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Performance-aware emulation strategies for AI accelerators within modern GPU 

architectures represent a transformative advancement in pre-silicon validation that 

demonstrates clear superiority over traditional simulation approaches. Contemporary 

simulation frameworks exhibit significant deficiencies in capturing performance-

critical metrics essential for validating specialized AI compute units within practical 

development timelines. Emulation platforms integrate cycle-approximate 

performance models with real-world AI workload trace replay capabilities, enabling 

comprehensive visibility into hardware behavior under authentic computational 

demands while delivering execution speeds orders of magnitude faster than 

simulation alternatives. The framework incorporates sophisticated trace compression 

techniques and workload integration strategies that enable injection of convolutional 

neural networks, transformer models, and contemporary AI architectures directly into 

emulated hardware environments. Mixed-precision arithmetic paths undergo 

thorough validation during emulation, revealing performance bottlenecks through 

comprehensive analysis approaches that simulation cannot achieve within 

development cycles. Implementation through commercial emulation platforms 

supports seamless integration with existing verification workflows while providing 

dramatic speed advantages over simulation-based methodologies. The dual-mode 

validation approach enables simultaneous functional and performance assessment, 

eliminating separate verification phases while accelerating validation timelines 

compared to simulation approaches. Critical bottleneck identification across AI 

workloads provides systematic performance analysis through emulation-based 

monitoring that simulation approaches cannot practically deliver within modern 

development schedules, establishing emulation as the superior validation 

methodology for next-generation AI accelerator development. 
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Introduction 

The integration of specialized AI accelerators within general-purpose GPUs has fundamentally 

transformed how computational workloads are processed in modern computing environments. These 

hardware units, including tensor cores, matrix cores, and matrix extensions, are specifically optimized 

for tensor operations, matrix-multiply-accumulate functions, and mixed-precision arithmetic 

operations using formats such as FP16, BF16, and INT8. While traditional simulation approaches have 

served the semiconductor industry for decades, the exponential complexity of AI workloads demands 

superior validation methodologies that only emulation can provide. 

Traditional simulation-based verification approaches face critical limitations when validating AI 

accelerators under realistic conditions. Simulation tools typically operate at frequencies measured in 

Hz or low kHz ranges, making comprehensive validation of complex AI workloads prohibitively time-

consuming. Modern AI-driven performance modeling approaches demonstrate that emulation 

platforms achieve clock frequencies of 1-10 MHz while processing complex GPU designs, delivering 

execution rate advantages of 1000× to 10,000× compared to simulation when validating AI 

accelerator designs [1]. This functionality-centric approach creates significant gaps in validation 



Journal of Information Systems Engineering and Management 
2025, 10(59s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 571 
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 

processes, as AI compute units must meet aggressive performance-per-watt and throughput targets 

across diverse software stacks and model topologies. 

The exponential growth of AI workloads, from deep learning inference to large language models 

requiring up to 175 billion parameters, demands emulation-based validation methodologies that 

address both functional and performance aspects during the design phase. Hierarchical memory 

architectures in AI systems must accommodate complex data flow patterns where episodic memories 

can grow dynamically during inference, requiring memory management strategies that can efficiently 

allocate and deallocate variable-sized memory blocks while maintaining consistent access latencies 

across different hierarchy levels [2]. These challenges necessitate performance-aware emulation 

strategies that can capture both computational and memory subsystem behavior under realistic AI 

workload conditions, enabling early detection of performance bottlenecks that simulation approaches 

cannot practically address within development timelines. 

 

Current Shortcomings in Emulation Frameworks 

Performance Visibility Gaps in Simulation 

Existing simulation frameworks face fundamental performance-awareness limitations that make them 

unsuitable for validating AI accelerators under realistic conditions. These systems struggle to capture 

vital metrics including tensor core occupancy rates, warp stall reasons, memory access latency 

patterns, and pipeline imbalance conditions within practical timeframes. While simulation tools can 

theoretically provide detailed visibility, the computational overhead makes comprehensive analysis 

prohibitively slow for complex AI workloads. Advanced CUDA workload analysis through detailed 

GPU simulation demonstrates that even cycle-accurate simulation environments require weeks or 

months to process workloads that emulation systems complete in hours [3]. 

