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Today, a large amount of data is shared online, and much of it is connected like a network. 

RDF (Resource Description Framework) graphs are used to describe this data using triples 

(subject, predicate, object), and they are important in the Semantic Web and Linked Open Data. 

However, as RDF graphs become very large, it becomes difficult to answer queries quickly, 

especially reachability queries which check if there is a path between two nodes. 

This research studies how to improve the RDF QDAG (Query Directed Acyclic Graph), a structure 

that makes querying faster by removing cycles in the graph. While RDF QDAG is efficient, it has 

some limits with complex path queries. To solve this, we integrated several indexing techniques 

such as Tree-Cover Indexing, 2-Hop Labeling, Approximate Transitive Closure, TreeBased 

Indexing, Generalized Transitive Closure (GTC), and 2-Hop Labeling with Constraints. 

We tested these techniques using real RDF data. The results show that our system can answer 

queries faster and use less memory. This work helps improve how large RDF graphs are managed 

and makes it easier to run advanced queries for semantic applications. 
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INTRODUCTION 

Today, we live in a digital world where a huge amount of data is created every day. Much of this data is connected like 

a network, and we can represent it using graphs. A graph is a structure made of points (called nodes) and connections 

(called edges). Graphs are used in many areas like social media, transportation, and biology. 

In recent years, one important type of data structure is called the RDF graph (Resource Description Framework). 

RDF helps organize data as triples (subject, predicate, object), which together form a graph. These graphs are used 

in the Semantic Web, where computers understand and use data better. Tools like DBpedia and Wikidata are based 

on RDF[1] [10]. 

The rise of the Semantic Web and knowledge graphs has revolutionized the way we represent and exploit information. 

RDF (Resource Description Framework) systems and SPARQL queries have emerged as major tools for structuring 

and querying data in graph form. The RDF_QDAG triplestore, developed at the LIAS laboratory of the University of 

Poitiers, offers advanced management of RDF data, with particular attention to query optimization [2]. 

But as the graphs become very big, it becomes difficult to search or answer questions about the data quickly. One 

important type of question is a reachability query, where we want to know if there is a path (or link) from one node 

to another in the graph [7] [8]. These queries are very useful in real-world applications like social networks or medical 

data. 

To solve this problem, we study the system RDF QDAG. This method changes the RDF graph into a simpler form 

without cycles, which makes searching faster. However, RDF QDAG has limits when it comes to complex path 

searches. 
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In this research, we focused on the reachability problem [16]. This problem is very interesting and crucial for 

answering path-type queries in graphs, but also for solving triplestore optimization problems. As a practical 

application, we applied reachability techniques to prune RDF QDAG fragments that do not contribute to the 

construction of final results. 

Since the reachability problem is a classic problem in computer science, several techniques exist in the literature. We 

therefore started by analyzing existing approaches to identify those that are relevant for RDF QDAG. We also 

established a benchmark to compare these approaches objectively. For this, we collected representative graphs and 

queries from RDF QDAG. We also developed evaluation metrics to analyze the performance of existing approaches. 

This work allowed us to detect that six different reachability algorithms: 

•Tree Cover Index 

•Tree-Based Index 

•Two-Hop Labeling with Constraint 

•Two-Hop Labeling 

•Approximate Transitive 

•Generalized Transitive Closure 

Each of these approaches provides different strategies to ascertain the existence of a path from one node to another 

in a graph. Tree-based approaches use hierarchical representations to tackle the search complexity, while labeling 

approaches are characterized by precomputing and storing reachability information in order to evaluate a query 

rapidly. By building transitive closure all possible reachable pairs of nodes in advance is the goal, both approximate 

and generalized versions provide trade-offs in pre-computation time, space, and efficiency of evaluating queries. We 

assessed each method against RDF QDAG data in a series of benchmark tests to understand their strengths and 

limitations in the cycle of query optimization and pruning, namely which approaches are most effective depending 

on the RDF graph structure and size. 

This methodological approach is very important because it allows us to reproduce it to address similar problems 

where reachability plays a central role. 

RELATED WORKS 

Several approaches exist for processing RDF graphs [4] [5] [6] [8] [9]. There are two main families. 

