
Journal of Information Systems Engineering and Management
2025, 10(9s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Leveraging Signature Patterns and Machine Learning for

Detecting HTTP Header Manipulation Attacks

Arti Deshpande1, Bhushan Jadhav2, Trisha Nadar3

1Associate Professor, Department of Computer Engineering, Thadomal Shahani Engineering College, Mumbai, India.

arti.deshpande@thadomal.org
2Assistant Professor, Department of Artificial Intelligence and Data Science, Thadomal Shahani Engineering College, Mumbai, India.

bhushan.jadhav@thadomal.org
3Department of Computer Engineering, Thadomal Shahani Engineering College, Mumbai, India.

trisha.nadar2604@gmail.com

ARTICLE INFO ABSTRACT

Received: 05 Nov 2024

Revised: 28 Dec 2024

Accepted: 08 Jan 2025

Hypertext Transfer Protocol (HTTP) injection is a security vulnerability in which attackers

manipulate HTTP Headers for malicious intent which facilitate various types of attacks like

Downgrade-attack, Session fixation, Session hijacking, Cross-site scripting (XSS), Script

injection, Referer forgery, Host header injection and Cache poisoning. These HTTP header

manipulations can also be used for phishing and malware attacks. This study proposes leveraging

signature attack patterns enhanced with Machine Learning (ML) and Deep Learning (DL) for

detection of malicious header. HTTP request headers will be intercepted using Mitmproxy, and

known attacks such as Downgrade attacks, Session fixation, Session hijacking, Token

manipulation, Script injection will be detected based on their unique signatures. Malicious

Internet Protocol (IP) addresses in the headers are detected using a blacklist sourced from the

IPsum GitHub repository. Additionally, the malicious classifier model utilizes a hybrid approach

for feature extraction based on Natural Language Processing (NLP) and traditional methods

followed by generation of adversarial samples using Generative Adversarial Network (GAN).

Multiple supervised ML and DL models are employed to classify URLs as phishing, malware, or

benign and detect the specific attack type such as Referer forgery, Host header injection and

other malware-related activities. The dataset is sourced from trusted repositories like Phishing

URL dataset by Mendeley, Malicious URLs dataset from Kaggle and IPSum GitHub repository

to construct a curated dataset. Adversarial samples generated using GAN are augmented in the

dataset used for training the model to make it resistant to adversarial attack. The detection of

Malicious HTTP headers using the proposed model is evaluated using performance metrics.

Keywords: HTTP Header Manipulation, HTTP Injection, Signature-Based Detection, URL

Classification, Generative Adversarial Network, Deep Learning

I. INTRODUCTION

 Hypertext Transfer Protocol (HTTP) is a protocol used for transferring messages between the web server and

web client(browsers) over the internet. The web server hosts data resources which can be accessed by users using

web browsers via HTTP request messages and HTTP response messages with the requested resource in its body. The

structure of the HTTP request message is divided into request line, headers in key-value pairs containing additional

information and an optional body. Similarly, a status line, headers and an optional body constitute the HTTP

response message. An HTTP header consists of its case-insensitive name followed by a colon (:), then by its value

[14]. The HTTP header injection vulnerability is a web application security term that refers to a situation when the

attacker tricks the web application into inserting extra HTTP headers into legitimate HTTP responses [16]. This is

used to carry out a variety of attacks, including HTTP response splitting, often referred to as Carriage Return Line

Feed (CRLF) injection, Information disclosure, Cache poisoning, and Security bypass. The following attack types are

examined in this study on malicious HTTP request headers:

(i)Downgrade-attack: The attacker forces the web applications to use less secure protocols like downgrading from

Hypertext Transfer Protocol Secure (HTTPS) to HTTP which allows Man In The middle (MITM) attacks where the

mailto:arti.deshpande@thadomal.org
mailto:bhushan.jadhav@thadomal.org

637

J INFORM SYSTEMS ENG, 10(9s)

messages exchanged between the client and server are intercepted and altered by the attacker [4]. This can be

achieved by changing the value of Upgrade-Insecure-Requests header to 0.

(ii) Token manipulation: This attack involves the use of forged, stolen, or duplicate authorization or session tokens

to impersonate a user, bypass authentication, or hijack sessions. The Authorization header contains the bearer token

used for user authentication, while the Cookie header contains session tokens that help maintain the user's session.

These tokens can be manipulated to perform unauthorized actions.

(iii)Session fixation: A session ID known to the attacker is enforced for use by the user, and then this compromised

Session ID is used to hijack a session after the user logs in. Websites that do not change the session ID after login are

particularly prone to these attacks. This is achieved by injecting a known session ID into the Cookie header before

the user logs in and then exploiting it to take control of the user session after the user logs in.

(iv)Session hijacking: The attacker captures or steals a valid user session ID to mimic the user and breach security

restrictions to achieve unauthorized access to sensitive user information. Similar to attack (ii), the Cookie header can

be exploited in this attack.