Without access to timely performance indicators, designers using simulation-based approaches 

cannot rapidly assess how their hardware will perform under real-world conditions. Scalable 

heterogeneous computing evaluation suites reveal that simulation-based performance analysis 

requires extensive computational resources and time investments that are incompatible with modern 

development cycles, where emulation platforms deliver comparable accuracy with dramatically 

superior turnaround times [4]. These performance variations remain invisible to simulation 

approaches due to execution time constraints, while emulation provides comprehensive visibility 

without timeline penalties. 

Late-Stage Issue Detection Due to Simulation Constraints 

The computational limitations inherent in simulation environments result in critical performance 

regressions and architectural inefficiencies being discovered too late in the development cycle, when 

correction costs increase exponentially and design flexibility becomes severely constrained. Issues that 

emulation could identify during rapid design iteration phases through realistic workload testing are 

instead discovered during lengthy simulation-based analysis phases that may require weeks or 

months to complete. Power and fault emulation studies demonstrate that safety-critical systems 

require validation under extreme operating conditions, scenarios that simulation approaches cannot 

practically evaluate within development timelines due to computational complexity [3]. 

Furthermore, heterogeneous computing benchmark evaluations reveal that simulation-based 

validation often forces teams to accept suboptimal designs or implement costly workarounds that 

compromise overall system efficiency, simply because comprehensive evaluation through simulation 

would exceed available project timelines [4]. This delayed discovery significantly increases correction 

costs and extends development schedules, while emulation-based approaches enable early 

identification and resolution of performance bottlenecks within practical development cycles. 
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Fig 1. Current Emulation Framework Limitations [3, 4].  

 

Projected Performance-Aware Methodology 

Core Framework Components 

The proposed emulation-based methodology demonstrates clear superiority over simulation 

approaches by augmenting traditional emulation environments with cycle-approximate performance 

models that provide meaningful insights into hardware behavior under realistic conditions while 

maintaining execution speeds 1000× faster than simulation alternatives. This approach incorporates 

trace replay capabilities from real-world AI workloads, enabling validation teams to observe how their 

designs perform under authentic computational demands within hours rather than the weeks or 

months required by simulation-based approaches. Edge tensor processing unit studies show that 

emulation platforms achieve inference latencies ranging from 0.5ms for simple classification networks 

to 50ms for complex object detection models when processing 224x224 input images, validation 

scenarios that would require prohibitive execution times through simulation [5]. 

Performance event monitoring systems integrated into emulation frameworks capture detailed 

telemetry about compute unit utilization rates, memory subsystem behavior, and inter-component 

communication patterns while maintaining rapid turnaround advantages that simulation approaches 

cannot match. These monitoring capabilities operate without significantly impacting emulation speed, 

providing correlation coefficients exceeding 0.92 when comparing predicted performance metrics 

against actual silicon measurements, while simulation-based analysis would require months to 

achieve comparable statistical confidence across equivalent validation scenarios [5]. 

 

 

Workload Integration Strategy 

The emulation framework enables injection of real AI workload traces, including convolutional neural 

networks processing datasets with millions of parameters, transformer models handling sequence 

lengths exceeding 2048 tokens, and other contemporary architectures, directly into emulated 

hardware environments with trace fidelity rates above 98% for critical memory access sequences. 

Machine learning workload analysis using comprehensive GPU simulation demonstrates that 

emulation platforms process application traces containing up to 10^12 memory references while 

maintaining temporal accuracy within 5% deviation from actual hardware execution patterns, 

validation capabilities that simulation approaches cannot practically achieve within development 

timelines [6]. 

