Journal of Information Systems Engineering and Management

2025, 10(598)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Secure-by-Design Checklist Engine for API Gateways
in Federated Cloud Integration

Srikanth Reddy Jaidi
JNTU HYD (GURU NANAK), India
ARTICLE INFO ABSTRACT
Received: 15 July 2025 Application Programming Interface security poses significant challenges in modern

digital systems, where security misconfigurations cause most data breaches in API-
focused architectures. Current cloud-native platforms offer basic identity and
Accepted: 07 Sept 2025 access management features, but often miss complete enterprise-level enforcement
systems that work with complex middleware governance needs. The Secure-by-
Design Checklist Engine brings a new, real-time advisory system that gives context-
aware security advice for federated API gateway setups. This engine automatically
checks configuration descriptors, OpenAPI specifications, Anypoint Exchange
assets, and deployment manifests like Kubernetes and Terraform setups to create
specific security advice. The system's rule structure uses NIST 800-204A
guidelines, OWASP API Top 10 vulnerabilities, and CIS security benchmarks to
build complete security validation standards. Implementation uses policy-as-code
frameworks with Open Policy Agent and Rego languages built into GitOps
operational workflows. Enterprise testing across simulated cloud environments
covering different API protocols like REST, SOAP, and GraphQL shows major
security improvements. Organizations using this checklist engine achieved better
misconfiguration detection abilities, improved compliance with enterprise security
policies, and removed critical security vulnerabilities across staging and production
systems. Uses include DevSecOps pipelines supporting API-driven banking
platforms, electronic government systems, cloud-native application setup, and
automated vendor ecosystem security scoring systems.

Revised: 22 Aug 2025

Keywords: API security, secure-by-design, checklist engine, federated cloud
integration, API gateways

1. Introduction

Digital transformation efforts have fundamentally changed how businesses design their application
programming interfaces, with companies increasingly depending on distributed API systems to enable
smooth data exchange across different platforms and services. Modern organizations operate complex
API structures that cover multiple cloud suppliers, creating intricate interaction designs where
traditional security methods prove insufficient for complete protection [1]. The growth of API-driven
designs has brought new attack methods and vulnerability areas that need specialized security attention
beyond standard network protection tools. Current API security position management requires a
thorough understanding of authentication processes, authorization designs, and data exposure dangers
that appear through programmatic interface interactions across federated settings.

Security validation steps in federated cloud settings create major operational obstacles that slow
application deployments and extend development cycle times while possibly introducing setup errors
that weaken overall system security. Traditional security evaluation methods need manual review cycles
that cannot expand effectively with the quick deployment speeds required by modern development
practices [3]. Companies find it difficult to keep consistent security policies across different cloud
platforms where each supplier uses distinct security structures, authentication tools, and compliance
needs. The federated approach increases these challenges by needing coordination between several
administrative areas, each with different security policies, governance arrangements, and operational
steps that must work together to prevent security openings.

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 700
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management

2025, 10(598)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Forward-thinking security advisory systems show a major change from reactive vulnerability
management toward preventive security design that finds and fixes potential security problems before
they affect production settings. These systems use automated evaluation abilities to examine API
setups, security policies, and implementation designs against established best practices and
organizational security standards [5]. The creation of intelligent security advisory tools allows
organizations to include security considerations directly into their development processes rather than
treating security as an addition that creates deployment delays. Automated advisory systems can
examine API specifications, gateway setups, and integration designs to give actionable suggestions that
match both security needs and operational effectiveness goals.

The growing number of API-related security violations has quickened the adoption of shift-left security
approaches that include security validation throughout the development lifecycle rather than focusing
these activities at deployment checkpoints. Industry observations show that organizations using
comprehensive API security structures experience notably fewer security incidents while keeping faster
deployment cycles [8]. The shift-left method emphasizes early identification of security wrong setups,
inadequate authentication tools, and insufficient authorization controls that could create vulnerabilities
in production settings. Modern security engineering practices recognize that effective API protection
needs to include security considerations throughout the design, development, and deployment stages
rather than depending only on boundary defense tools or post-deployment security scanning activities.

