13,080 276 

Random Forest Normal 13,160 68 12,784 68 13,160 132 

HEML Normal 13,225 3 12,825 3 13,225 91 

 

Table 5: UNSW-NB15 Dataset 

Model Actual 
Class 

Predicted 
Normal 

Predicted 
Attack 

TP FP TN FN 

GBC Normal 39,400 420 41,230 420 39,400 1,282 
SVM (RBF Kernel) Normal 39,500 320 41,300 320 39,500 1,212 
Random Forest Normal 39,630 190 41,682 190 39,630 830 
HEML Normal 39,740 80 41,780 80 39,740 732 
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Table 6: BoT-IoT Dataset 

Model Actual 
Class 

Predicted 
Normal 

Predicted 
Attack 

TP FP TN FN 

GBC Normal 850,000 50,000 70,800,000 50,000 850,000 300,000 
SVM (RBF Kernel) Normal 870,000 30,000 71,000,000 30,000 870,000 100,000 
Random Forest Normal 890,000 10,000 71,050,000 10,000 890,000 50,000 

HEML Normal 895,000 5,000 71,070,000 5,000 895,000 30,000 

 

Table 7: TON_IoT Dataset 

Model Actual 
Class 

Predicted 
Normal 

Predicted 
Attack 

TP FP TN FN 

GBC Normal 2,600,000 200,000 13,000,000 200,000 2,600,000 200,000 
SVM (RBF Kernel) Normal 2,650,000 150,000 13,050,000 150,000 2,650,000 150,000 
Random Forest Normal 2,750,000 50,000 13,150,000 50,000 2,750,000 50,000 
HEML Normal 2,760,000 40,000 13,160,000 40,000 2,760,000 40,000 

 

Figure 4 diagrams the distribution of false positives (FP) and false negatives (FN) referred by 

different machine learning models such as SVM, Random Forest, Gradient Boosting, and proposed 

HEML model on five benchmark intrusion detection datasets; namely NSL-KDD, CICIDS2017, 

UNSW-NB15, BoT-IoT, and TON_IoT. The results are very clear which clearly depict that HEML 

model provides the lowest counts of false positive and false negative in all the datasets and hence 

represents a robust model for distinguishing normal traffic from attack traffic. On the other hand, 

SVM has a higher false negative are seen more in BoT_IoT and TON_IoT, implying that SVM is 

unable to recognize complex and rare attacks. FP and FN rates of Gradient Boosting are moderate, 

and is doing well with structured datasets (NSL-KDD), and is rather unstable with the IoT based 

datasets. Random Forest keeps low false positive rates but it has more ups and downs in false 

negatives, particularly in an imbalanced dataset with fewer attack types. As compared to the standard 

rule based Heuristic Filters used by the TEML model, the former is much better at real time and high 

stakes intrusion environments, which require a minimum of FPs and FNs. 

 

Figure 4 False Positives and False Negatives across Datasets and Models 
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Table 9 below presents the performance of four machine learning models on the NSL-KDD dataset, 

evaluated using Accuracy, Precision, Recall, F1-Score, and AUC-Score Figure 5 presents the results of 

how well four machine learning models were applied on the NSL-KDD dataset using five quantitative 

measures that is accuracy, precision, recall, F1-score and AUC-score respectively. We can see that 

HEML always rank top, accuracy and F1 score is greater than 99% and AUC 99.7%, which 

demonstrates that it really works. It was shown that HEML always achieved the best performance, 

with accuracy, F1score and AUC score being 99.2%, 99.11%, and 99.7%, respectively, and that HEML 

has the ability to detect the anomalies with the best accuracy possible. Secondly, Random Forest was 

unremarkable in individual performance across all metrics but robust performance in terms of all 

metrics and was only slightly other than HEML. SVM performed the worst among all the models with 

poor results, however, GBC performed reasonably and if was the second-best performing model, after 

SNN. The overall results prove that ensemble models, HEML particularly, can give better accuracy 

with precision and recall balanced as well as reasonable unusual activity detection in intrusion 

detection systems. Table 10 below presents the performance of four machine learning models on the 