(v) Script injection: The attacker injects malicious scripts through HTTP request headers or other user inputs. These

scripts are often executed without the user’s consent intended at manipulating the browser behavior. They are of

various types like SQL injection and Cross-site scripting (XSS). Database queries are executed to manipulate database

or access data without authorization in SQL injection.

(vi) Cross-site Scripting (XSS): Reflected XSS is a technique to exploit security vulnerabilities by permitting the

attackers to inject malicious scripts which will be immediately executed by the browser allowing the attacker to obtain

private user information [15]. This can be done by injecting JavaScript statements similar to (iv) in headers like

Referer, User-agent, Host, Origin, Content-type, X-forwarded-for, X-request-id. XSS is a subset of script injection

and the key difference between them is that while script injection targets the server-side application by injecting

malicious code into the server, XSS targets the users of the server application by executing scripts in their browsers

to affect them directly.

(vii) Host header injection: An attacker can spoof the Host header in the HTTP request with a malicious URL or IP

address to give the request an appearance that it is coming from a safe domain to perform a range of attacks aimed

at bypassing security controls and gaining unauthorized access [23].

(viii) Referer forgery: Referer header usually contains an URL or IP address of the web page that has sent the request

to the server. By manipulating this header, the server can be deceived to assume that the request is coming from a

trusted source.

 This study proposes a dual approach to detect above mentioned attacks, which involves analyzing the headers

to identify vulnerabilities using signature patterns of certain attacks and employing a deep learning model to detect

malicious URLs within the Host and Referer. This enables the detection of specific attacks and their classification as

benign, phishing, or malware.

II. RELATED WORK

 Neda Ali [1] defines HTTP response header injection as the exploitation of security vulnerabilities by injecting

content malicious in intent into the response headers sent by the web server. The attacks include Security bypass,

Cache poisoning, Cross-site scripting (XSS), Session hijacking, and phishing.

Using supervised machine learning techniques, Ashley Laughter et al. [9] gathered web traffic data and examined the

HTTP headers to identify malicious and benign requests. After the experimental research, the author concluded four

important observations as

• The header usage of malicious and benign requests differs,

• Content-type, Accept-encoding and Accept-language are HTTP headers used to efficiently classify a request

as malicious or benign with 93.6% accuracy,

• The malicious and benign request lines differ in their lengths and can be used to differentiate the HTTP

requests with 96.9% accuracy.

638

J INFORM SYSTEMS ENG, 10(9s)

 W. Tao et al. [24] and L. Xu et al. [28] worked on eleven previously recognized features. J. McGahagan et al.

[12] worked on 22 features after adding newly detected 11 features. The author found that the top two features,

content-length and content encoding gzip, are prevalent from earlier study after employing ensemble approaches

(RandomForest, AdaBoost, ExtraTree, and Gradient Boosting) to understand feature relevance. However, according

to the authors, their method was able to identify the third feature, Transfer-encoding chunked. Vary accept header

ranked fifth, third, and fourth while not sampling, over-sampling, and under-sampling respectively. Other recently

discovered header fields of significance are X-XSS-protection, HSTS, and the X content-type header with value of

nosniff. The average Matthews Correlation Coefficient (MCC) for the selected 22 features was better than for the 11

previously studied features.

 Mizuno et al. [13] offer a novel approach to automating the feature extraction process from the HTTP headers

by using an automatic template creation methodology based on the DBSCAN algorithm. By eliminating the less

important traits and building the templates statistically without requiring any prior domain knowledge, this increases

the detector's resilience. The suggested method by the author shows false positive rate below 1% while discriminating

between hostile and benign traffic with up to 97.1% precision. The employment of DNN with four layers and adaptive

moment estimation to optimize the classifier produced the maximum accuracy while SVM produced the second

highest accuracy. The system does, however, draw attention to how ineffective it is in capturing HTTPS and UDP-

based protocols.

 Martin Grill et al. [6] use HTTP User-Agent Discrepancy Identification to detect malware. According to them,

a user-agent field could look like one of these: Browsers used by legitimate users, empty, specific, spoof, and

inconsistent. The study suggests methods for identifying malware that fits into one of three categories: Discrepant,

Specific, or Empty. They model domain usage for empty User-agents and categorize sites visited by a minority as

anomalous. The frequency of User-Agents among network users is used to classify unknown, non-browser User-

Agents. The authors note that a single user only utilizes a single web browser version on a single computer. This data

serves as the foundation for identifying unusual, well-known browser User-Agents. The authors point out that a single

user only uses one version of the web browser on one computer. Identification of uncommon, well-known browser

User-Agents is based on this data. It is verified whether the user updated their browser if the User-Agent is different

from an older one. If not, it is classified as abnormal. However, User-Agent feature cannot be identified to detect

malware that uses Spoofed User-Agent.