The first is based on relational databases. Graphs are transformed into tables and processed by SQL. These systems 

benefit from well-known optimizations. However, repeated joins become costly and slow down complex queries. This 

limits their effectiveness on large graphs. 

The second family is graph-oriented. It retains the native structure and applies specific traversals. These systems are 

more suited to complex relationships and reachability queries. However, their performance drops when the size of 

the graph increases significantly. The scalability issue remains. 

In the literature, several techniques specifically target reachability queries: 

• Tree Cover Index and Tree-Based Index simplify traversals by reducing the structure to a tree. This works 

well for hierarchical graphs but is less efficient on dense or random graphs. 

• Two-Hop Labeling assigns each node two sets of labels. The method is renowned for its speed and accuracy 

on large graphs. 

• Two-Hop Labeling with Constraints further reduces false positives but adds complexity to index 

construction. 

• Approximate Transitive Closure (ATC) seeks a compromise. It speeds up construction but yields approximate 

results. 

• Generalized Transitive Closure (GTC) guarantees accurate results. However, it requires significant memory 

and computational time. 
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Few studies have tested these techniques directly in an RDF environment like QDAG. Our work fills this gap by 

providing a simple and targeted comparison. 

METHODS 

We followed a clear and reproducible process with four steps. 

Step 1: Algorithm Selection 
We chose six methods: Tree Cover Index, Tree-Based Index, Two-Hop Labeling, Two-Hop Labeling with 
Constraint, ATC, and GTC. They cover the main approaches. 

Step 2: Definition of Criteria 
We used five criteria: response time, construction time, memory usage, complexity, and scalability. These criteria 
allow us to evaluate each method for different needs. 

Step 3: Data Preparation 
The experiments were carried out on RDF fragments generated by QDAG. We built graphs of different sizes and 
created both simple and complex queries. 

Step 4: Execution and Results Collection 
We applied each algorithm to the same datasets with a common protocol. We measured response time, 
Construction cost, and memory use. The results were shown in tables and graphs. 

Algorithms  

Tree-Cover Indexing: 

This technique constructs interval labels for each node from a spanning tree of the given graph. 

A node u can reach node v if the interval assigned to v is contained within the interval assigned to u. This method 

allows constant-time reachability queries in Directed Acyclic Graphs (DAGs) and can be applied to cyclic graphs 

through the use of interval inheritance, which propagates interval information along back-edges and cross-edges [3]. 

Its main advantages include fast query processing and compact index size for DAGs, which are well suited for massive 

static graphs. 

It is not good with dynamic updates and may have many intervals per node for dense or cyclic graphs, resulting in 

higher complexity and cost of storage. Despite this, it is a seminal approach that has influenced many next-generation 

reachability indexing schemes and is key to knowing the extent to which efficient querying of graphs can be handled 

2-Hop Labeling 

This method assigns to each node two label sets that summarize its reachability profile [11]: 

• Lin(v): the set of nodes that can reach node v, 

• Lout(v): the set of nodes that are reachable from node v. 

If this condition holds, then a path from s to t exists. This indexing approach facilitates efficient query evaluation by 

enabling direct label lookups instead of requiring full graph traversal at query time. Its key advantages include 

completeness—queries can be answered using only index data—and applicability to general graphs, not limited to 

DAGs or tree structures. However, constructing an optimal 2-Hop index is NP-hard, and even approximate solutions 

can be computationally expensive and memory-intensive, especially on large or dense graphs. Moreover, most 

implementations assume static graphs, with limited support for dynamic updates such as insertions or deletions. 

Despite these limitations, 2-Hop Labeling remains a foundational method in reachability indexing, striking a balance 

between structural generality and query efficiency. It has also served as the basis for more advanced methods such 

as TFL, PLL, DL, and TOL. 
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Approximate Transitive Closure (ATC): 

Approximate Transitive Closure approaches attempt to efficiently approximate reachability between the nodes of a 

graph without computing the full transitive closure, which is infeasible for large-scale graphs due to its high 

computational and storage costs. They approximate the set of reachable nodes from each vertex using compact data 

structures such as min-wise independent permutations as in the IP index [15] or Bloom filtersas in the BFL index 

[16]. The principle is to ensure that if node t is unreachable from node s, the approximation can rule this out with 

certainty by being contra-positive—if the approximation of Out(t) is not a subset of that of Out(s), then t is 

unreachable from s. This results in no false negatives while false positives are allowed, with optional graph walking 

for verification. The advantages of this technique are scalability to extremely large graphs, fast query time, and 

compact index size. It cannot support exact queries and may return approximate results, and like most index 

structures, dynamic updates are costly [17]. 

