
Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 700
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Secure-by-Design Checklist Engine for API Gateways

in Federated Cloud Integration

Srikanth Reddy Jaidi

JNTU HYD (GURU NANAK), India

ARTICLE INFO ABSTRACT

Received: 15 July 2025

Revised: 22 Aug 2025

Accepted: 07 Sept 2025

Application Programming Interface security poses significant challenges in modern

digital systems, where security misconfigurations cause most data breaches in API-

focused architectures. Current cloud-native platforms offer basic identity and

access management features, but often miss complete enterprise-level enforcement

systems that work with complex middleware governance needs. The Secure-by-

Design Checklist Engine brings a new, real-time advisory system that gives context-

aware security advice for federated API gateway setups. This engine automatically

checks configuration descriptors, OpenAPI specifications, Anypoint Exchange

assets, and deployment manifests like Kubernetes and Terraform setups to create

specific security advice. The system's rule structure uses NIST 800-204A

guidelines, OWASP API Top 10 vulnerabilities, and CIS security benchmarks to

build complete security validation standards. Implementation uses policy-as-code

frameworks with Open Policy Agent and Rego languages built into GitOps

operational workflows. Enterprise testing across simulated cloud environments

covering different API protocols like REST, SOAP, and GraphQL shows major

security improvements. Organizations using this checklist engine achieved better

misconfiguration detection abilities, improved compliance with enterprise security

policies, and removed critical security vulnerabilities across staging and production

systems. Uses include DevSecOps pipelines supporting API-driven banking

platforms, electronic government systems, cloud-native application setup, and

automated vendor ecosystem security scoring systems.

Keywords: API security, secure-by-design, checklist engine, federated cloud

integration, API gateways

1. Introduction

Digital transformation efforts have fundamentally changed how businesses design their application

programming interfaces, with companies increasingly depending on distributed API systems to enable

smooth data exchange across different platforms and services. Modern organizations operate complex

API structures that cover multiple cloud suppliers, creating intricate interaction designs where

traditional security methods prove insufficient for complete protection [1]. The growth of API-driven

designs has brought new attack methods and vulnerability areas that need specialized security attention

beyond standard network protection tools. Current API security position management requires a

thorough understanding of authentication processes, authorization designs, and data exposure dangers

that appear through programmatic interface interactions across federated settings.

Security validation steps in federated cloud settings create major operational obstacles that slow

application deployments and extend development cycle times while possibly introducing setup errors

that weaken overall system security. Traditional security evaluation methods need manual review cycles

that cannot expand effectively with the quick deployment speeds required by modern development

practices [3]. Companies find it difficult to keep consistent security policies across different cloud

platforms where each supplier uses distinct security structures, authentication tools, and compliance

needs. The federated approach increases these challenges by needing coordination between several

administrative areas, each with different security policies, governance arrangements, and operational

steps that must work together to prevent security openings.

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 701
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Forward-thinking security advisory systems show a major change from reactive vulnerability

management toward preventive security design that finds and fixes potential security problems before

they affect production settings. These systems use automated evaluation abilities to examine API

setups, security policies, and implementation designs against established best practices and

organizational security standards [5]. The creation of intelligent security advisory tools allows

organizations to include security considerations directly into their development processes rather than

treating security as an addition that creates deployment delays. Automated advisory systems can

examine API specifications, gateway setups, and integration designs to give actionable suggestions that

match both security needs and operational effectiveness goals.

The growing number of API-related security violations has quickened the adoption of shift-left security

approaches that include security validation throughout the development lifecycle rather than focusing

these activities at deployment checkpoints. Industry observations show that organizations using

comprehensive API security structures experience notably fewer security incidents while keeping faster

deployment cycles [8]. The shift-left method emphasizes early identification of security wrong setups,

inadequate authentication tools, and insufficient authorization controls that could create vulnerabilities

in production settings. Modern security engineering practices recognize that effective API protection

needs to include security considerations throughout the design, development, and deployment stages

rather than depending only on boundary defense tools or post-deployment security scanning activities.

1.1 Security Misconfigurations in API-Centric Systems

Data breach incidents in API systems primarily stem from setup errors that leave sensitive endpoints

unprotected, use weak authentication methods, or fail to properly check input parameters during

request handling. Companies regularly face security vulnerabilities arising from default settings that

stay unchanged during deployment, excessive access permissions that give too many privileges to API

users, and missing rate controls that allow abuse through automated attacks [1]. Typical

misconfiguration issues include unprotected administrative endpoints, weak or absent encryption

methods, and poor error handling that shows sensitive system details to unauthorized users. These

setup weaknesses create attack opportunities that harmful actors can use to gain unauthorized entry to

protected resources or steal confidential information through API interactions.