 According to Reyes-Dorta et al. [18], the false negatives of the confusion matrix should receive particular

attention when comparing models in this area of cybersecurity since they indicate that harmful URLs are being taken

into account as legitimate. The F1-score is therefore the optimum metric for comparing models, according to this

study. This study suggests three distinct neural networks and concludes that using the "relu" activation function

followed by the Sigmoid activation function in the output layer produced the best results. Additionally, the "adam"

optimizer, the "binary_accuracy" metric, and the "binary_crossentropy" loss function were employed.

 Comparison of various ML algorithms used in previous research studies is given in table 1.

Table 1: Comparison of methodologies used in previous research studies

Year Author name Proposed

method

Accuracy

given

Dataset used Description

2023 Abdul Karim et

al. [8]

Ensemble

model based on

SVM, Linear

regression, and

decision tree

95.23% Kaggle: Phishing

website detector by

Eswar Chand

The feature selection technique

based on canopy method coupled

with cross fold validation and grid

search hyper parameter tuning

technique for phishing detection

using malicious URLs

2023 Sanjeev Shukla

et al. [20]

Random Forest

algorithm

97.8% Not mentioned 16 new HTTP headers, primarily

security headers were used to

determine if the web page was

phishing or legitimate

639

J INFORM SYSTEMS ENG, 10(9s)

2022 Tiefeng et al.

[25]

Bidirectional

Gated

Recurrent Unit

(DA-BiGRU)

97.92% Kaggle: Malicious

URLs dataset by

Manu Siddhartha

Word2Vec is used to train word

vectors and attention mechanism

is introduced to learn sequence

correlations enhancing the

malicious URL detection

2021 Zhiqiang Wang

et al. [27]

Dynamic

convolutional

neural network

(DCNN)

98.7% Malicious URLs:

GitHub, uci.edu,

Kaggle

Benign URLs: Alexa

The pooling layer is replaced with

k-max pooling, and a new folding

layer is added for malicious URL

detection. The pooling parameters

are dynamically adjusted based on

the URL length and current layer

depth.

2021 Ashley

Laughter et al.

[9]

Supervised

machine

learning

algorithm

93.6%-

96.9%

Not mentioned

Detects malicious HTTP request

using headers

and line length of HTTP headers

2018 Mizuno et al.

[13]

Deep neural

network (DNN)

97.1% Malwr,

TrendMicro,

Kaspersky,MalShar

e, VirusShare,

Campus network

filtered using

MalwareDomain

Blocklist

Four layered DNN with adaptive

moment estimation and

automatic template generation

using DBSCAN for malware

detection

2018 Buber et al. [3] Random Forest

algorithm

97.2% Malicious URLs:

PhishTank and

Yandex Search API

The algorithm utilized NLP-based

features combined with

vectorization-based features for

detection of phishing URLs

2016 Vanhoenshove

n et al. [26]

Multilayer

perceptron

(MLP)

97.28% Dataset provided by

Ma et al. [10]

A feature set comprising the

features with the highest absolute

Pearson coefficients relative to the

prediction class is used in this

feed-forward artificial neural

network model

 Rasheed et al. [17] states that adversarial attacks exploit security vulnerabilities in ML & DL by making

minimal modifications to the malicious URLs using greedy approach which will lead to its misclassification as benign

URL by the model. This research uses the Blackbox scoring strategies-DeepWordBug algorithm proposed by J. Gao

et al. [5] to identify key segments or characters of the URL that, when altered, can lead to misclassification. The

authors test their attack against three kinds of CNN based classifiers. An accuracy decrement of 60% for Character-

based CNN model, 77% decrease for word-level CNN model and 56% decrease for a joint CNN model was observed.

Augmenting the adversarial samples in the training set and adding domain name of detected malicious URLs to a

blacklist is suggested as a way to make the detection model robust against these attacks.

III. PROPOSED METHOD

 The initial GET request forwarded to the web server when the user initially searches for the URL is

intercepted using Mitmproxy. Mitmproxy is a proxy server that allows to intercept and record all HTTP & HTTPS

communication. The intercepted headers are displayed to the user, allowing them to modify the header values. The

640

J INFORM SYSTEMS ENG, 10(9s)

proposed model analyzes the modified headers and detects any malicious attempts using a dual approach. The flow

of the proposed model is illustrated in figure 1.

Figure 1: Flow diagram of proposed method

The signature-based attack detection module extracts the following headers if modified and analyzes their

values to detect signature-based attacks:

(i)Upgrade-Insecure-Requests: A value of 0 in this header indicates a potential downgrade attack.

(ii)Authorization: This header is used to detect token manipulation attacks by performing basic validation of the

token's structure and format. The standard JSON Web Tokens (JWT) format in the Authorization header consists of

three base64url-encoded segments separated by periods and preceded by the Bearer keyword (Bearer <token>) [2].

