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The high death rate from breast cancer continues to impact women globally throughout all 

regions of the world. Accurate breast cancer classification through gene expression analysis is a 

fundamental step in creating individualized cancer treatment approaches. Traditional machine 

learning models, including Logistic Regression, together with Random Forests, Support Vector 

Machines, and advanced algorithms such as XGBoost and Multilayer Perceptrons, have proven 

their effectiveness for predictive tasks. The models demonstrate high sensitivity to both random 

and purposeful data modifications, which leads to less dependable diagnostic outcomes. The 

proposed method combines machine learning with blockchain technology to create a 

framework. The validation framework utilizes SHA-256 hashing, combined with smart contracts 

and distributed ledger technology, to verify data integrity prior to classification. We examine the 

CuMiDa breast cancer gene expression dataset, along with machine learning models that utilize 

both traditional and blockchain-based approaches. The baseline models achieved strong 

performance with accuracy values between 84% and 95%, but the blockchain-assisted models 

demonstrated superior trustworthiness. The implemented system decreased its exposure to 

noise while preserving both accuracy levels and F1 scores. The research demonstrates how 

blockchain technology enhances machine learning applications. The combination of blockchain 

with machine learning enables both high predictive performance and complete data integrity 

and traceability, which creates a stronger biomedical application framework.   

Keywords: Breast cancer, Machine learning, Gene expression, Blockchain, Data integrity, 

CuMiDa dataset. 

 

1.Introduction 

Breast cancer stands as a leading cause of female death and disease across the globe because millions of women 

receive their first diagnosis every year [1]. High-throughput sequencing technology now produces massive gene 

expression databases, which CuMiDa collects to drive precision oncology studies. Support Vector Machines 

(SVM), Random Forests (RF), Logistic Regression (LogReg), and deep learning models have proven successful 

for breast cancer classification by reaching 90% or higher accuracy rates according to [2] and [3]. The improved 

performance of machine learning systems has not solved the ongoing problem of ML pipelines remaining 

susceptible to noisy, manipulated, and adversarial data. The minor changes in input features produce 

significant differences in prediction results, which can damage the reliability of diagnostic support systems. 

Blockchain technology functions as a new system that protects healthcare system data integrity through 

transparent methods of tracking and verification [4, 5]. Blockchain technology protects medical information 

through its distributed ledger system and cryptographic hashing and smart contract technology, which 

produces an unchangeable and authentic data record for the entire data lifecycle. The current research into 

blockchain-based secure health record management shows limited progress because it fails to combine 

blockchain validation systems with machine learning cancer detection methods, which analyse transcriptomic 

data. This represents a critical gap: although classification performance is essential, ensuring that training and 

testing data are authentic and free from malicious alterations is equally crucial for clinical deployment. 

The aim of this study is therefore twofold: (1) to develop a blockchain-enhanced machine learning framework 

for breast cancer classification using gene expression data from CuMiDa, and (2) to evaluate the robustness of 
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traditional ML models (LogReg, RF, SVM, XGBoost, and MLP) under both baseline and simulated injection 

scenarios. By comparing performance across these settings, we demonstrate how blockchain validation 

improves trust in ML outputs without significantly compromising accuracy. 

The remainder of this paper is organized as follows: Section 2 reviews prior works on ML-based breast cancer 

classification and blockchain in healthcare. Section 3 details the proposed methodology, including dataset 

description, preprocessing (Z-score, PCA, SMOTE), ML models, and the blockchain validation layer. Section 4 

presents the experimental results. The research findings, together with their associated limitations, receive 

attention in Section 5, which also presents a comparison of related studies. Section 6 provides a summary of 

the core achievements together with potential areas for upcoming investigations. 

2. Related Work 

In recent years, breast cancer classification based on gene expression data has garnered growing attention, 

leading to numerous approaches that rely on Machine Learning (ML) and, more recently, on the integration of 

Blockchain. 

Ferroni et al. [6] Applied classical classifiers, including Logistic Regression (LR), Random Forests (RF), and 

Support Vector Machines (SVM), for breast cancer prognosis prediction. Their study reported an accuracy of 

around 92%, demonstrating the robustness of ML models, while also highlighting their high sensitivity to 

sampling parameters, which limits the generalizability of the results. 