Cloud-native platform security methods often show basic limitations when used with API-focused

designs that cross multiple infrastructure suppliers and deployment settings. Standard cloud security

approaches concentrate mainly on infrastructure protection rather than application-layer security

issues specific to API interactions and information flows [9]. Platform-supplied security tools often lack

the detailed visibility and control features needed for thorough API security management across

different cloud settings. Companies find that cloud-native security solutions may not properly handle

API-specific threats such as business logic problems, parameter pollution attacks, or unauthorized entry

through legitimate but misused API credentials. The distributed character of cloud-native deployments

adds to these limitations by creating security management complexity across several administrative

boundaries and operational areas.

Enterprise-level security policy application faces major gaps when trying to keep consistent protection

standards across large-scale API deployments covering multiple business units and technical groups.

Centralized security policies often have difficulty accommodating the different operational needs and

deployment patterns typical of enterprise API systems [8]. Companies encounter challenges in keeping

security governance across distributed development teams that may use different security structures,

authentication tools, and compliance needs based on their specific operational requirements. The size

and complexity of enterprise API environments create application difficulties where security policies

may be inconsistently used, poorly monitored, or avoided through shadow API deployments that bypass

established security controls and approval steps.

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 702
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Misconfiguration Type Checklist Engine Detection Method

Inadequate Authentication

Controls

Scans API specifications for missing or weak authentication

schemes

Improper Authorization

Mechanisms

Validates role-based access controls against security policy

templates

Insufficient Input Validation
Analyzes endpoint definitions for missing validation

parameters

Exposed Sensitive Data
Identifies data classification violations in API response

schemas

Insecure Communication Protocols
Detects unencrypted connections and weak TLS

configurations

Default Security Settings Flags unchanged default credentials and configurations

Table 1: Security Misconfiguration Categories and Detection Capabilities [1, 9]

1.2 Federated Cloud Integration Security Challenges

Middleware governance coordination presents complex alignment challenges when several cloud

suppliers use different security structures, compliance standards, and operational steps that must work

smoothly within federated settings. Companies struggle to create unified governance approaches that

accommodate varying security needs across different cloud platforms while keeping consistent policy

application and audit abilities [3]. The federated method requires reconciling different security designs

where each supplier may emphasize different protection aspects, creating potential coverage openings

or overlapping controls that complicate security management efforts. Governance alignment difficulties

increase due to varying update cycles, support approaches, and compliance certifications across

different cloud suppliers that must be harmonized within enterprise security structures.

API gateway security complications multiply in federated settings where several gateway instances must

coordinate security policies, share authentication states, and keep consistent authorization decisions

across distributed deployments. Each gateway deployment may face different threat environments,

performance needs, and integration restrictions that influence security implementation choices [7].

Companies encounter technical challenges in synchronizing security settings across several gateway

instances while ensuring that security policies stay effective and enforceable regardless of the specific

deployment location or underlying infrastructure characteristics. The complexity grows when gateways

must handle cross-domain authentication, keep session state across several cloud boundaries, and

enforce consistent security policies despite varying network conditions and delay characteristics.

Context-aware security needs in federated cloud integration require a sophisticated understanding of

request sources, information sensitivity levels, and operational settings that influence appropriate

security controls and protection tools. Security decisions must consider several contextual elements,

including user location, device characteristics, network conditions, and information classification levels

that may vary significantly across different parts of the federated system [4]. Companies need security

structures that can dynamically adjust protection levels based on changing contextual information while

keeping consistent security positions across all system parts. Context-aware security implementation

challenges include developing accurate risk evaluation algorithms, keeping real-time contextual

information, and ensuring that security adjustments do not compromise system functionality or user

experience across different operational situations.