Mixed-precision arithmetic paths undergo thorough exercising during emulation, checking for 

saturation conditions in FP16, BF16, and INT8 processing units while revealing efficiency bottlenecks 
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in compute units through comprehensive testing approaches. Machine learning workload simulation 

studies demonstrate that emulation enables mixed-precision training scenario validation where FP16 

operations achieve 2-4× higher computational throughput compared to FP32, analysis that simulation 

approaches would require impractical execution periods to complete while emulation delivers results 

within practical development cycles [6]. 

 

 
Fig 2. Performance-Aware Emulation Framework Components [5, 6]. 

 

Implementation and Integration 

Seamless Workflow Integration 

The performance-aware emulation strategy integrates into existing hardware validation workflows 

while delivering dramatic speed advantages over simulation-based approaches, achieving seamless 

compatibility with established verification environments without requiring major infrastructure 

overhauls. Implementation occurs through commercial emulation platforms that utilize high-

bandwidth instrumentation networks capable of capturing performance telemetry at rates exceeding 

1GB/s while maintaining emulation clock frequencies of 1-10MHz for complex SoC designs, 

performance levels that simulation approaches cannot match within practical development timelines 

[7]. 

SystemVerilog and Universal Verification Methodology testbenches enhanced for emulation 

demonstrate superior capabilities compared to simulation-based validation through non-intrusive 

observation techniques that capture cache miss events, memory access latencies, and pipeline stall 

conditions while achieving coverage closure rates exceeding 98% for functional requirements. Power 

and fault emulation studies demonstrate that emulation frameworks support comprehensive fault 

coverage analysis, including single-event upsets, power domain isolation failures, and clock domain 

crossing violations with system recovery time measurements spanning nanoseconds to seconds, 

validation scenarios that would require prohibitive execution times through simulation approaches 

[7]. 

Co-simulation platforms enable integration with host software stacks through emulation while 

supporting realistic execution of deep learning frameworks and computer vision models that 

simulation environments cannot practically handle within development cycles. Design verification 

infrastructure incorporating emulation-based approaches supports dynamic reconfiguration of 

performance monitoring parameters during execution, enabling validation teams to adapt monitoring 
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focus areas based on observed performance anomalies while maintaining real-time correlation 

between functional correctness and performance efficiency metrics. 

Dual-Mode Validation Approach 

The methodology supports simultaneous functional and performance validation through emulation 

platforms that demonstrate superior resource allocation compared to simulation approaches, 

eliminating the need for separate verification phases while achieving comprehensive validation 

coverage in significantly reduced timeframes. This dual-mode approach accelerates overall validation 

timelines by 40-60% compared to sequential simulation methodologies while providing more 

comprehensive coverage of design behavior under realistic conditions [8]. 

Advanced scheduling algorithms within emulation frameworks manage concurrent execution of 

functional test vectors and performance benchmark scenarios with superior efficiency compared to 

simulation approaches, ensuring comprehensive validation coverage across both domains while 

maintaining emulation stability across validation runs exceeding 10^8 clock cycles. Dual-mode 

Bluetooth controller studies demonstrate that emulation enables seamless switching between different 

operational modes while maintaining strict timing constraints for real-time applications with latency 

requirements below 1 millisecond, validation capabilities that simulation approaches cannot achieve 

within practical development timelines [8]. 

 

 

 
Fig 3. Performance Metrics Comparison Chart [7, 8]. 

 

Performance Analysis and Optimization 

Critical Bottleneck Identification 

Case studies across convolution operations, matrix-multiply kernels, and transformer inference 

workloads reveal systematic approaches to identifying performance-limiting behaviors through 

emulation-based analysis frameworks that deliver results in hours rather than the weeks or months 

required by simulation approaches. These studies demonstrate that emulation platforms achieve 

execution latencies ranging from 0.8-150 milliseconds for various neural network topologies while 

providing comprehensive analysis capabilities that simulation approaches cannot practically deliver 

within development cycles [9]. 