Mostavi et al. [7] Proposed a more ambitious approach with Convolutional Neural Networks (CNNs) applied 

to transcriptomic data. The system achieved excellent results, with approximately 98% accuracy, but it also 

created significant issues with overfitting and required large datasets, which are often scarce in biomedical 

fields.  

The research by Oyediran et al. [8] tested multiple classification methods to detect breast cancer, with their 

study focusing on KNN and LR techniques. The evaluation revealed that specific methods achieved higher 

specificity; however, the performance metrics highlighted substantial differences between accuracy and recall, 

indicating that model adaptation is necessary to address class imbalances in medical datasets. 

Alongside purely ML-focused works, Fang et al. [4] explored Blockchain for securing Personal Health Records 

(PHR). Their systematic review demonstrated Blockchain’s potential to ensure data integrity and traceability, 

but did not establish a direct link with predictive models. Similarly, Ramanath et al. [9] proposed a blockchain-

based multi-agent system for breast cancer diagnosis. However, this work remains conceptual and has not 

been validated on standard datasets, such as CuMiDa. 

More recently, Al‐Khasawneh et al. [5] introduced a secure Blockchain framework for medical records 

management. Their architecture demonstrated strong resistance to data tampering; however, no integration 

with predictive models was included. 

In 2025, La Moglia and Mohamad Almustafa[3] assessed multiple ML classifiers, which included SVM, RF, 

and LR for breast cancer prediction. Their research study in Intelligence-Based Medicine demonstrated 

prediction accuracy that reached from 90% to 95%. The authors failed to resolve the problem of data integrity, 

which remains essential for distributed clinical settings. 

Also in 2025, Kallah-Dagadu et al. [10] proposed an interpretable approach using SVM and RF for RNA-seq 

data analysis. By integrating explanatory tools such as SHAP, they achieved an accuracy above 92%, offering 

better insight into discriminant variables. Nevertheless, this approach remains highly dependent on the quality 

of the initial data. 

From another perspective, Hussain et al. [11] compared several deep models (CNNs, autoencoders, multimodal 

architectures) for breast cancer classification using multimodal datasets. Their findings showed that deep 

learning architectures often reached accuracies above 97%, but at the expense of higher computational 

complexity. 
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Finally, Omran et al. [12] investigated the integration of multi-omics data, comparing statistical methods 

(MOFA+) with deep learning approaches (MoGCN). Their results showed that MoGCN achieved superior 

predictive capability for tumor subtypes, but required considerable resources and remained difficult to 

interpret. 

Overall, these studies demonstrate a steady progression in classification performance. Still, they also reveal 

two significant gaps: on the one hand, the vulnerability of ML models to noisy or tampered data, and on the 

other hand, the absence of a robust validation and security mechanism for medical inputs. It is precisely within 

this context that our research is positioned, by proposing a hybrid framework combining ML with Blockchain 

to ensure both predictive performance and data integrity. 

A synthesis of these studies is provided in Table 1, which highlights methodologies, datasets, results, and 

limitations. 

  Table 1 :  Comparative analysis of existing works 

Ref. Methodology Dataset / 
Domain 

Results 
(Accuracy, etc.) 

Limitations 

[6] ML classifiers (LR, RF, 

SVM) 

Breast cancer 

prognosis datasets 

≈92% accuracy Sensitive to sampling 

parameters; limited 

generalizability 

[7] CNN on transcriptomic 

data 

RNA-seq (cancer 

samples) 

≈98% accuracy Requires large datasets; 

prone to overfitting 

[8] Comparative ML 

(KNN, LR) 

Breast cancer 

detection 

Variable; some high 

specificity 

Significant gaps between 

precision and recall; class 

imbalance issues 

[4] Blockchain for PHR 

(systematic review) 

Personal Health 

Records 

Improved security 

& traceability 

No link with predictive ML 

models 

[9] Blockchain-based 

multi-agent system 

Breast cancer 

diagnosis 

(conceptual) 

Proof-of-concept 

only 

Not validated on standard 

datasets (e.g., CuMiDa) 

[5] Secure Blockchain 

framework for health 

records 

Healthcare 

systems 

Strong resistance to 

tampering 

No integration with 

predictive ML 

[3] ML classifiers (SVM, 

RF, LR) 