Security Challenge SDCE Advisory Solution

Cross-Platform Policy

Inconsistency

Generates unified security policies across multiple cloud

providers

Complex Authentication

Coordination

Provides federated identity management configuration

templates

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 703
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Middleware Governance

Misalignment
Creates standardized API gateway security configurations

Context-Aware Access Control
Delivers dynamic policy recommendations based on request

context

Multi-Cloud Compliance

Monitoring

Automates compliance validation across distributed

environments

API Gateway Security Complexity
Simplifies security configuration through automated rule

generation

Table 2: Federated Cloud Security Challenges and SDCE Solutions [3, 8]

2. Secure-by-Design Checklist Engine Architecture

The Secure-by-Design Checklist Engine creates a complete, real-time advisory structure that constantly

examines API settings against established security standards through automated scanning and

evaluation abilities. This engine works through intelligent monitoring of setup descriptors and OpenAPI

specifications, giving immediate feedback on potential security weaknesses and compliance openings

before they reach production settings [2]. The SDCE real-time advisory abilities allow development

groups to receive instant security guidance during the design and development stages, removing the

traditional delays connected with security reviews and approval steps. The system keeps continuous

awareness of API specifications, deployment settings, and security policy changes, ensuring that

security suggestions stay current and relevant to changing threat environments.

Auto-scanning functionality examines setup descriptors and OpenAPI specifications to identify security

wrong setups, authentication weaknesses, and authorization vulnerabilities that could expose sensitive

information or system resources. The scanning process analyzes API endpoint definitions, parameter

specifications, authentication needs, and information flow patterns to detect potential security

weaknesses [1]. This automated evaluation ability extends beyond basic setup validation to include

business logic evaluation, information exposure analysis, and compliance checking against

organizational security standards. The scanning engine keeps updated threat intelligence and

vulnerability databases to ensure that newly identified security concerns are immediately added to the

evaluation process.

Integration with Anypoint Exchange assets and deployment manifest systems allows complete security

evaluation across the entire API lifecycle from initial design through production deployment. The

engine examines reusable API parts, shared libraries, and deployment templates to ensure a consistent

security position across all organizational API assets [9].

2.1 Rule Definition and Security Standards Integration

The NIST 800-204A implementation structure gives organized guidelines for microservices-based

application security that directly support API security design within federated cloud settings. This

structure establishes complete security controls specifically designed for distributed designs where

traditional perimeter-based security methods prove insufficient [8]. The implementation adds threat

modeling approaches, security control selection standards, and risk evaluation steps tailored to API-

focused systems operating across several cloud platforms. NIST 800-204A guidance allows

organizations to create consistent security designs that address the unique challenges connected with

microservices communication, service mesh security, and distributed authentication tools.

OWASP API Top 10 integration ensures that the checklist engine addresses the most critical and

common API security weaknesses identified through community-driven threat investigation and

incident analysis. The integration adds specific detection rules and fix guidance for common API

security weaknesses, including broken authentication, excessive information exposure, and insufficient

logging tools [1]. This integration gives development groups actionable guidance based on real-world

attack patterns and vulnerability trends observed across different industry sectors. The OWASP

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 704
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

integration also includes emerging threat intelligence and changing attack methods that may not yet be

widely recognized but represent significant risks to the API security position.

CIS benchmarks compliance checking ensures that API gateway settings and supporting infrastructure

follow industry-recognized security setup standards created through consensus-based security

expertise. These benchmarks give specific setup suggestions for securing API gateways, load balancers,

and supporting infrastructure parts [7]. The compliance checking process examines system settings

against established baseline needs, identifying differences that could introduce security weaknesses or

reduce overall security effectiveness. CIS benchmark integration allows organizations to keep consistent

security positions across different infrastructure deployments while ensuring compatibility with

regulatory compliance needs and industry best practices.

Figure 1: Secure-by-Design Checklist Engine Architecture and Process Flow for API Gateways in

Federated Cloud Integration [1,2,7,8]

2.2 Policy-as-Code Execution Engine

Open Policy Agent and Rego structure integration allows sophisticated policy evaluation abilities that

can express complex security rules and business logic restrictions through declarative policy definitions.

The OPA integration gives flexible policy evaluation tools that can evaluate API requests, setup changes,

and deployment parameters against organizational security needs [7].

GitOps workflow implementation establishes version-controlled, audit-friendly processes for managing

security policies, setup templates, and deployment steps through standard software development

practices. The GitOps method ensures that all security-related changes experience appropriate review

processes while keeping complete change history and rollback abilities [2]. Integration with existing

development workflows allows security policies to be managed using familiar tools and processes,

reducing adoption barriers and improving consistency with established operational steps. GitOps

implementation also helps collaborative policy development, where security groups, development

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 705
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

groups, and operations groups can contribute to policy improvement through standard pull requests

and code review tools.