1.1 Security Misconfigurations in API-Centric Systems

Data breach incidents in API systems primarily stem from setup errors that leave sensitive endpoints
unprotected, use weak authentication methods, or fail to properly check input parameters during
request handling. Companies regularly face security vulnerabilities arising from default settings that
stay unchanged during deployment, excessive access permissions that give too many privileges to API
users, and missing rate controls that allow abuse through automated attacks [1]. Typical
misconfiguration issues include unprotected administrative endpoints, weak or absent encryption
methods, and poor error handling that shows sensitive system details to unauthorized users. These
setup weaknesses create attack opportunities that harmful actors can use to gain unauthorized entry to
protected resources or steal confidential information through API interactions.

Cloud-native platform security methods often show basic limitations when used with API-focused
designs that cross multiple infrastructure suppliers and deployment settings. Standard cloud security
approaches concentrate mainly on infrastructure protection rather than application-layer security
issues specific to API interactions and information flows [9]. Platform-supplied security tools often lack
the detailed visibility and control features needed for thorough API security management across
different cloud settings. Companies find that cloud-native security solutions may not properly handle
API-specific threats such as business logic problems, parameter pollution attacks, or unauthorized entry
through legitimate but misused API credentials. The distributed character of cloud-native deployments
adds to these limitations by creating security management complexity across several administrative
boundaries and operational areas.

Enterprise-level security policy application faces major gaps when trying to keep consistent protection
standards across large-scale API deployments covering multiple business units and technical groups.
Centralized security policies often have difficulty accommodating the different operational needs and
deployment patterns typical of enterprise API systems [8]. Companies encounter challenges in keeping
security governance across distributed development teams that may use different security structures,
authentication tools, and compliance needs based on their specific operational requirements. The size
and complexity of enterprise API environments create application difficulties where security policies
may be inconsistently used, poorly monitored, or avoided through shadow API deployments that bypass
established security controls and approval steps.

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 701
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management

2025, 10(59s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Misconfiguration Type Checklist Engine Detection Method
Inadequate Authentication Scans API specifications for missing or weak authentication
Controls schemes
Improper Authorization Validates role-based access controls against security policy
Mechanisms templates

Analyzes endpoint definitions for missing validation

Insufficient Input Validation
parameters

Identifies data classification violations in API response

Exposed Sensitive Data
schemas

Detects unencrypted connections and weak TLS

Insecure Communication Protocols . .
configurations

Default Security Settings Flags unchanged default credentials and configurations
Table 1: Security Misconfiguration Categories and Detection Capabilities [1, 9]

1.2 Federated Cloud Integration Security Challenges

Middleware governance coordination presents complex alignment challenges when several cloud
suppliers use different security structures, compliance standards, and operational steps that must work
smoothly within federated settings. Companies struggle to create unified governance approaches that
accommodate varying security needs across different cloud platforms while keeping consistent policy
application and audit abilities [3]. The federated method requires reconciling different security designs
where each supplier may emphasize different protection aspects, creating potential coverage openings
or overlapping controls that complicate security management efforts. Governance alignment difficulties
increase due to varying update cycles, support approaches, and compliance certifications across
different cloud suppliers that must be harmonized within enterprise security structures.