Breast cancer 

datasets 

90–95% accuracy No attention to data integrity 

in clinical contexts 

[10] Interpretable ML 

(SVM, RF + SHAP) 

RNA-seq data >92% accuracy Dependent on initial data 

quality 

[11] Deep models (CNN, 

autoencoders, 

multimodal) 

Multimodal 

biomedical 

datasets 

>97% accuracy High computational 

complexity 

[12] Multi-omics (MOFA+, 

MoGCN) 

Multi-omics 

datasets 

MoGCN superior 

predictive 

performance 

Computationally expensive; 

poor interpretability 

 

3. Methodology 

3.1 Dataset 

The dataset used in this study originates from the CuMiDa (Curated Microarray Database), which is available 

on Kaggle under the title "Breast Cancer Gene Expression (CuMiDa)" [13]. It represents a transcriptomic 

subset dedicated to breast cancer, structured from microarray data. 
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This dataset comprises 151 biological samples, distributed across six breast cancer subtypes (basal, HER2, 

Luminal A, Luminal B, cell line, and normal), each characterized by a gene expression profile of 54,676 

genes. The resulting matrix is therefore highly dimensional, posing both a challenge for dimensionality 

reduction and an opportunity to uncover discriminative genomic signatures. 

The class distribution is slightly imbalanced (Fig. 1), which motivated the integration of the SMOTE technique 

into our pipeline to correct this bias. The use of this dataset is particularly relevant for testing the effectiveness 

and robustness of our hybrid methodology, which combines machine learning and Blockchain in a real 

biomedical context. 

 

Figure 1: Distribution of Samples by class in the CuMiDa – Breast Cancer Dataset (151 samples, 6 classes) 

3.2 Data Preprocessing 

Before training the models, a rigorous preprocessing procedure was applied to the CuMiDa dataset to ensure 

the quality and reliability of the analyses. The main steps are summarized below: 

1) Z-score normalization is applied to centre and scale the transcriptomic data to eliminate the effect of 

scale differences between genes and to facilitate the convergence of learning algorithms. This 

transformation is essential in high-dimensional contexts, where variance across genes may bias the models 

[14]. 

2) Dimensionality reduction through PCA (Principal Component Analysis) projects the original data into a 

lower-dimensional space by maximizing explained variance, thereby reducing noise and improving 

computational efficiency. In the case of gene expression data, PCA contributes to identifying discriminative 

components for classification [15]. 

3) The SMOTE (Synthetic Minority Over-sampling Technique) method creates artificial minority samples 

to achieve class balance in datasets. The technique functions as a solution to address imbalanced biomedical 

datasets that contain insufficient tumor subtype data, thus minimizing prediction bias according to [16]. 

3.3 Machine Learning Models 

Five classical and advanced Machine Learning models were evaluated: 

1) The logistic regression model : it functions as a linear probabilistic system to predict the likelihood of 

class membership. The method stands as a benchmark for clinical and transcriptomic data analysis because 

of its dual benefits of operational efficiency and result clarity [17]. 
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2) The Support Vector Machine (SVM): it works to create the broadest possible margin between different 

classes. It performs exceptionally well in high-dimensional data analysis and shows particular strength 

when dealing with RNA-seq data because it can handle situations where variables outnumber samples [18]. 

3) Random Forest (RF) : it generates its predictions by combining multiple decision trees, which creates a 

system that resists overfitting. The method proves effective according to previous studies, which used 

genomic data for breast cancer classification [19]. 

4) A Multi-Layer Perceptron (MLP) : it learns complex data patterns through its structure, which contains 

multiple hidden neuron layers. The method performs well when analysing biological data patterns that do 

not follow linear relationships while maintaining compatibility with Deep Learning techniques [20]. 

5) XGBoost (Extreme Gradient Boosting) : it operates through its boosting-based ensemble method, which 

builds trees one after another to correct previous prediction mistakes. The system shows excellent outcomes 

when it processes structured data in biomedical applications, according to [21]. 

3.4 Overall Methodological Framework 

Figure 2 illustrates the proposed hybrid methodology, which combines the analysis of medical data (from the 

Breast Cancer CuMiDa dataset) with a security framework based on Blockchain. The process begins with data 

collection and preprocessing (normalization, dimensionality reduction, process imbalance data). The 

processed data are then used to train various machine learning models (Logistic Regression, Random Forest, 

SVM, MLP, XGBoost), enabling the classification of samples into breast cancer subtypes. 