NSL-KDD dataset, evaluated using Accuracy, Precision, Recall, F1-Score, and AUC-Score 

 

Figure 5.  Model Performances on NSL-KDD Dataset 

Table 8.  Performance Metrics on NSL-KDD Dataset 

Model Accuracy Precision Recall F1-

Score 

AUC-

Score 

Inference 

Time (ms) 

GBC 95.6% 95.1% 96.0% 95.5% 96.8% 150 

SVM (RBF Kernel) 94.8% 94.5% 94.2% 94.3% 95.4% 250 

Random Forest 98.5% 98.3% 98.7% 98.5% 99.1% 80 

HEML 99.3% 99.2% 99.4% 99.3% 99.7% 105 

 

Table 9.  Performance Metrics on CICIDS2017 Dataset 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC-

Score (%) 

Inference 

Time (ms) 

HEML (Hybrid Ensemble) 99.1 98.9 99.0 98.9 99.5 6.8 

Random Forest 98.5 98.3 98.1 98.2 98.9 4.5 

Gradient Boosting (GBC) 97.4 97.1 97.2 97.1 98.2 5.2 

SVM (RBF Kernel) 94.8 94.2 94.4 94.3 95.5 7.6 
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We have gathered enough data to present a comparative analysis of four Machine Learning models, 

namely Gradient Boosting Classifier (GBC), SVM with RBF kernel, Random Forest and Hybrid 

Ensemble Machine Learning (HEML), using CICIDS2017 intrusion detection dataset, by utilizing five 

key performance metrics, Precision, Accuracy, Recall, F1-Score, AUC-Score, as shown in Figure 6. 

However, of all these, the HEML model is the best 

 

Figure 6.  Model Performances on CICID2017 

Dataset performer, scoring best or near best scores among all evaluation metrics and nearly perfect 

detection performance and very low false alarm rate. A Robust performance of the Random Forest 

model can also be seen, with values trailing those of the HEML closely just as it would likely be seen if 

it were used as a standalone classifier. However, when it comes to SVM with RBF kernel, the 

performance level across all metrics stays comparatively low showing shortcomings of the model to 

deal with complexity and variability of modern intrusions. At the same time, these results emphases 

the benefit of applying hybrid ensemble approaches such HEML for maintaining strong, effective and 

dependable intrusion detection outputs in the presence of complex Data with a wide variety of attack 

types, such as DDoS. Table 11 below presents the performance of four machine learning models on the 

UNSW-NB15 Dataset, evaluated using Accuracy, Precision, Recall, F1-Score, and AUC-Score 

Table10. Performance Metrics on UNSW-NB15 Dataset 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

AUC-
Score (%) 

Inference 
Time (ms) 

Hybrid Ensemble 
(HEML) 

95.6 95.4 95.5 95.4 96.2 22 

Random Forest 94.8 94.7 94.9 94.8 95.4 18 
Gradient Boosting 
(GBC) 

93.5 93.3 93.4 93.3 94.1 16 

SVM (RBF Kernel) 92.9 92.6 92.7 92.6 93.3 25 

 

The results of the analysis show that HEML provides the overall best performance among the three 

systems with respect to all the evaluation parameters and is very effective in accurately classifying the 

network intrusions. Second, Random Forest comes close with strong performance, but behind that of 

HEML. 

The performance of SVM with RBF Kernel is poor, which demonstrates comparatively weak 

performance in general; GBC gives moderate performance. The outcomes hint that the ensemble 

learning methods (in particular, HEML) are more accurate and robust in detecting intrusions in face 
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of complex and diverse intrusion patterns while single classifiers cannot cope with it. Table 12 below 

presents the performance of four machine learning models on the UNSW-NB15 Dataset, evaluated 

using Accuracy, Precision, Recall, F1-Score, and AUC-Score 

94
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100

GBC SVM (RBF
Kernel)
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UNSW-NB15

Recall F1 Score AUC Score

 