API gateway security complications multiply in federated settings where several gateway instances must
coordinate security policies, share authentication states, and keep consistent authorization decisions
across distributed deployments. Each gateway deployment may face different threat environments,
performance needs, and integration restrictions that influence security implementation choices [7].
Companies encounter technical challenges in synchronizing security settings across several gateway
instances while ensuring that security policies stay effective and enforceable regardless of the specific
deployment location or underlying infrastructure characteristics. The complexity grows when gateways
must handle cross-domain authentication, keep session state across several cloud boundaries, and
enforce consistent security policies despite varying network conditions and delay characteristics.
Context-aware security needs in federated cloud integration require a sophisticated understanding of
request sources, information sensitivity levels, and operational settings that influence appropriate
security controls and protection tools. Security decisions must consider several contextual elements,
including user location, device characteristics, network conditions, and information classification levels
that may vary significantly across different parts of the federated system [4]. Companies need security
structures that can dynamically adjust protection levels based on changing contextual information while
keeping consistent security positions across all system parts. Context-aware security implementation
challenges include developing accurate risk evaluation algorithms, keeping real-time contextual
information, and ensuring that security adjustments do not compromise system functionality or user
experience across different operational situations.

Security Challenge SDCE Advisory Solution
Cross-Platform Policy Generates unified security policies across multiple cloud
Inconsistency providers
Complex Authentication Provides federated identity management configuration
Coordination templates

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 702
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management

2025, 10(598)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Middleware Governance

Misalignment Creates standardized API gateway security configurations

Delivers dynamic policy recommendations based on request
Context-Aware Access Control Y poliey !

context
Multi-Cloud Compliance Automates compliance validation across distributed
Monitoring environments

Simplifies security configuration through automated rule
generation

Table 2: Federated Cloud Security Challenges and SDCE Solutions [3, 8]

API Gateway Security Complexity

2. Secure-by-Design Checklist Engine Architecture

The Secure-by-Design Checklist Engine creates a complete, real-time advisory structure that constantly
examines API settings against established security standards through automated scanning and
evaluation abilities. This engine works through intelligent monitoring of setup descriptors and OpenAPI
specifications, giving immediate feedback on potential security weaknesses and compliance openings
before they reach production settings [2]. The SDCE real-time advisory abilities allow development
groups to receive instant security guidance during the design and development stages, removing the
traditional delays connected with security reviews and approval steps. The system keeps continuous
awareness of API specifications, deployment settings, and security policy changes, ensuring that
security suggestions stay current and relevant to changing threat environments.

Auto-scanning functionality examines setup descriptors and OpenAPI specifications to identify security
wrong setups, authentication weaknesses, and authorization vulnerabilities that could expose sensitive
information or system resources. The scanning process analyzes API endpoint definitions, parameter
specifications, authentication needs, and information flow patterns to detect potential security
weaknesses [1]. This automated evaluation ability extends beyond basic setup validation to include
business logic evaluation, information exposure analysis, and compliance checking against
organizational security standards. The scanning engine keeps updated threat intelligence and
vulnerability databases to ensure that newly identified security concerns are immediately added to the
evaluation process.

Integration with Anypoint Exchange assets and deployment manifest systems allows complete security
evaluation across the entire API lifecycle from initial design through production deployment. The
engine examines reusable API parts, shared libraries, and deployment templates to ensure a consistent
security position across all organizational API assets [9].

2.1 Rule Definition and Security Standards Integration

The NIST 800-204A implementation structure gives organized guidelines for microservices-based
application security that directly support API security design within federated cloud settings. This
structure establishes complete security controls specifically designed for distributed designs where
traditional perimeter-based security methods prove insufficient [8]. The implementation adds threat
modeling approaches, security control selection standards, and risk evaluation steps tailored to API-
focused systems operating across several cloud platforms. NIST 800-204A guidance allows
organizations to create consistent security designs that address the unique challenges connected with
microservices communication, service mesh security, and distributed authentication tools.

OWASP API Top 10 integration ensures that the checklist engine addresses the most critical and
common API security weaknesses identified through community-driven threat investigation and
incident analysis. The integration adds specific detection rules and fix guidance for common API
security weaknesses, including broken authentication, excessive information exposure, and insufficient
logging tools [1]. This integration gives development groups actionable guidance based on real-world
attack patterns and vulnerability trends observed across different industry sectors. The OWASP

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 703

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management

2025, 10(598)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

integration also includes emerging threat intelligence and changing attack methods that may not yet be
widely recognized but represent significant risks to the API security position.