For advanced token validation, the JWT secret key and the signing algorithm used by the web server are required,

but these are not accessible as they are private to the server-side application. Therefore, the scope of this detection is

limited to identifying violations of the JWT structure.

(iii)Cookie: If the session ID is dynamically assigned by the user in the Cookie header, it indicates a potential session

fixation attack. Session hijacking, on the other hand, involves the use of a stolen valid session ID. Detection of Session

hijacking therefore requires access to server-side session data which is not accessible to the client. Therefore,

modification of Cookie header with session id is flagged as potential Session fixation or hijacking attempt.

641

J INFORM SYSTEMS ENG, 10(9s)

(iv) X-Forwarded-For, X-Request-Id, Referer, User-Agent, Host, Origin, Content-Type: If SQL query patterns are

detected within these headers, the request is flagged as a potential SQL injection attack. Similarly, if JavaScript

keywords are found within <script> tags, the request is flagged as a potential Cross-Site Scripting (XSS) attack.

(v) Host: The URL or IP address present in the Host header is checked for host header injection. The IP addresses

are validated for malicious activity using a blacklist sourced from the IPsum GitHub repository [21]. URLs are

forwarded to the Malicious Classifier model, which is the second step in our dual detection approach.

(vi) Referer: The detection of Referer forgery follows the same step as given in (v).

 After detecting these attacks and flagging the exploited headers, URLs in the Host and Referer headers are

classified as phishing, malware or benign using the malicious URL classifier model illustrated in figure 2.

Figure 2: Architecture of malicious classifier model

 Multiple supervised ML and DL models as described below are employed for a comparative analysis on both

the original and augmented datasets.

• Random Forest is a classification method that employs an ensemble approach, where multiple decision tree

classifiers are trained simultaneously on various subsets of the data. The final prediction is made by

aggregating the results through majority voting or averaging [19].

• Gradient Boosting just like Random Forest is an ensemble classification model that uses a sequence of

individual models typically decision trees where each model corrects the errors of the preceding model to

give the final classification [19].

• A Support Vector Machine (SVM) is a supervised learning algorithm used to separate two classes by

identifying the optimal hyperplane that maximizes the margin between the nearest data points of each class

[22]. Support Vector Classifier (SVC), a type of SVM is used with the Radial Basis Function (RBF) kernel for

handling non-linear decision boundaries.

• Multilayer perceptron (MLP) is a feed-forward Artificial Neural Network (ANN) that captures complicated

non-linear relationships in data through hidden layers [19]. The MLPClassifier implemented is a fully

642

J INFORM SYSTEMS ENG, 10(9s)

connected network consisting of an input layer, three hidden layers using ReLU activation, and an output

layer. The model uses L2 regularization and Adam optimizer that increases accuracy for augmented dataset.

• Deep neural network (DNN): DNN is an extension of the MLP with more hidden layers, enabling the model

to detect more diverse and complicated patterns in the data. The DNN implemented consists of an input

layer, followed by four deep blocks, each containing a dense layer with LeakyReLU activation,

BatchNormalization, L2 regularization (weight decay) and Dropout to enhance model robustness, especially

against adversarial samples. Softmax activation is used in the output layer. Learning Rate Scheduler

(ReduceLROnPlateau) and the Early Stopping callback is added to ensure better convergence. Adam

optimizer with learning rate set as 0.001 and sparse categorical cross-entropy loss function is used.

• Dynamic convolution neural network (DCNN): DCNN is a type of CNN that consists of convolutional layers,

pooling layers and fully connected layers suitable for sequential data analysis [19]. DCNN is implemented

using three convolutional layers using ReLU activation with different kernel sizes followed by Dropout,

MaxPooling and BatchNormalization layers making the model architecture dynamic and flexible to diverse

input data. Softmax activation is used in the output layer. The model is compiled similarly to the DNN, using

sparse categorical cross-entropy loss and Adam optimizer.

IV. DATASET USED

 The blacklist used for detection of malicious IP addresses is sourced from a public GitHub repository named

IPSum by Miroslav Stampar [21]. IPsum is a threat intelligence resource derived from over 30 distinguished publicly

accessible lists of suspicious and malicious IP addresses. The data is automatically collected, processed daily, updated

in this repository and displayed in the decreasing order of the number of occurrences provided by the dataset.

Malicious URLs dataset [11] from Kaggle is used. It is a collection of a huge dataset of 651191 URLs, which consists

of 428103 benign URLs, 96457 defacement URLs, 94111 phishing URLs, and 32520 malware URLs extracted from

various sources as shown in figure 3 (a). The sources include Faizan git repo for benign data, URL dataset (ISCX-

URL-2016), Phishtank dataset and PhishStorm dataset for malware and phishing data. The URLs of the defacement

class are removed since it cannot be detected solely from HTTP headers. After removal of duplicate values, the dataset

obtained consists of 545811 URLs with composition as Benign: 78.47%, Phishing: 17.25% and Malware: 4.33%. This

dataset is highly unbalanced, so additional phishing URLs are added from Phishing URL dataset by Mendeley [7] as

shown in figure 3(b).