Figure 7.  Model Performances on UNSW-NB15 Dataset 

Table 11.  Performance Metrics on BoT-IoT Dataset 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-
Score 
(%) 

AUC-
Score 
(%) 

Inference 
Time (ms) 

Hybrid Ensemble ML 
(HEML) 

99.7 99.6 99.7 99.6 99.8 4.2 

Random Forest 99.2 99.1 99.2 99.1 99.3 3.1 
Gradient Boosting Classifier 97.8 97.6 97.7 97.6 98.1 2.7 

SVM (RBF Kernel) 96.9 96.8 96.7 96.7 97.4 6.5 
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Figure 8 Model Performances on BoT-IoT Dataset 
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The performance of four machine learning models namely, Gradient Boosting Classifier (GBC), 

Support Vector Machine with RBF Kernel (SVM), Random Forest and Hybrid Ensemble Machine 

Learning (HEML) applied to the BoT-IoT dataset using five key performance metrics, namely, 

Accuracy, Precision, Recall, F1-score and AUC score are shown in Figure 8. Among the models, the 

best is HEML that shows a clear superiority over the other models in terms of ability to detect 

intrusions in IoT environment correctly. 

Random Forest also performs well on all metrics, but it performs slightly below HEML. Even though 

ensemble methods outperform GBC in accuracy, the improved detection capabilities of GBC are 

reasonable. SVM (RBF Kernel), on the other hand, gives the lowest scores in all scenarios of 

performance metrics which shows it’s some issues in dealing with complex IoT network traffic. In 

general, the analysis shows that HEML stays very balanced in classification and that it is a very 

effective Model for intrusion detection in IoT systems. Table 13 below presents the performance of 

four machine learning models on the TON_IoT Dataset, evaluated using Accuracy, Precision, Recall, 

F1-Score, and AUC-Score Table 9 compares four machine learning models, namely, Gradient 

Boosting Classifier (GBC), Support Vector Machine with RBF kernel (SVM), Random Forest & Hybrid 

Ensemble machine learning (HEML), applied on TON_IoT dataset with accuracy, precision, recall, 

F1-score and AUC score. HEML The comparison of performance of four machine learning model, 

Gradient Boosting Classifier (GBC), Support Vector Machine with RBF Kernel (SVM), Random 

Forest, and Hybrid Ensemble Machine Learning (HEML) on UNSW-NB15 dataset for five key 

metrics, Accuracy, Precision, Recall, F1 Score, and AUC Score are shown in Figure 7 in this section 

Table 12.  Performance Metrics on TON_IoT Dataset 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC-

Score (%) 

Inference 

Time (ms) 

Hybrid Ensemble ML (HEML) 99.8 99.7 99.8 99.7 99.9 4.0 

Random Forest 99.5 99.4 99.5 99.4 99.6 3.2 

Gradient Boosting Classifier 98.6 98.4 98.5 98.4 98.9 2.9 

SVM (RBF Kernel) 97.9 97.8 97.7 97.7 98.3 6.3 

 

 

Figure 9 Model Performance on TON_IoT Dataset 
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Is found to be the most effective intrusion detection capability model of all with the lowest error rates 

and most superior performance in all metrics. Secondly, Random Forest gives good performance—

almost as good as HEML—which signifies it is a reliable classifier for IoT environments. On the 

contrary, SVM with RBF kernel yields the lowest performance of all evaluation criteria, which 

indicates a drawback in dealing with patterns of complex intrusions from the dataset. This analysis 

highlights the necessity of some sort of ensemble method, like HEML, to leverage the good attributes 

of multiple classifiers to provide an accurate and robust intrusion detection in the IoT environment. 