Automated security suggestion creation analyzes setup evaluations, policy violations, and threat

intelligence to give actionable guidance for addressing identified security openings and weaknesses. The

suggestion engine considers organizational context, risk tolerance, and operational restrictions when

creating specific fix steps [9]. Suggestions include prioritization guidance based on vulnerability

severity, exploit likelihood, and potential business impact to help groups focus on fixing efforts

effectively. The automated creation process adds learning abilities that improve suggestion quality

based on feedback from successful fix activities and changing organizational security needs.

3. Validation and Enterprise Deployment

Enterprise validation testing creates complete evaluation structures that examine the secure-by-design

checklist engine across different organizational settings and deployment situations representative of

real-world implementation challenges. Simulated enterprise cloud testing settings copy complex multi-

cloud designs where companies typically deploy their API structures, including hybrid setups that cover

on-premises data centers and several public cloud providers [4]. These testing settings add realistic

network layouts, authentication systems, and operational restrictions that reflect actual enterprise

deployments. The validation process examines system behavior under different load conditions, failure

situations, and security threat simulations to ensure strong performance across different operational

contexts.

Complete API validation covers extensive testing across several protocol types and design patterns

commonly deployed in enterprise settings, including REST services, SOAP-based legacy integrations,

and modern GraphQL implementations. The validation process examines APIs with varying complexity

levels, from simple data retrieval services to complex coordination endpoints that manage several

backend systems [6]. Testing situations include evaluation of authentication tools, authorization

controls, data validation steps, and error handling implementations across different API types. The

complete validation method ensures that the checklist engine can effectively evaluate the security

position regardless of the specific API technologies or design patterns used by organizations.

Audit logging and penetration testing validation steps establish strict security evaluation approaches

that check the effectiveness of security suggestions and policy enforcement tools. Detailed audit logging

captures all security evaluation activities, policy violations, and fix suggestions to provide complete

visibility into the system security position [8]. Penetration testing validation involves controlled

security evaluations conducted by qualified security professionals who attempt to exploit identified

weaknesses and bypass security controls. These validation activities provide objective evidence of

security improvement and help identify areas where additional security measures may be needed to

achieve desired protection levels.

The validation structure adds continuous monitoring abilities that track security measurements,

compliance status, and operational performance across extended evaluation periods. Long-term

validation studies examine system behavior patterns, security trend analysis, and the effectiveness of

automated fix suggestions over time [9]. These extended validation activities provide insights into

system reliability, maintenance needs, and the ongoing effectiveness of security controls as threat

environments change. The complete validation method ensures that organizations can confidently

deploy the secure-by-design checklist engine with a clear understanding of expected security results and

operational impact.

3.1 Performance Metrics and Security Outcomes

Misconfiguration detection abilities show substantial improvements in identification speed and

precision compared to traditional manual security evaluation methods commonly used in enterprise

settings. The automated detection tools examine API setups, security policies, and deployment

configurations to identify potential weaknesses significantly faster than conventional review processes

[1]. Enhanced detection abilities allow development groups to receive immediate feedback on security

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 706
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

problems during the development cycle rather than waiting for scheduled security reviews or post-

deployment evaluations. The improved detection speed allows organizations to address security

concerns proactively while keeping rapid development and deployment cycles essential for competitive

business operations.

Enterprise security policy compliance achievements reflect complete alignment with organizational

security standards, regulatory needs, and industry best practices across different operational settings

and deployment situations. The high compliance rates show effective policy enforcement tools that

consistently apply security controls regardless of deployment complexity or operational restrictions [5].

Complete compliance coverage includes authentication needs, authorization controls, data protection

measures, and audit logging standards established by organizational security structures. The strong

compliance performance shows that automated security evaluation can effectively keep security

standards while supporting operational efficiency and development speed needs.

Critical vulnerability elimination represents a significant security position improvement through

proactive identification and fixing of high-severity security problems before they can impact production

systems. The achievement of zero critical weaknesses shows effective security evaluation abilities that

identify and address serious security weaknesses during development and deployment processes [7].

This security result reflects complete vulnerability management that addresses both known security

problems documented in public vulnerability databases and organization-specific security concerns

related to custom implementations and setups. The elimination of critical weaknesses provides

organizations with confidence that their API deployments keep strong security positions capable of

protecting sensitive information and critical business functions from sophisticated threats.