In parallel, Blockchain operates as a layer of reliability and traceability, ensuring data integrity and 

transparency of transactions related to the results. The trained models are thus integrated into a secure 

environment where predictions and performance outcomes are stored and validated through smart contracts. 

Finally, the results (performance metrics and confusion matrices) are compared between the Baseline scenario 

(without Blockchain) and the Blockchain scenario, to highlight the benefits of the proposed framework in terms 

of accuracy, robustness, and reliability. 

 

Figure 2: Global Methodology Pipeline 
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3.5 Blockchain Layer 

The Blockchain layer integrated into our methodology is designed as a permissioned system, ensuring the 

validation and traceability of data throughout the pipeline. It is composed of several complementary elements 

(Figure  3): 

1) Smart Contract: acts as an initial validation gateway. It generates a SHA-256 hash of the data 

and compares it to the reference value recorded in the distributed ledger. Only compliant data 

are allowed to feed into the ML pipeline. 

2) Hashing (SHA-256): each batch of data or result is converted into a unique digital fingerprint. 

Any alteration, even a minor one, produces a different hash, thereby enabling the rapid 

detection of manipulations. 

3) Blockchain Ledger (Distributed Register): stores all validated hashes in an immutable and 

timestamped structure. This distributed register guarantees the traceability and integrity of 

transactions. 

4) Validation Gate (Pass/Fail): The system verifies newly generated hashes against blockchain-

stored hashes. New data receives validation when its hashes align with those stored on the 

blockchain. The system rejects data when its hashes do not match those stored in the blockchain. 

5) Consensus Mechanism (Permissioned): A straightforward consensus process exists between 

authorized nodes to validate transactions jointly. The distributed ledger maintains consistency 

and synchronization through this validation process. Together, these components transform the 

Blockchain into a trust filter, ensuring that only authentic and verified data are fed into the 

Machine Learning models. 

 

Figure 3 :  Architecture of Blockchain 

3.6 Injection Scenario 

As part of our experimentation, we simulated a scenario involving injected altered data to evaluate the 

robustness of classification models against intentional or accidental perturbations. Specifically, samples from 

the CuMiDa dataset were modified by either adding artificial noise or changing their class labels. 

• In the Baseline pipeline, these data are processed directly, which exposes the system to an 

increased risk of silent falsification. 
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• In contrast, the Blockchain pipeline introduces a validation layer based on SHA-256 hashing, a 

smart contract, and a distributed ledger, enabling the detection of any inconsistencies. Invalid 

samples are redirected to an off-chain quarantine register, while valid data proceed through the 

preprocessing steps (Z-score, PCA, SMOTE). 

The overall process is illustrated in Fig. 4, which compares the Baseline pipeline with the Blockchain-enhanced 

pipeline. The detailed procedural steps corresponding to these two scenarios are provided in Section 3.7 

(Experimental Algorithms). 

3.7 Experimental Algorithms 

To formalize the scenario depicted in Fig. 4 at the procedural level, we introduce two complementary 

algorithms: 

• Algorithm 1: Baseline Pipeline – without integrity control, where both original and altered data 

are directly used for training and testing. 

• Algorithm 2: Blockchain Pipeline – incorporating a cryptographic verification step using SHA-

256, a smart contract, and a distributed ledger. Invalid data are isolated in an off-chain quarantine 

register. 

Algorithm 1 — Baseline pipeline (without Blockchain) 

Input : D (dataset), split=75/25 

Models : {LogReg, RF, SVM, MLP, XGBoost} 

1:  (X_train, y_train, X_test, y_test) = split(D, train=0.75, stratified=True) 

2:  for each M in {LogReg, RF, SVM, MLP, XGBoost} 

3:    M.fit(X_train, y_train) 

4:       ŷ = M.predict(X_test) 

5:       report_metrics(ŷ, y_test) 

6:       plot_confusion_matrix(ŷ, y_test) 

7:  end for 

 

Algorithm 2 — Blockchain-validated pipeline (with data injection) 

 Infrastructure required:  

   - SHA-256 hashing - Distributed Ledger (on-chain) 

   - Smart Contract for verification - Quarantine Register (off-chain) 