CIS benchmarks compliance checking ensures that API gateway settings and supporting infrastructure
follow industry-recognized security setup standards created through consensus-based security
expertise. These benchmarks give specific setup suggestions for securing API gateways, load balancers,
and supporting infrastructure parts [7]. The compliance checking process examines system settings
against established baseline needs, identifying differences that could introduce security weaknesses or
reduce overall security effectiveness. CIS benchmark integration allows organizations to keep consistent
security positions across different infrastructure deployments while ensuring compatibility with
regulatory compliance needs and industry best practices.

Secure-by-Design Checklist Engine for APl Gateways

AP| Config & Anypoint Exchange Process Legend

CpenAPl Specs & Deployments

—

SDCE Core Engine }‘

Firal Oulpul

Reakime Advisory
& Auto-scanning

L - - -
NIST B00-204A OWASP APl CI5 Benchmarks F'GIi{'.\,l-as«Cbl_:Ie
Framesaar Top 10 Integratior OFA & Rega *,
T GilOps \
1 i
Security Assessment ;
J"-------\ P 1 - -..-."'L .': IrI L

Performance Metrics

Dreiection & Compliance

T
—
-
] r ‘* ~

Securs APl Gateway Federated Cloud

ent nieqgration Security

Figure 1: Secure-by-Design Checklist Engine Architecture and Process Flow for API Gateways in
Federated Cloud Integration [1,2,7,8]

2.2 Policy-as-Code Execution Engine

Open Policy Agent and Rego structure integration allows sophisticated policy evaluation abilities that
can express complex security rules and business logic restrictions through declarative policy definitions.
The OPA integration gives flexible policy evaluation tools that can evaluate API requests, setup changes,
and deployment parameters against organizational security needs [7].

GitOps workflow implementation establishes version-controlled, audit-friendly processes for managing
security policies, setup templates, and deployment steps through standard software development
practices. The GitOps method ensures that all security-related changes experience appropriate review
processes while keeping complete change history and rollback abilities [2]. Integration with existing
development workflows allows security policies to be managed using familiar tools and processes,
reducing adoption barriers and improving consistency with established operational steps. GitOps
implementation also helps collaborative policy development, where security groups, development

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 704

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management

2025, 10(598)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

groups, and operations groups can contribute to policy improvement through standard pull requests
and code review tools.

Automated security suggestion creation analyzes setup evaluations, policy violations, and threat
intelligence to give actionable guidance for addressing identified security openings and weaknesses. The
suggestion engine considers organizational context, risk tolerance, and operational restrictions when
creating specific fix steps [9]. Suggestions include prioritization guidance based on vulnerability
severity, exploit likelihood, and potential business impact to help groups focus on fixing efforts
effectively. The automated creation process adds learning abilities that improve suggestion quality
based on feedback from successful fix activities and changing organizational security needs.

3. Validation and Enterprise Deployment

Enterprise validation testing creates complete evaluation structures that examine the secure-by-design
checklist engine across different organizational settings and deployment situations representative of
real-world implementation challenges. Simulated enterprise cloud testing settings copy complex multi-
cloud designs where companies typically deploy their API structures, including hybrid setups that cover
on-premises data centers and several public cloud providers [4]. These testing settings add realistic
network layouts, authentication systems, and operational restrictions that reflect actual enterprise
deployments. The validation process examines system behavior under different load conditions, failure
situations, and security threat simulations to ensure strong performance across different operational
contexts.

Complete API validation covers extensive testing across several protocol types and design patterns
commonly deployed in enterprise settings, including REST services, SOAP-based legacy integrations,
and modern GraphQL implementations. The validation process examines APIs with varying complexity
levels, from simple data retrieval services to complex coordination endpoints that manage several
backend systems [6]. Testing situations include evaluation of authentication tools, authorization
controls, data validation steps, and error handling implementations across different API types. The
complete validation method ensures that the checklist engine can effectively evaluate the security
position regardless of the specific API technologies or design patterns used by organizations.