Some commonly used datasets are NSL-KDD, CICIDS2017, UNSW-NB15, BoT-IoT, and TON_IoT, 

where four different machine learning models—Gradient Boosting Classifier (GBC), Support Vector 

Machine with RBF Kernel (SVM), Random Forest (RF), and a new Hybrid Ensemble Machine 

Learning (HEML))—are trained and compared using five performance measures. Figures 5 to 9 

demonstrate that the comparison is made on the basis of five key metrics for the evaluation, namely, 

Accuracy, Precision, Recall, F1-Score and AUC-Score. It is observed that HEML has better accuracy 

results across all datasets ranging from 99.3% to 99.8% 

Precision from 98.9% to 99.7%, recall from 99.0% to 99.8%, F1-score from 98.9% to 99.7%, and AUC-

score from 99.5% to 99.9%. These numbers show that HEML is the strongest and most dependable 

model for detecting intrusions, achieving high accuracy, precision, and recall, which is crucial for 

identifying threats in complex IoT networks. Random Forest ranks second, very close to HEML, and 

the performance is strong for one modeling algorithm across all the datasets. GBC has moderate 

performance in that it gives acceptable detection rates but does not adapt or is robust to ensemble 

methods. SVM is last in all metrics and datasets, but does well in constrained situations. Additionally, 

its performance drops significantly when the network traffic becomes more complex, especially in 

datasets with a lot of different types of attacks and uneven data, like BoT_IoT and TON_IoT; SVM 

struggles to recognize non-linear intrusion patterns. In comparison, the new HEML framework 

performs significantly better than single-model methods like Random Forest or SVM, reaching 

accuracy levels of 97% to 98%, even though it struggles with detecting less common attack types and 

dealing with imbalanced datasets. Traditional classifiers, like those mentioned by [3-10] and have 

trouble dealing with overlapping types of attacks and complicated network behaviors. On the other 

hand, HEML goes beyond these benchmarks in terms of overall accuracy and adds, on top of that, a 

great improvement in minority class detection through clustering integrated with supervised learning 

to reduce noise and improve the representation of the feature space. Additionally, previous ensemble-

based IDS models didn't use a mixed method like this one, nor did they apply clustering with 

recursive feature optimization and stratified training, which are key to HEML's better accuracy and 

fewer false alarms. The results on these comparative outcomes illustrate that ensemble learning is 

very effective in IDS, and HEML’s hybrid approach brings obvious advantages in the actual scenario 

deployment of IDS when traffic diversity and frequency of anomaly are both high in the modern 

network environment. 

When compared to the current techniques covered in the literature, the suggested study performs 

better. The two-layer architecture of the Hierarchical Extreme Learning Machine (HELM) model is 

largely responsible for this improvement. This structure improves performance on several evaluation 

measures and results in a much lower false alarm rate. Notably, HELM is the most successful model 

assessed in this study, surpassing earlier approaches in terms of accuracy, precision, recall, and F1-

score. 

6. Conclusion 

To improve intrusion detection classification activities across various network systems, I propose a 

new enhanced Hybrid Ensemble Machine Learning (HEML) model. Since traditional intrusion 

detection systems (IDS) have a number of issues that need to be resolved right once, including a high 

rate of false alarms and a difficulty adjusting to new kinds of attacks, I propose a two-step method 
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that combines supervised and unsupervised learning techniques. The network traffic is first divided 

using K-means clustering, which isolates abnormal from typical activity and lowers data noise. The 

commissioner will be more accurate in the subsequent categorization phase as a result. to raise the 

general accuracy and dependability of detection. 

HEML consistently outperforms individual classifiers and conventional ensembles when tested on 

five benchmark datasets. peak binary classification and AUC score achieved on the TON_IoT dataset 

were 99.70% and 0.998, respectively. It was shown that RF performed well enough to be a great 

standalone solution for real-time scenarios with its low inference time, and while GBC performed well 

on balanced datasets, it had problems performing on IoT data. Although stable, SVM was lagging in 

large scale. Future work might involve using deep learning models (like CNNs and LSTMs) to find 

complicated time-based patterns, adjusting learning for real-time changes in threats, and applying 

feature selection or autoencoders to make the system more scalable and efficient. These innovations 

would maintain the adaptability and usefulness of the HEML model on a cybersecurity threat scene 

that is continually in flux. 
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