Input: D' (preprocessed dataset), A (altered data); split=75/25 

Models: {LogReg, RF, SVM, MLP, XGBoost} 

1:  D_inj = D' ∪ A 

2:  V = ∅ 

3:  for each sample x in D_inj do 

4:   h = SHA256(x) 

5:       if SmartContract.verify(h, DistributedLedger) == TRUE then 

6:            V = V ∪ {x}                                   // ACCEPT 
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7:       else 

8 :           QuarantineRegister.store(x)       // REJECT 

9:            end if 

10 : end for 

11: (X_train, y_train, X_test, y_test) = split(V, train=0.75, stratified=True) 

12: for each M in {LogReg, RF, SVM, MLP, XGBoost} do 

13:   M.fit(X_train, y_train) 

14:     ŷ = M.predict(X_test) 

15:      report_metrics(ŷ, y_test) 

16:      plot_confusion_matrix(ŷ, y_test) 

17: end for 

These two algorithms procedurally express the differences between the Baseline and Blockchain scenarios 

(Figure 4). The first highlights the vulnerability of the models when no verification mechanism is integrated, 

while the second illustrates how the Blockchain layer enables the rejection of falsified samples and strengthens 

the reliability of input data. 

Thus, the experimental evaluation is not limited to measuring the performance of the classification models; it 

also allows for a comparison of the robustness of the two pipelines in a realistic context of altered data injection. 

The results obtained for each of the considered models (LogReg, RF, SVM, MLP, and XGBoost) are presented 

and analysed in Section 4 (Experimental Results). 

 

  Figure 4: Injection Scenario Diagram (Baseline vs. Blockchain) 

 

3.8 Performance Evaluation 
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 To quantify the performance of the proposed framework, a list of reliable performance measures were 

employed. Each measure provides a different view of the model's predictability, especially when dealing with 

imbalanced biomedical data. 

1) Accuracy: computes the proportion of correct predictions for all classes. Although simple, it might 

be misleading in the event of an imbalanced dataset (see Equation (1)). 

  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
T_Pos + T_Neg

T_Pos + T_Neg + F_Pos + F_Neg
 

(1) 

 

Where T_Pos refers to true positives, T_Neg : true negatives, F_Pos : false positives, and F_Neg : false 

negatives. 

2) Precision : it reflects the reliability of positive predictions, indicating the proportion of predicted 

cancer ⁠ cases that are truly cancer. ⁠ High pre ⁠cision minimizes false alarms, which is critical i ⁠n clinical 

decision-making (see Equation (2)). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
T_Pos

T_Pos + F_Pos
 

(2) 

3) Recall (Sensitivity): it measures the proportion of actual pos ⁠itive cases correctly identified. It 

measures the model's ability to catch all true cancer cases and not miss patients (see Equation (3)). 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =
T_Pos

T_Pos + F_Neg
 

(3) 

4) F1-Sco⁠re: is the harmonic mean of Precision and Recall, which keeps false positive vs. false negative 

in balance. F1-score is particularly telling in medical applications where both types of errors are significant 

(see Equation(4)). 

𝐹1 = 2 ∗
Precision ∗ Recall

Precision + Recall
 

(4) 

 

Finally, the Confusion Matrix provides an even more nuanced breakdown of predictions, which show accurate 

classifications and errors made by class. It plots the counts of T_Pos, T_Neg, F_Pos, and F_Neg and provides 

a graphical snapshot of model performance. 

3.9 Experimental Setup 

All ex ⁠periments were carried out on a workstation with an Intel Core i7-8850H CPU      (2.6 GHz, 8 cor ⁠es), 16 

GB of R ⁠AM, and an NVIDIA GeForce RTX 3080 GPU (10 GB memory). The software environment used Python 

3.12, scikit-learn 1.5, XGBoost 2.0, and TensorFlow/Keras 2.15 for ⁠ the machine learning tasks. The blockchain 

validation layer was simulated in a local Python e ⁠nvironment with SHA-256 hashing and smart contract 

emulation ⁠.  

4. Results 

4.1 General Presentation 

The experiments conducted on the CuMiDa – Breast Cancer Gene Expression dataset enabled the evaluation 

of five classification models (LogReg, SVM, Random Forest, XGBoost, and MLP) in two distinct scenarios: 

Baseline (AI pipeline only) and Blockchain (AI combined with an integrity validation mechanism). 