Algorithms for Path-Constrained Reachability 

Path-constrained reachability extends basic reachability to verify whether there exists a path from a node to another 

node so that the sequence of labels along the path satisfies some given constraint, e.g., in the shape of a regular 

expression. Such constraints restrict the walk along edges to specific types of relationships, e.g., "friendOf", "follows", 

or "worksFor".  

Algorithms build specialized indexes for testing such queries, which regard label information. For alternation-based 

constraints, approaches like tree-based indexing and generalized transitive closure (GTC) connect paths with 

Sufficient Path Label Sets (SPLS), allowing early path pruning that is not in compliance with the label constraints. 

For concatenation-based constraints, approaches like the RLC index record minimum repeating sequences of labels 

in a way that enables sound judgment regarding whether a valid path pattern exists or not. The process of evaluation 

usually consists of either fast index lookups to verify constraint-satisfying paths or guided graph traversal with finite 

automata. Path-Constrained Reachability Queries [2] [16] 

Tree-Based Indexing: 

Tree-based indexing extends classical tree-cover methods by incorporating label constraints through Sufficient Path 

Label Sets (SPLS), which annotate paths with sets of edge labels sufficient to cover a target query constraint [12,13]. 

This supports efficient evaluation of label-constrained reachability queries by enabling early pruning of paths that 

cannot satisfy the query constraints. The index classifies edges into types (tree, forward, back, and cross) based on a 

spanning tree and applies interval labeling and recursive decomposition to handle reachability caused by non-tree 

edges. These optimizations make both succinct representation and effective computation of SPLS possible during 

traversal. The key advantages of the method are that it can significantly reduce the search space and improve the 

performance of expressive label-constrained queries. However, it has drawbacks such as costly preprocessing, lack 

of support for general path constraints beyond alternation, and limited flexibility for dynamic updates. Still, it plays 

the crucial role of enabling query evaluation on large edge-labeled graphs with complex structural patterns to be 

efficient. 

Generalized Transitive Closure (GTC): 

Generalized Transitive Closure (GTC) augments standard transitive closure with the capability of considering edge 

label meaning in reachability computation so that it can determine whether or not there exists a path between a pair 

of nodes that satisfies some label specifications [14]. 

Rather than performing standard reachability, GTC calculates label-constrained paths in advance and assigns them 

to Sufficient Path Label Sets (SPLSs) that summarize the minimal collection of label combinations to satisfy 

alternation-based requirements. Its construction employs a Dijkstra-like algorithm favoring paths with fewer distinct 

labels and reduces strongly connected components to bipartite forms to maintain label semantics. This enables 

efficient evaluation of semantically rich queries at low cost without the expense of runtime traversal. Its major 

advantages are high query performance and expressive, label-based constraints supported, which renders it most 

desirable for large and very labeled graphs. However, GTC has major flaws like unnecessary preprocessing and 
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indexing time, poor flexibility in concatenation-based patterns, and limited support for dynamic updates, which 

hampers its scalability in ever-evolving graph data environments. 

2-Hop Labeling with Constraints 

This approach is an extension of the typical two-hop labeling method to support reachability queries constrained by 

injecting edge semantics into the labeling [13]. In the basic 2-hop method, a node receives two sets: Lout of nodes 

that can be reached by it and Lin of nodes that can reach it. The extension introduces semantic constraints by 

enriching such labels with path knowledge, e.g., regular expressions, label sequences, or minimum repeat patterns, 

to ensure that only those paths satisfying a given label constraint are allowed. 

EXPERIMENT AND RESULTS  

The implementation was carried out on a machine with the following specifications: 

•Processor: Intel Core i5 12th Generation 

•Graphics Card: NVIDIA GeForce RTX 3060 Ti 

•RAM: 32 GB 

•Operating System: Windows 10 

Evaluation metrics  

• Query Time : Output Description: The output shows the results of testing 6 different algorithms across 4 query 

types Linear, Star, Snowflake, and Complex. Each query type is executed as a single full query file, and the table 

reports: 

The execution time (in seconds) for each query type. The average execution time across all query types for each 

algorithm (see Table 1) . 