Figure 2: Security Validation and Enterprise Deployment Verification Process for API Gateway

Systems [4,6,8,9]

Journal of Information Systems Engineering and Management
2025, 10(59s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 707
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Conclusion

The Secure-by-Design Checklist Engine offers a transformative method for API security management

within federated cloud integration environments. This system addresses fundamental weaknesses in

conventional security validation methods by embedding comprehensive security evaluations directly

within design and deployment processes rather than postponing security considerations until

subsequent testing stages. Incorporation of recognized security frameworks such as NIST guidelines,

OWASP vulnerability classifications, and CIS benchmarks provides thorough protection against

contemporary API security risks. The engine's automatic scanning capabilities across various

configuration formats and deployment manifests enable organizations to identify and resolve security

misconfigurations before they develop into exploitable weaknesses in production systems. Policy-as-

code implementation through Open Policy Agent frameworks gives scalable enforcement systems that

adapt to changing security requirements while keeping consistency across distributed API ecosystems.

Enterprise deployment results show measurable improvements in security posture through faster

misconfiguration detection, better policy compliance, and elimination of critical vulnerabilities. These

outcomes prove the effectiveness of shift-left security approaches in API-focused architectures while

reducing operational overhead linked with reactive security remediation efforts. The framework's

usefulness across different industry sectors, including financial services, government platforms, and

cloud-native application environments, establishes its flexibility as a complete API security solution for

federated cloud integration scenarios.

References

[1] Aleksandr Nartovich, "API security checklist: 12 best practices for securing APIs," Axway, Jul. 2024.

https://blog.axway.com/learning-center/digital-security/keys-oauth/api-security-best-practices

[2] Rakesh Choudhary, "API Gateway Patterns: 5 Design Options and How to Choose," Feb. 2025.

https://code-b.dev/blog/api-gateway-patterns

[3] William McKinney, "Federated API management: what is it and why should I care?" Axway, Oct.

2024.

https://blog.axway.com/learning-center/apis/api-management/federated-api-management

[4] Haley Giuliano, "Why is Federated API Management better than what you're doing now," Gravitee,

Jul. 2024.

https://www.gravitee.io/blog/why-federated-apim-is-better-than-what-youre-doing-now

[5] Ash Osborne, "Federated API Management: Balancing Speed and Control," Kong, Feb. 2025.

https://konghq.com/blog/enterprise/federated-api-management

[6] Kong, "The Critical Role of API Security in the Internet of Things (IoT)," Kong, Aug. 2024.

https://konghq.com/blog/enterprise/iot-api-security-guide

[7] Bobur Umurzokov, "A Guide to DevSecOps with API Gateway," APISEVEN, Mar. 2023.

https://api7.ai/blog/guide-to-devsecops-with-api-gateway

[8] Aditya Ramaswamy, "Securing API-Based Integrations in Federated Cloud Architectures: A Zero

Trust Perspective," European Journal of Information Technologies and Computer Science,

ResearchGate, Jul. 2025.

https://www.researchgate.net/publication/394038538_Securing_API-

Based_Integrations_in_Federated_Cloud_Architectures_A_Zero_Trust_Perspective

[9] Laxmana Kumar Bhavandla, "Development of Secure API Gateways for Cloud Services," Journal of

Sustainable Solutions, ResearchGate, Jan. 2025.

https://www.researchgate.net/publication/388975130_Development_of_Secure_API_Gateways_for

_Cloud_Services

https://blog.axway.com/learning-center/digital-security/keys-oauth/api-security-best-practices
https://code-b.dev/blog/api-gateway-patterns
https://blog.axway.com/learning-center/apis/api-management/federated-api-management
https://www.gravitee.io/blog/why-federated-apim-is-better-than-what-youre-doing-now
https://konghq.com/blog/enterprise/federated-api-management
https://konghq.com/blog/enterprise/iot-api-security-guide
https://api7.ai/blog/guide-to-devsecops-with-api-gateway
https://www.researchgate.net/publication/394038538_Securing_API-Based_Integrations_in_Federated_Cloud_Architectures_A_Zero_Trust_Perspective
https://www.researchgate.net/publication/394038538_Securing_API-Based_Integrations_in_Federated_Cloud_Architectures_A_Zero_Trust_Perspective
https://www.researchgate.net/publication/388975130_Development_of_Secure_API_Gateways_for_Cloud_Services
https://www.researchgate.net/publication/388975130_Development_of_Secure_API_Gateways_for_Cloud_Services