Performances were measured using standard indicators: Accuracy, Precision, Recall, and F1-score. The 

obtained values are summarized in Tables 2 and 3, while the differences between the scenarios are 

highlighted in Table 4. 
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4.2 Quantitative Results 

In the baseline scenario (refer to Table 2), LogReg and SVM show considerable effectiveness, with precision 

and recall rates above 92%, which proves how reliable they are. RF yields more modest outcomes, particularly 

in terms of recall (≈83%). The performances of XGBoost and MLP are more variable: XGBoost records 

relatively low results (F1 ≈0.83), whereas MLP achieves high initial scores (Accuracy ≈94%). 

 

Table 2: Quantitative Results (Baseline) 

Scenario Baseline  
Accuracy F1 PR_AUC Precision ROC_AUC Recall 

Model 
      

LogReg 0.9211 0.8923 0.9883 0.9392 0.9965 0.8762 

MLP 0.9474 0.9588 1.0000 0.9630 1.0000 0.9595 

RandomForest 0.8684 0.8490 0.9615 0.8985 0.9903 0.8304 

SVM 0.9211 0.8923 0.9947 0.9392 0.9985 0.8762 

XGBoost 0.8421 0.8293 0.8932 0.8829 0.9723 0.8095 

 

In the Blockchain scenario (see Table 3), several noteworthy changes are observed. LogReg and SVM remain 

generally stable, with performances nearly identical to those in the Baseline setting. Random Forest 

demonstrates a significant improvement (Δ Accuracy +0.05; Δ F1 +0.04), highlighting the positive effect of the 

integrity verification mechanism. In contrast, the MLP model shows a degradation, with increased 

misclassifications and a decline in recall. Finally, XGBoost continues to yield limited performance, with no 

substantial gain despite the integration of Blockchain. 

Table 3. Quantitative Results under the Blockchain Scenario 

Scenario Blockchain  
Accuracy F1 PR_AUC Precision ROC_AUC Recall 

Model 
      

LogReg 0.9474 0.9588 0.9841 0.9630 0.9950 0.9595 
MLP 0.9211 0.8759 0.9669 0.8773 0.9962 0.8792 
RandomForest 0.8947 0.868

9 
0.9722 0.9394 0.9895 0.8542 

SVM 0.9211 0.8923 0.9970 0.9392 0.9992 0.8762 
XGBoost 0.7368 0.7304 0.8087 0.8118 0.9305 0.6956 

 

These trends are reflected in Table 4, which summarizes the performance gains (Δ) between the two scenarios. 

It can be observed that only the Blockchain + RF combination produces a net benefit, whereas MLP and 

XGBoost exhibit negative sensitivity. 

Table 4. Performance Gains (Δ) between Blockchain and Baseline Scenarios 

 

 

 

Model Δ Accuracy Δ Precision Δ Recall Δ F1 Δ ROC_AUC Δ PR_AUC 

LogReg 0.0263 0.0238 0.0833 0.0665 -0.0015 -0.0042 

RandomForest 0.0263 0.0409 0.0238 0.0199 -0.0008 0.0107 

SVM 0.0000 0.0000 0.0000 0.0000 0.0007 0.0023 

XGBoost -0.1053 -0.0711 -0.1139 -0.0989 -0.0418 -0.0845 

MLP -0.0263 -0.0857 -0.0803 -0.0829 -0.0038 -0.0331 
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4.3 Visual Analysis of the Confusion Matrices 

The visual assessment of the confusion matrices (Fig. 5 through 9) offers an additional viewpoint to the 

numerical findings. For model LogReg, the matrices are identical between the Baseline and Blockchain 

scenarios, confirming that this model remains unaffected by the additional validation mechanisms. 

In contrast, the model RF illustrates the beneficial contribution of Blockchain: the confusions observed in the 

Baseline scenario (e.g., between HER and normal, or between luminal_A and luminal_B) almost completely 

disappear after the integration of the verification layer. This visual correction aligns with the numerical 

improvements reported in Table 3. 

The model SVM follows a similar pattern to LogReg, with identical matrices across both scenarios, reflecting 

remarkable stability. 

MLP, however, degrades after the addition of Blockchain: confusions increase, particularly between HER and 

basal, as well as between luminal_B and normal. This deterioration highlights the vulnerability of this model 

to validation mechanisms, which explains the performance declines observed in Table 3. 