Figure 3: (a) Snapshot of Kaggle dataset [11] URL

dataset

Figure 3: (b) Snapshot of Phishing by Mendeley [7]

643

J INFORM SYSTEMS ENG, 10(9s)

 To further balance the dataset, Synthetic Minority Over-sampling Technique (SMOTE) was applied using a

hybrid approach for feature extraction. The hybrid approach used for the extraction of features in the proposed

malicious classifier model is outlined in figure 4.

Figure 4: Illustration of data preprocessing

 Traditional feature extraction method is used to obtain lexical and structural patterns from the URLs by

extracting the following 15 features:

• URL length: The aggregate count of characters in the URL

• Domain length: The aggregate count of characters in the domain part of the URL

• HTTPS vs HTTP: Value is set to 1 for HTTPS protocol and 0 for HTTP

• Dot count: The aggregate count of dots (.) in the URL

• Dash count: The aggregate count of dashes (-) in the URL

• Underscore count: The aggregate count of underscores (_) in the URL

• Question mark count: Total number of question marks (?) in the URL which indicate query parameters

• Special characters count: Total number of special characters in the URL like (! @, #, $, %)

• Digits count: Total number of digits (0-9) in the URL

• IP address presence: Value is set to 1 if the domain is an IP address and 0 if the domain is a hostname

• URL parameters count: Total number of query parameters in the URL

• PHP in URL: Indicates the presence of substring php in the URL with 1 and absence with 0

• HTML in URL: Indicates the presence of substring php in the URL with 1 and absence with 0

• Malicious TLD (Top-Level Domain): Checks if the URL ends with a suspicious TLD for example. xyz, .abc,

.ru

• Shortened URL check: Checks if the URL uses any known shortening services for example bit.ly, t.co, ow.ly

 Subsequently, NLP based features are generated for capturing the semantic and contextual information from

the URLs using tokenization followed by vectorization and aggregation using Word2Vec model. The two feature sets

are combined and standardized using StandardScaler as shown in figure 5.

644

J INFORM SYSTEMS ENG, 10(9s)

Figure 5: Snapshot of final generated dataset

 After application of SMOTE for synthetic data generation, a balanced dataset is achieved for implementation.

To make the proposed model robust against adversarial attacks, adversarial samples are generated using Generative

Adversarial Network (GAN) and augmented to the dataset. The model's performance is compared on both the original

and augmented dataset. Generator and discriminator are the two primary components of GAN. Conditional GAN

(CGAN), one of the types of GAN is used in the proposed model since class labels namely phishing, malware, benign

are one-hot encoded and added to the generator and discriminator along with the random noise as conditional

parameters. This makes sure that the synthetic adversarial samples generated are corresponding to the features of

the given classes. The generator which is responsible for the synthetic data generation and the discriminator which

is responsible for classification of the input URL features as real or fake are both implemented using two layers with

Rectified Linear Unit (ReLU) activation that are fully connected, followed by an output layer. The generator uses

batch normalization with Tanh activation in the output layer while the discriminator uses activation and dropout

with sigmoid activation in the output layer. The Adam optimizer, set with a learning rate of 0.0002 along with binary

cross-entropy loss is leveraged for training both the generator and the discriminator which is then combined to give

the required GAN model.

V. EXPERIMENTAL RESULTS

 Total 115 features generated dataset is used and various models are applied for comparison as described in

Section III and IV. The adversarial samples were generated using different epoch values for GAN and Random Forest

classifier was used to determine which augmented dataset gave the best detection performance. The comparative

analysis for GAN epoch 50,70,100 and 120 is as depicted in figure 6.

Figure 6: Comparative analysis of GAN for various epochs

 The augmented dataset generated using GAN with 100 epochs is considered for further testing of models.

The performance of the supervised ML models – Random Forest, Gradient Boosting, SVM and DL model-MLP was

verified using cross-validation with 5 folds while sparse categorical cross-entropy loss function was used for DNN

and DCNN. K fold cross validation is not used for DNN and DCNN as training these models is computationally

expensive, and repeating this process for each fold significantly increases the training time. Comparison of

645

J INFORM SYSTEMS ENG, 10(9s)

performance metrics for the original and augmented datasets across different numbers of estimators (70, 100, and

150) for Random Forest classifier and Gradient Boosting classifier is given in table 2 and table 3. The results of SVM

classifier are given in table 4.