Table 1. Query Time Output (s) 

Algorithms Linear Star      Snowflake Complex Average 

Tree Cover Index 1.2143  1.2327 1.1951 1.1667 1.2022 

2-Hop Labeling 20.5068 19.3679 18.7434 20.1367 19.6887 

Approximate Transitive Closure 2.3911 2.1670 2.2202 2.2338 2.2530 

Generalized Transitive Closure 10.0094 9.4669 9.3101 10.0822 9.7172 

2-Hop Labeling With Contrains 7.9271 7.2156 7.1401 7.6856 7.4921 

Tree Based Indexing Reachability 5.6969 5.5733 5.5613 6.0592 5.7227 

 

• Index Size :The output table summarizes the index sizes (in megabytes) generated by each indexing algorithm when 

processing different types of query graphs: Linear, Star, Snowflake, and Complex. 

Rows represent the different algorithms tested (e.g., TreeCoverIndex, TwoHopLabeling, etc.). Columns correspond 

to the query types. Each cell shows the size of the index output file (in MB) produced by running the algorithm on 

that query type. The last column shows the average index size across all query types for each algorithm (see Table 2). 

Table 2. Index Size Output (MB) 

Algorithms Linear Star      Snowflake Complex Average 

Tree Cover Index 0.0121 0.0121 0.0121 0.0121 0.0121 

2-Hop Labeling 1.5156 1.5156 1.5156 1.5156 1.5156 

Approximate Transitive Closure 1.5130 1.5130 1.5130 1.5130 1.5130 

Generalized Transitive Closure 2.0950 2.0950 2.0950 2.0950 2.0950 
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2-Hop Labeling With Contrains 0.2729 0.2729 0.2729 0.2729 0.2729 

Tree Based Indexing Reachability 2.1028 2.1028 2.1028 2.1028 2.1028 

 

• Scalability : The output shows the results of testing 6 different algorithms across 4 query types Linear, Star, 

Snowflake, and Complex. Each query type is tested with 3 input sizes labeled Small, Medium, and Large. 

For each algorithm and query type, the table reports: The execution time (in seconds) for each input size. 

Whether the algorithm is scalable across these sizes, based on how consistent its runtimes 

are (less than 15% variation) (see Table 3(a,b,c,d)) . 

Table 3 (a). Scalability for Linear Queries (s) 

Algorithms Small Medium      Large Scalable 

Tree Cover Index 1.526 1.291 1.277 No 

2-Hop Labeling 20.151 19.898 20.274 Yes 

Approximate Transitive Closure 2.311 2.368 2.268 Yes 

Generalized Transitive Closure 10.880 9.744 9.820 Yes 

2-Hop Labeling With Contrains 7.242 7.009 7.004 Yes 

Tree Based Indexing Reachability 5.823 5.634 5.433 Yes 

 

Table 3 (b). Scalability for Star Queries (s) 

Algorithms Small Medium      Large Scalable 

Tree Cover Index 1.466 1.276 1.331 Yes 

2-Hop Labeling 20.085 20.979 22.229 Yes 

Approximate Transitive Closure 2.179 2.276 2.258 Yes 

Generalized Transitive Closure 9.261 9.262 9.654 Yes 

2-Hop Labeling With Contrains 7.246 7.208 7.252 Yes 

Tree Based Indexing Reachability 5.458 5.532 5.532 Yes 

 

Table 3 (c). Scalability for Snowflake Queries (s) 

Algorithms Small Medium      Large Scalable 

Tree Cover Index 1.428 1.342 1.489 Yes 

2-Hop Labeling 21.957 20.496 21.215 Yes 

Approximate Transitive Closure 2.267 2.428 2.252 Yes 

Generalized Transitive Closure 10.126 10.271 10.001 Yes 

2-Hop Labeling With Contrains 7.871 7.169 6.997 Yes 

Tree Based Indexing Reachability 5.408 5.422 5.443 Yes 

 

Table 3 (d). Scalability for Complex Queries (s) 

Algorithms Small Medium      Large Scalable 

Tree Cover Index 1.498 1.432 1.813 No 
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2-Hop Labeling 20.729 19.942 20.427 Yes 

Approximate Transitive Closure 2.216 2.180 2.277 Yes 

Generalized Transitive Closure 9.656 9.645 9.281 Yes 

2-Hop Labeling With Contrains 7.097 7.141 7.051 Yes 

Tree Based Indexing Reachability 5.524 5.455 5.586 Yes 

• Index Construction Time : The table.4 reports the index construction time (in seconds) for six different algorithms 

across four types of query graph structures: Linear, Star, Snowflake, and Complex. 