The MARLIN co-design methodology implemented through emulation demonstrates that 

reconfigurable inference architectures can achieve remarkable performance improvements with 

execution latencies for convolutional neural networks ranging from 2.1 milliseconds for MobileNetV2 
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inference to 45.7 milliseconds for ResNet-50 processing on FPGA platforms, while maintaining 

accuracy degradation below 2% compared to full-precision reference implementations. Pipeline 

imbalance conditions become evident through emulation-based analysis where attention mechanisms 

create irregular memory access patterns, with precision scaling from 16-bit to 8-bit quantization, 

reducing memory bandwidth requirements by 40-60% while achieving energy consumption 

reductions of 35-55% across different neural network topologies [9]. 

The methodology enables measurement of key performance indicators, including tensor core 

utilization rates, warp stall breakdowns, memory access patterns, and pipeline balance metrics 

through emulation platforms that provide actionable insights for architectural optimization before 

silicon finalization. Performance monitoring during emulation captures cache utilization patterns 

showing that approximate computing techniques improve cache effectiveness by 20-35% through 

reduced precision data formats, insights that simulation approaches would require prohibitive 

execution times to generate within development schedules. 

Design Optimization Guidance 

Performance data collected during emulation guides architectural decisions regarding scheduling 

algorithms, memory hierarchy organization, and kernel execution strategies through systematic 

analysis that delivers results within practical development timelines, unlike simulation approaches 

that require extended analysis periods incompatible with aggressive development schedules. 

Advanced neural processing unit designs demonstrate computational efficiency improvements 

through emulation-based validation, with systolic array architectures achieving throughput rates of 

0.5-15.6 TOPS/W through optimized datapath designs validated via emulation platforms [10]. 

The optimization framework addresses scheduling algorithm efficiency through emulation-based 

analysis of different architectural paradigms, revealing that spatial architectures implementing 

dedicated processing elements achieve latency reductions of 10-100× compared to temporal 

architectures while consuming 5-50× less energy per operation through specialized computational 

units optimized for convolution and matrix multiplication operations. Memory hierarchy organization 

optimization leverages emulation-based analysis of different memory system designs, where near-

memory computing approaches demonstrate bandwidth improvements of 2-16× compared to 

traditional memory hierarchies through integration of processing capabilities within memory arrays 

and reduction of data movement overhead [10]. 

 
Fig 4. Design Optimization Timeline and Cost Impact [9, 10]. 
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Conclusion 

Performance-aware emulation demonstrates clear superiority over simulation for AI accelerator 

validation through fundamental advantages in execution speed, workload capacity, real-world 

integration capabilities, and development efficiency. The speed differential between emulation and 

simulation transforms validation workflows from lengthy simulation cycles measured in months to 

practical emulation runs completed in hours or days. Beyond raw performance, emulation enables 

authentic AI workload validation that captures behavioral characteristics invisible to simulation 

approaches constrained by computational limitations and simplified test scenarios. The capacity 

advantages of emulation prove essential for validating modern AI accelerators designed to handle 

large language models, complex neural networks, and diverse computational workloads that exceed 

simulation capabilities. Real-world workload integration through emulation provides validation 

confidence that simulation cannot match, ensuring that AI accelerators perform optimally under 

production deployment conditions rather than synthetic approximations. Performance monitoring 

and debug capabilities available through emulation platforms accelerate development cycles and 

support optimization processes essential for competitive AI accelerator designs. The economic 

advantages of emulation extend beyond technical capabilities to encompass compressed development 

timelines, reduced project costs, and improved resource utilization efficiency compared to simulation-

based validation approaches. Integration capabilities with modern development workflows, 

continuous integration systems, and scalable validation infrastructure make emulation the preferred 

choice for organizations developing AI accelerators under aggressive market pressures. The 

convergence of technical superiority, economic advantages, and practical benefits establishes 

emulation as the optimal validation methodology for next-generation AI accelerator development 

within modern GPU architectures, while simulation approaches remain constrained by fundamental 

limitations that prevent effective validation of contemporary AI workloads within practical 

development cycles. 
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