Table 2: Result of Random Forest Classifier

Random Forest Classifier

Dataset No. of

Estimators

Accuracy Precision Recall F1 Score CV

Mean

CV Std Training

Time (s)

Original 70 0.9037 0.9063 0.9036 0.9041 0.8944 0.0025 11.476

 100 0.9027 0.9055 0.9026 0.9030 0.8945 0.0030 15.864

 150 0.9067 0.9091 0.9065 0.9070 0.8954 0.0032 24.413

Augmented 70 0.8997 0.9022 0.8995 0.8999 0.8925 0.0071 12.267

 100 0.9023 0.9052 0.9022 0.9025 0.8950 0.0068 16.050

 150 0.9020 0.9047 0.9020 0.9022 0.8940 0.0082 23.715

Table 3: Result of Gradient Boosting Classifier

Gradient Boosting Classifier

Dataset No. of

Estimators

Accuracy Precision Recall F1 Score CV

Mean

CV Std Training

Time (s)

Original 70 0.8737 0.8745 0.8735 0.8735 0.8753 0.0029 155.839

 100 0.8810 0.8816 0.8809 0.8808 0.8826 0.0040 219.257

 150 0.8930 0.8938 0.8929 0.8929 0.8891 0.0035 324.887

Augmented 70 0.8740 0.8750 0.8739 0.8737 0.8728 0.0104 151.401

 100 0.8840 0.8849 0.8838 0.8838 0.8794 0.0106 218.224

 150 0.8923 0.8935 0.8923 0.8923 0.8853 0.0106 328.505

Table 4: Result of SVM Classifier

SVM Classifier

Dataset Accuracy Precision Recall F1 Score CV Mean CV Std Training Time

(s)

Original 0.8880 0.8904 0.8879 0.8884 0.8788 0.0079 43.271

Augmented 0.8870 0.8895 0.8869 0.8874 0.8756 0.0109 44.225

 According to the results obtained, Random Forest gives the best performance followed by SVM. However,

Random Forest and SVM are not adaptable to noisy or augmented data reducing the accuracy of these models on

augmented data. Gradient Boosting due to its sequential learning process adapts better to the adversarial samples in

the augmented data. The experimental results of MLP for different max iterations is given in table 5. DNN and DCNN

is also applied with various epochs to determine which DL model is best suitable for classification as shown in table

6 and table 7.

646

J INFORM SYSTEMS ENG, 10(9s)

Table 5: Result of MLP Classifier

MLP Classifier

Dataset No. of

max

iterations

Accuracy Precision Recall F1 Score CV

Mean

CV Std Training

Time (s)

Original 100 0.9200 0.9208 0.9187 0.9197 0.9106 0.0032 127.996

 150 0.9206 0.9214 0.9192 0.9203 0.9121 0.0019 132.925

 200 0.9203 0.9209 0.9189 0.9199 0.9051 0.0035 133.221

 300 0.9205 0.9211 0.9191 0.9201 0.9042 0.0035 143.898

Augmented 100 0.9280 0.9287 0.9263 0.9275 0.9067 0.0072 129.432

 150 0.9319 0.9325 0.9298 0.9311 0.9118 0.0074 135.672

 200 0.9260 0.9268 0.9242 0.9258 0.9033 0.0066 138.992

 300 0.9263 0.9270 0.9245 0.9257 0.9047 0.0064 147.223

Table 6: Result of DNN

DNN

Dataset No. of

Epochs

Accuracy Precision Recall F1 Score Test Loss Training

Time (s)

Original 70 0.9283 0.9298 0.9275 0.9286 0.2956 150.003

 100 0.9286 0.9302 0.9279 0.9290 0.2865 188.059

 150 0.9297 0.9315 0.9288 0.9301 0.2933 289.547

 200 0.9308 0.9327 0.9296 0.9311 0.2746 380.003

 500 0.9327 0.9342 0.9319 0.9330 0.2789 874.396

Augmented 70 0.9375 0.9412 0.9361 0.9386 0.3669 177.265

 100 0.9410 0.9453 0.9389 0.9421 0.3797 216.172

 150 0.9440 0.9482 0.9421 0.9453 0.3694 338.159

 200 0.9433 0.9471 0.9413 0.9441 0.3425 412.107

 500 0.9425 0.9458 0.9403 0.9433 0.3502 992.326

Table 7: Result of DCNN

DCNN

Dataset No. of

Epochs

Accuracy Precision Recall F1 Score Test Loss Training

Time (s)

Original 70 0.9083 0.9102 0.9075 0.9088 0.2831 1552.439

 100 0.9105 0.9119 0.9093 0.9106 0.2796 1764.167

 150 0.9113 0.9128 0.9106 0.9117 0.2757 1825.569

647

J INFORM SYSTEMS ENG, 10(9s)

Augmented 70 0.8927 0.8945 0.8920 0.8932 0.2956 1649.627

 100 0.8953 0.8978 0.8941 0.8960 0.2927 1758.058

 150 0.8932 0.8949 0.8924 0.8936 0.2890 1822.648

 It is observed that DNN achieved the highest results on both the original and GAN- augmented datasets. MLP

showed reasonable performance while DCNN consistently underperformed, suggesting it is less suited for the task.