Each cell shows the time taken by an algorithm to build its index when given the input query file corresponding to a 

specific query type. The Average column provides the mean construction time for each algorithm over all query types. 

Lower times indicate faster index construction performance. 

Table 4. Index Construction Time Output (s) 

Algorithms Linear Star      Snowflack Complex Average 

Tree Cover Index 1.2015 1.2480 1.4614 1.3076 1.3046 

2-Hop Labeling 20.3359 19.8517 20.7754 20.2210 20.2960 

Approximate Transitive Closure 2.5881 2.5048 2.2073 2.3855 2.4214 

Generalized Transitive Closure 10.1109 10.1948 9.9391 10.0056 10.0626 

2-Hop Labeling With Contrains 7.0810 7.4425 7.5847 7.7797 7.4720 

Tree Based Indexing Reachability 5.6092 5.7582 5.9000 5.8202 5.7719 

 

DISCUSSION 

The results show that no algorithm is universally optimal. Two-hop labeling methods offer a good compromise 

between response time and index size. Transitive closure methods remain relevant for cases requiring completeness. 

Tree-based indexes are simple and efficient for small graphs but lose performance on large structures. 

Thus, each method's relevance depends on the context of use (See Table 5). Integrating an adaptive approach, 

dynamically selecting the algorithm based on the size and structure of the RDF graph, could be an avenue for future 

optimization. 

Table 5. Strengths and Limitations of the Tested Algorithms 

Algorithm Main strengths Identified limitations 
Tree Cover Index Simple to implement, efficient on 

hierarchical graphs 
Not suitable for large graphs 

Tree-Based Index Good fragment organization, low memory 
cost 

Limited scalability 

Two-Hop Labeling Fast response time, suitable for large graphs Higher index size 
Two-Hop Labeling 
(Constraint) 

Reduced false positives, good trade-off Increased construction complexity 

Approx. Transitive Closure Faster construction than a full closure Approximation may produce 
errors 

Generalized Transitive 
Closure 

Guaranteed completeness, always correct 
answers 

Very costly in memory and 
computation 

 

CONCLUSION 

In this work, we studied the problem of reachability in large RDF graph environments, focusing on improving the 
execution performance of the RDF QDAG system. Our main objective was to better understand reachability indexing 
techniques and to test how well existing methods perform through a detailed benchmarking study. 
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We built a benchmarking framework and evaluated six main approaches: Tree Cover Index, Tree-Based Index, Two-
Hop Labeling, Two-Hop Labeling with Constraint, Approximate Transitive Closure, and Generalized Transitive 
Closure. Each technique was tested on RDF QDAG fragments and compared using several criteria, such as query 
execution time, index size, construction time, scalability, complexity, support for dynamic queries, index structure, 
and compatibility with path constraints and edge-labeled graphs. 
The results showed that every method has its own strengths: 

• Query Time: Two-Hop Labeling with Constraint gave the fastest query responses, which makes it suitable 
for real-time applications. 

• Index Size: Tree Cover Index produced the smallest index structures, useful in memory-limited settings. 

• Scalability: Generalized Transitive Closure worked well on large and complex RDF graphs, though it 
required more time to build the index. 

• Path-Constrained Queries: Two-Hop Labeling with Constraint and Generalized Transitive Closure 
handled edge labels and structural patterns effectively. 

The key conclusion is that there is no single best solution. The choice of method depends on the application’s 
priorities—whether it requires speed, small memory use, or support for complex queries. 
This study combines theoretical analysis with extensive experiments and provides a reproducible framework for 
evaluating reachability methods in RDF graphs. We believe it offers a solid base for future work in semantic graph 
processing, data integration, and scalable knowledge representation. 
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