Audit logging and penetration testing validation steps establish strict security evaluation approaches
that check the effectiveness of security suggestions and policy enforcement tools. Detailed audit logging
captures all security evaluation activities, policy violations, and fix suggestions to provide complete
visibility into the system security position [8]. Penetration testing validation involves controlled
security evaluations conducted by qualified security professionals who attempt to exploit identified
weaknesses and bypass security controls. These validation activities provide objective evidence of
security improvement and help identify areas where additional security measures may be needed to
achieve desired protection levels.

The validation structure adds continuous monitoring abilities that track security measurements,
compliance status, and operational performance across extended evaluation periods. Long-term
validation studies examine system behavior patterns, security trend analysis, and the effectiveness of
automated fix suggestions over time [9]. These extended validation activities provide insights into
system reliability, maintenance needs, and the ongoing effectiveness of security controls as threat
environments change. The complete validation method ensures that organizations can confidently
deploy the secure-by-design checklist engine with a clear understanding of expected security results and
operational impact.

3.1 Performance Metrics and Security Outcomes

Misconfiguration detection abilities show substantial improvements in identification speed and
precision compared to traditional manual security evaluation methods commonly used in enterprise
settings. The automated detection tools examine API setups, security policies, and deployment
configurations to identify potential weaknesses significantly faster than conventional review processes
[1]. Enhanced detection abilities allow development groups to receive immediate feedback on security

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 705

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management

2025, 10(598)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

problems during the development cycle rather than waiting for scheduled security reviews or post-
deployment evaluations. The improved detection speed allows organizations to address security
concerns proactively while keeping rapid development and deployment cycles essential for competitive
business operations.

Enterprise security policy compliance achievements reflect complete alignment with organizational
security standards, regulatory needs, and industry best practices across different operational settings
and deployment situations. The high compliance rates show effective policy enforcement tools that
consistently apply security controls regardless of deployment complexity or operational restrictions [5].
Complete compliance coverage includes authentication needs, authorization controls, data protection
measures, and audit logging standards established by organizational security structures. The strong
compliance performance shows that automated security evaluation can effectively keep security
standards while supporting operational efficiency and development speed needs.

Critical vulnerability elimination represents a significant security position improvement through
proactive identification and fixing of high-severity security problems before they can impact production
systems. The achievement of zero critical weaknesses shows effective security evaluation abilities that
identify and address serious security weaknesses during development and deployment processes [7].
This security result reflects complete vulnerability management that addresses both known security
problems documented in public vulnerability databases and organization-specific security concerns
related to custom implementations and setups. The elimination of critical weaknesses provides
organizations with confidence that their API deployments keep strong security positions capable of
protecting sensitive information and critical business functions from sophisticated threats.

Security Validation and Enterprise Deployment Verification Process

REST APils SOAP ARl Simulaled Enberprise Validation Legend
e=Sng esfing Cloud Environment

AF1 Tasin

e S—

Comprehensive APl
Validation Engine

.d-"".:.- r T
Miscanfiguratio Policy Compliancs
¢ 2 Festin e

D

Performance Metrics

/

Faster Detection High Compliance
mp] Enerp ecurity

[Enterprise Deployment]

Sacura AP| Gataway Continucus Monitoring
& Validation

Security Validation and Enterprise Deployment Werification Frameawork

Figure 2: Security Validation and Enterprise Deployment Verification Process for API Gateway
Systems [4,6,8,9]