The augmented datasets led to a drop in DCNN accuracy due to the increased diversity and complexity of the samples.

In contrast, MLP and DNN showed improved accuracy on the augmented dataset with appropriate architecture and

hyperparameter tuning which indicates the improvement of the models' robustness to adversarial URL samples

making it more equipped for real-world applications. Models with their corresponding parameters that achieved the

best performance are listed below along with the visual comparison of the accuracy achieved by them in figure 7.

• Random Forest with 150 estimators

• Gradient Boosting with 100 estimators

• SVM with rbf kernel

• MLP with 150 maximum iterations

• DNN with 150 epochs

• DCNN with 100 epochs

Figure 7: Accuracy comparison of implemented models on original and augmented dataset

648

J INFORM SYSTEMS ENG, 10(9s)

 The experimental results show that the DNN with 150 epochs achieved the highest accuracy 92.97% on the

original dataset and 94.40% on the augmented dataset highlighting its capacity to capture complex patterns as

presented in figure 8.

Figure 8: Classification result comparison of DNN trained on original and augmented dataset

 Once the model classifies a URL as phishing or malware, it flags the HTTP header containing the URL and

based on that the HTTP header attack is detected. For example, if the URL in the Host header is flagged as phishing,

the system detects it as a "Phishing attack via Host header injection". Similarly, if the URL is in the Referer header

and flagged as malware, it’s recognized as a "Malware attack via Referer forgery."

VI. CONCLUSION

 This study intercepts HTTP request headers and enables the user to modify these headers. A dual approach

for detecting HTTP header injection attacks via the modified headers is proposed. Initially, signature-based attacks

are identified, followed by the detection of advanced attacks using malicious URLs through a comprehensive machine

learning model. The study leverages a large and balanced dataset retrieved from various sources, with features

extracted using a combination of traditional feature engineering and NLP-based methods through Word2Vec.

Robustness is further enhanced by augmenting adversarial samples using GAN, and a comparative analysis of

classification models-Random Forest, Gradient Boosting, SVM, MLP, DNN, and DCNN was conducted. When epoch

is 150, DNN and MLP showed increase in the accuracy for augmented dataset. This proposed framework has

significant real-world applications, as it can be seamlessly integrated into web application to strengthen its security

by detecting and mitigating phishing and malware attacks through HTTP header analysis. Additionally, its capability

to intercept and modify HTTP headers via mitmproxy provides a valuable learning tool for studying various methods

of HTTP header injection attacks.

 This research is primarily focused on analyzing and detecting attacks through HTTP request headers. Future

work could expand the scope to include HTTP response headers, such as Location redirection attacks, which are

commonly exploited in phishing and malware campaigns. Furthermore, the framework can be extended to study

attacks requiring deeper analysis of complete HTTP traffic patterns. Reinforcement Learning approaches could also

be explored to dynamically adapt to new attack vectors while optimizing computational performance and improving

model accuracy.

649

J INFORM SYSTEMS ENG, 10(9s)

REFERENCES

[1] Ali N. (2023, November 8). What is HTTP response header injection. Beagle Security

Blog.https://beaglesecurity.com/blog/vulnerability/http-response-header-injection-found.html

[2] auth0.com. (n.d.). JWT.IO - JSON Web Tokens Introduction. JSON Web Tokens - jwt.io.

https://jwt.io/introduction

[3] Buber, Ebubekir & Diri, Banu & Sahingoz, Ozgur. (2018). NLP Based Phishing Attack Detection from URLs.

10.1007/978-3-319-76348-4_59.

[4] Chiarelli, A. (2020, December 8). Preventing HTTPS downgrade attacks. Auth0 Blog.

https://auth0.com/blog/preventing-https-downgrade-attacks/

[5] J. Gao, J. Lanchantin, M. L. Soffa and Y. Qi, "Black-box generation of adversarial text sequences to evade deep

learning classifiers," in Proc.—2018 IEEE Symp. on Security and Privacy Workshops, San Francisco, CA, USA,

pp. 50–56, 2018.

[6] M. Grill and M. Rehak, "Malware detection using HTTP user-agent discrepancy identification," 2014 IEEE

International Workshop on Information Forensics and Security (WIFS), Atlanta, GA, USA, 2014, pp. 221-226,

doi: 10.1109/WIFS.2014.7084331.

[7] KAITHOLIKKAL, JISHNU K S; B, Arthi (2024), "Phishing URL dataset", Mendeley Data, V1, doi:

10.17632/vfszbj9b36.1

[8] Karim, Abdul & Shahroz, Mobeen & Mustofa, Khabib & Brahim Belhaouari, Samir & Joga, S Ramana Kumar.