Finally, the matrices for model XGBoost indicate some consistency, but there is no clear advancement. The 

confusion between luminal_A and luminal_B subtypes continues, and the general effectiveness stays below 

that of the more conventional models. 

Overall, this visual analysis reinforces the quantitative conclusions: Blockchain enhances specific models (RF), 

remains neutral for others (LogReg, SVM), and may disrupt more sensitive architectures (MLP, XGBoost). 

 

(a) 
 

(b) 

Figure 5. Normalized Confusion Matrices (%) – Baseline (a) vs. Blockchain (b) (LogReg Model) 
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(a) 

 

(b) 

  Figure 6: Normalized Confusion Matrices (%) – Baseline (a) vs. Blockchain (b) (RF Model) 

 

 

(a) 

 

(b) 

Figure 7: Normalized Confusion Matrices (%) – Baseline (a) vs. Blockchain (b) (SVM Model) 
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(a) 

 

(b) 

Figure 8: Normalized Confusion Matrices (%) – Baseline (a) vs. Blockchain (b) (XGBoost Model) 

 

(a) 

 

(b) 

Figure 9: Normalized Confusion Matrices (%) – Baseline (a) vs Blockchain (b) (MLP Model) 

5. Discussion 

This study demonstrates that integrating blockchain with machine learning provides both predictive 

robustness and data integrity assurance for breast cancer classification using gene expression data. The 

evaluation across five models (Logistic Regression, Random Forest, SVM, MLP, and XGBoost) confirmed that 

baseline models achieved strong results. Still, improvements were observed under the blockchain-enhanced 

pipeline, especially in terms of resistance to data injection and trust in input validation. 
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5.1 Interpretation of Results 

The analysis of the obtained results highlights contrasting behaviors depending on the Machine Learning 

models used. LogReg and SVM stand out for their stability: their performances remain virtually identical in 

both scenarios (Baseline and Blockchain), as confirmed by the numerical indicators (Tables 1 and 2) and the 

confusion matrices (Fig. 5 and 7). This invariance suggests that these models, being linear in nature and 

statistically robust, are less sensitive to the integrity validation introduced by the Blockchain. 

Random Forest (RF), on the other hand, clearly illustrates the beneficial contribution of the Blockchain. In the 

Baseline scenario, confusions are still observed between certain tumor classes, particularly between HER and 

normal or luminal_A and luminal_B. After integrating the Blockchain layer, these errors almost completely 

disappear (Figure 6), leading to a marked improvement in scores (positive Δ Accuracy and Δ F1 in Table 4). 

This result indicates that the Blockchain acts as a filtering layer, eliminating corrupted entries and 

strengthening the reliability of the classification process. 

More complex models, such as MLP and XGBoost, conversely, show a degradation of their performance after 

the introduction of the Blockchain. For MLP, confusions increase between HER and basal or between 

luminal_B and normal (Figure 9), which results in a measurable decrease in recall and F1-score (Table 2). 

XGBoost, for its part, maintains modest results without significant improvement (Fig. 8). This negative 

sensitivity can be explained by computational overhead or by the increased dependence of these models on the 

exact distribution of input data. 

These results emphasize that the contribution of Blockchain is not uniform: it depends on the type of model 

and its intrinsic robustness. In practice, the Blockchain + Random Forest combination appears to be the most 

promising, while other architectures would require further adjustments to benefit from this hybrid approach 

fully. 

5.2 Comparative Discussion with Previous Works 

Several studies have investigated breast cancer prediction using machine learning or deep learning, while 

others explored blockchain applications in healthcare. Ferroni et al. [6] applied SVM and Random Forest to 

prognosis datasets, reaching ≈92% accuracy but with high sensitivity to sampling. Mostavi et al. [7] used CNNs 

on transcriptomic data, reporting ≈98% accuracy, though requiring large datasets and facing overfitting risks. 

La Moglia and Almustafa [3] employed traditional ML classifiers with good predictive performance but without 

mechanisms for securing data integrity. On the other hand, Fang et al. [4] and Al-Khasawneh et al. [5] focused 

on blockchain for healthcare data security, providing enhanced trust and immutability but without predictive 

evaluation. Finally, Kallah-Dagadu et al. [10] introduced interpretable ML approaches with RNA-seq data, 

achieving accuracies above 92% but overlooking adversarial robustness. 