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 706

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management

2025, 10(598)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Conclusion

The Secure-by-Design Checklist Engine offers a transformative method for API security management
within federated cloud integration environments. This system addresses fundamental weaknesses in
conventional security validation methods by embedding comprehensive security evaluations directly
within design and deployment processes rather than postponing security considerations until
subsequent testing stages. Incorporation of recognized security frameworks such as NIST guidelines,
OWASP vulnerability classifications, and CIS benchmarks provides thorough protection against
contemporary API security risks. The engine's automatic scanning capabilities across various
configuration formats and deployment manifests enable organizations to identify and resolve security
misconfigurations before they develop into exploitable weaknesses in production systems. Policy-as-
code implementation through Open Policy Agent frameworks gives scalable enforcement systems that
adapt to changing security requirements while keeping consistency across distributed API ecosystems.
Enterprise deployment results show measurable improvements in security posture through faster
misconfiguration detection, better policy compliance, and elimination of critical vulnerabilities. These
outcomes prove the effectiveness of shift-left security approaches in API-focused architectures while
reducing operational overhead linked with reactive security remediation efforts. The framework's
usefulness across different industry sectors, including financial services, government platforms, and
cloud-native application environments, establishes its flexibility as a complete API security solution for
federated cloud integration scenarios.

References

[1] Aleksandr Nartovich, "API security checklist: 12 best practices for securing APIs," Axway, Jul. 2024.
https://blog.axway.com/learning-center/digital-security/keys-oauth/api-security-best-practices

[2] Rakesh Choudhary, "API Gateway Patterns: 5 Design Options and How to Choose," Feb. 2025.
https://code-b.dev/blog/api-gateway-patterns

[3] William McKinney, "Federated API management: what is it and why should I care?" Axway, Oct.
2024.

https://blog.axway.com/learning-center/apis/api-management/federated-api-management

[4] Haley Giuliano, "Why is Federated API Management better than what you're doing now," Gravitee,
Jul. 2024.

https://www.gravitee.io/blog/why-federated-apim-is-better-than-what-youre-doing-now

[5] Ash Osborne, "Federated API Management: Balancing Speed and Control,” Kong, Feb. 2025.
https://konghq.com/blog/enterprise/federated-api-management

[6] Kong, "The Critical Role of API Security in the Internet of Things (IoT)," Kong, Aug. 2024.
https://konghg.com/blog/enterprise/iot-api-security-guide

[7] Bobur Umurzokov, "A Guide to DevSecOps with API Gateway," APISEVEN, Mar. 2023.
https://api7.ai/blog/guide-to-devsecops-with-api-gateway

[8] Aditya Ramaswamy, "Securing API-Based Integrations in Federated Cloud Architectures: A Zero
Trust Perspective,” European Journal of Information Technologies and Computer Science,
ResearchGate, Jul. 2025.

https://www.researchgate.net/publication/394038538_Securing_ API-

Based_ Integrations_in_ Federated_ Cloud_ Architectures_A_Zero_Trust_Perspective

[9] Laxmana Kumar Bhavandla, "Development of Secure API Gateways for Cloud Services," Journal of
Sustainable Solutions, ResearchGate, Jan. 2025.
https://www.researchgate.net/publication/388975130_Development_of Secure_API_Gateways_ for
_Cloud_Services

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 707

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

https://blog.axway.com/learning-center/digital-security/keys-oauth/api-security-best-practices
https://code-b.dev/blog/api-gateway-patterns
https://blog.axway.com/learning-center/apis/api-management/federated-api-management
https://www.gravitee.io/blog/why-federated-apim-is-better-than-what-youre-doing-now
https://konghq.com/blog/enterprise/federated-api-management
https://konghq.com/blog/enterprise/iot-api-security-guide
https://api7.ai/blog/guide-to-devsecops-with-api-gateway
https://www.researchgate.net/publication/394038538_Securing_API-Based_Integrations_in_Federated_Cloud_Architectures_A_Zero_Trust_Perspective
https://www.researchgate.net/publication/394038538_Securing_API-Based_Integrations_in_Federated_Cloud_Architectures_A_Zero_Trust_Perspective
https://www.researchgate.net/publication/388975130_Development_of_Secure_API_Gateways_for_Cloud_Services
https://www.researchgate.net/publication/388975130_Development_of_Secure_API_Gateways_for_Cloud_Services