(2023). Phishing Detection System Through Hybrid Machine Learning Based on URL. IEEE Access. PP. 1-1.

10.1109/ACCESS.2023.3252366.

[9] Laughter, Ashley & Omari, Safwan & Szczurek, Piotr & Perry, Jason. (2021). Detection of Malicious HTTP

Requests Using Header and URL Features. 10.1007/978-3-030-63089-8_29.

[10] Ma, Justin & Saul, Lawrence & Savage, Stefan & Voelker, Geoffrey. (2009). Identifying suspicious URLs: An

application of large-scale online learning. Proceedings of the 26th International Conference on Machine

Learning, ICML 2009. 86. 10.1145/1553374.1553462.

[11] Malicious URLs dataset. (2021, July 23). Kaggle. https://www.kaggle.com/datasets/sid321axn/malicious-

urls-dataset

[12] J. McGahagan, D. Bhansali, M. Gratian and M. Cukier, "A Comprehensive Evaluation of HTTP Header

Features for Detecting Malicious Websites," 2019 15th European Dependable Computing Conference (EDCC),

Naples, Italy, 2019, pp. 75-82, doi: 10.1109/EDCC.2019.00025.

[13] MIZUNO, Sho & HATADA, Mitsuhiro & Mori, Tatsuya & Goto, Shigeki. (2018). Detecting Malware-Infected

Devices Using the HTTP Header Patterns. IEICE Transactions on Information and Systems. E101.D. 1370-

1379. 10.1587/transinf.2017EDP7294.

[14] Mozilla Contributors. (n.d.). HTTP headers - authentication. MDN Web Docs. Mozilla.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers#authentication

[15] Nair, S. V. (2024, May 14). Reflected Cross Site Scripting. Beagle Security. Retrieved from

https://beaglesecurity.com/blog/vulnerability/reflected-xss.html

[16] Nidecki, T. A. (2021, September 13). What is HTTP header injection.The Acunetix Blog.

https://www.acunetix.com/blog/web-security-zone/http-header-injection/

[17] Rasheed, Bader & Kazmi, S.M. & Hussain, Rasheed & Jalil Piran, Md & Suh, Doug. (2021). Adversarial Attacks

on Featureless Deep Learning Malicious URLs Detection. Computers, Materials & Continua. 68. 921-939.

10.32604/cmc.2021.015452.

[18] Reyes-Dorta, N., Caballero-Gil, P. & Rosa-Remedios, C. Detection of malicious URLs using machine learning.

Wireless Netw 30, 7543–7560 (2024). https://doi.org/10.1007/s11276-024-03700-w

[19] Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN COMPUT.

SCI. 2, 160 (2021). https://doi.org/10.1007/s42979-021-00592-x

[20] Shukla, Sanjeev & Misra, Manoj & Varshney, Gaurav. (2023). HTTP header based phishing attack detection

using machine learning. Transactions on Emerging Telecommunications Technologies. 35. 10.1002/ett.4872.

[21] Stamparm. (n.d.). GitHub - stamparm/ipsum: Daily feed of bad IPs (with blacklist hit scores). GitHub.

https://github.com/stamparm/ipsum.git

[22] Support Vector machine. (2023, December 27). IBM. Retrieved December 12, 2024, from

https://www.ibm.com/topics/support-vector-machine

650

J INFORM SYSTEMS ENG, 10(9s)

[23] Suryawanshi, Tushar. "Understanding Host Header Injection Attacks and How to Prevent Them." Medium,

13 Apr. 2023, https://medium.com/@tushar_rs_/understanding-host-header-injection-attacks-and-how-

to-prevent-them-60588cd34b8b.

[24] W. Tao, Y. Shunzheng, and X. Bailin, "A novel framework for learning to detect malicious web pages," In Proc.

2010 International Forum on Information Technology and Applications, vol. 2. 2010, pp. 353-357.

[25] Tiefeng, Wu & Wang, Miao & Xi, Yunfang & Zhao, Zhichao. (2022). Malicious URL Detection Model Based

on Bidirectional Gated Recurrent Unit and Attention Mechanism. Applied Sciences. 12. 12367.

10.3390/app122312367.

[26] Vanhoenshoven, Frank & Nápoles, Gonzalo & Falcon, Rafael & Vanhoof, Koen & Köppen, Mario. (2016).

Detecting Malicious URLs Using Machine Learning Techniques.

[27] Wang, Zhiqiang & Ren, Xiaorui & Li, Shuhao & Wang, Bingyan & Zhang, Jianyi & Yang, Tao. (2021). A

Malicious URL Detection Model Based on Convolutional Neural Network. Security and Communication

Networks. 2021. 1-12. 10.1155/2021/5518528.

[28] L. Xu, Z. Zhan, S. Xu, and K. Ye, "Cross-layer detection of malicious websites," In Proc. Third ACM conference

on Data and Application Security and Privacy, 2013, pp. 141–152.