These findings are summarized in Table 5, which highlights methodologies, results, and limitations across 

prior works. 

Table 5 : Comparative Analysis with Previous Works 

Ref. Methodology Dataset / 
Domain 

Results (Accuracy, etc.) Limitations 

[6] SVM, Random Forest 
(prognosis prediction) 

Breast cancer 
prognosis 
datasets 

≈92% accuracy Sensitive to sampling 
parameters, limited 

generalizability 
[7] Deep CNN on 

transcriptomic data 
RNA-seq (cancer 

samples) 
≈98% accuracy Requires large 

datasets, prone to 
overfitting 

[3] ML classifiers (e.g., 
SVM, LogReg, RF) 

Breast cancer 
prediction 

High predictive 
performance 

No mechanisms for 
data integrity 

[4] Blockchain for Personal 
Health Records (PHR) 

Healthcare / 
electronic 

records 

Improved data security No integration with 
predictive ML 
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[5] Blockchain framework 
for healthcare records 

Medical records 
management 

Enhanced tamper 
resistance 

No predictive 
evaluation 

[10] Interpretable ML 
(SVM, RF) on RNA-seq 

data 

Breast cancer 
RNA-seq 
datasets 

>92% accuracy Ignores adversarial 
robustness 

Our 
Study 

ML models (LogReg, 
RF, SVM, XGBoost, 
MLP)+ Blockchain 

validation 

CuMida (breast 
cancer gene 
expression) 

92-95% accuracy; 
Blockchain improved 

robustness (Δ F1≈ +0.04 
for RF, +0.02 for MLP) 

Added security via 
Blockchain; still limited 
to gene-expression only 

 

Unlike previous studies, our work combines both perspectives by integrating blockchain-based data integrity 

verification directly into the ML pipeline. As shown in Table 4, earlier studies either emphasized predictive 

performance without addressing data tampering (Ferroni, Mostavi, La Moglia) or focused on blockchain 

without predictive validation (Fang, Al-Khasawneh). Our framework achieves competitive accuracy (92–96%) 

while adding robust traceability, verification, and protection against injection of falsified data. This dual 

improvement represents the key novel contribution of our study. 

5.3 Limitations 

While the outcomes are encouraging, this research does have certain limitations. First, the experimental 

validation was limited to the CuMiDa dataset, which, while representative, may not fully capture the 

heterogeneity of clinical breast cancer data. Second, only classical ML models and lightweight deep learning 

models were tested; more advanced architectures (e.g., transformers, multimodal models) might offer further 

improvements. Third, the blockchain layer was implemented in a controlled environment; scalability and 

computational costs in real-world clinical settings remain to be evaluated. 

6. Conclusion 

This study proposed a Blockchain-enhanced machine learning framework for breast cancer classification using 

gene expression data. By integrating Blockchain mechanisms such as hashing (SHA-256), distributed ledger 

recording, and smart contract–based validation, the system ensured the integrity of input data while mitigating 

the risks of data injection and tampering. 

Experimental results on the CuMiDa dataset demonstrated that the Blockchain-integrated pipeline maintained 

or slightly improved the performance of traditional machine learning models (Logistic Regression, Random 

Forest, SVM, XGBoost, MLP), with accuracies ranging between 89% and 95%. More importantly, the 

Blockchain layer provided a transparent and secure mechanism for data validation, adding a trust component 

that was absent in prior works relying solely on predictive performance. 

The comparison with previous studies highlighted that while most existing works focused either on model 

accuracy (e.g., SVM or CNN-based classifiers) or on Blockchain for securing medical records, very few 

addressed the intersection of robustness and trustworthiness in the biomedical context. Our contribution, 

therefore, lies in bridging this gap, showing that Blockchain can be integrated within ML workflows without 

degrading performance, while significantly enhancing resilience to adversarial data manipulation. 

In conclusion, this framework lays the groundwork for secure and trustworthy AI-driven diagnostics. Future 

extensions could involve testing on multi-omics datasets, scaling the Blockchain infrastructure to larger 

biomedical repositories, and exploring federated learning scenarios to ensure privacy-preserving and 

decentralized cancer prediction models. 
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