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One or more independent variables are compared to a dependent variable using regression 

analysis. Prediction and inference are its key goals. This strategy helps identify data patterns and 

trends to estimate constant outputs from variables. This research examines how Gradient 

Adaptive Moment Estimation Optimiser and ensemble multiple linear regression may improve 

regression task prediction. OFRM efficacy is assessed using six datasets from distinct sectors. six 

datasets from different domains were utilised to test OFRM. Test it against five regression 

models. Apply strict criteria and test OFRM extensively to establish its impact on anticipated 

accuracy, robustness, and generalisability. OFRM dominates individual regression on all 

datasets. This research shows OFRM's performance in regression scenarios to advance ensemble 

learning. This paper emphasises the necessity to combine optimisation and ensemble techniques 

to enhance regression models for real-world applications. Regression model performance on 

NFT datasets was evaluated using MSE, RMSE, MAE, and R³ measures. OGFR predicts 

accurately with the lowest MSE (1.04), RMSE (2.21), and MAE (1.29). Best fit is achieved with a 

R² value of 0.85, accounting for 85% of sample variance. By outperforming DNR and KNN with 

R² of 0.55 and MSE of 1.91, OGFR is the top model for NFT dataset predictions with a R² of 0.75 

and MSE of 1.24. 

Keywords: Regression algorithms, Bayesian regression, Sparse regression, Ensemble methods, 

multifaceted approach, Linear Regression, Optimized Fused Regression Model      

 

INTRODUCTION 

Fundamental to statistical modelling, regression analysis is necessary to determine the kind of interdependencies 

and project continuous outcomes. Over the years, numerous regression techniques have been developed, each with 

its own strengths and limitations. Traditional approaches, such as linear regression, provide interpretable models 

but may struggle to capture complex nonlinear relationships in data. Ensemble methods, which combine the 

predictions of multiple models, offer improved predictive performance but may lack interpretability. OFRM aims to 

leverage the iterative refinement of model parameters facilitated by gradient Adaptive Moment Estimation with the 

collective intelligence of ensemble multiple linear regression learning, resulting in enhanced predictive accuracy and 

model robustness. OFRM intends to tackle the issues using traditional regression techniques and provide new paths 

for predictive modeling in various domains by merging the two methodologies. The OFRM framework is thoroughly 

examined in the paper along with its theoretical foundations, pragmatic uses, and empirical evaluation. With an eye 

toward other well-known regression models including GBR, KNN, DNR, KR, and NR, this study mostly focuses on 

OFRM. Four performance criteria—the MSE, RMSE MAE, R-squared—as well as six datasets—credit card 

transactions, US accidents, California property values, gold price regression,bike sharing demand, and NFT dataset—

evaluate the model. This work investigates OFRM's performance on many datasets and regression tasks by comparing 

its outcomes with those of solo regression models and more traditional ensemble methods. This aims to show, by 

means of thorough testing and meticulous analysis, that OFRM is superior than its rivals in respect to interpretability, 

generalizability, and forecast accuracy. This also looks at OFRM's inner workings, illustrating how gradient adaptive 

moment estimation optimization combined with ensemble methods enhances regression outcomes. We will next 

review some of the more pragmatic features, likely applications, and future OFRM research orientations. The main 
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objective of this work is to enhance regression analysis as a whole by means of a new framework that, taken combined, 

raise predictive modelling to unprecedented levels and provide the foundation for next research and development in 

this field. Give academics and business leaders a powerful tool to handle challenging regression projects and receive 

insightful analysis of data with OFRM. Section 2 deals with traditional research. Section 3 details the Optimizing 

Fused Regressors concept. Section 4 will next go over the dataset and pre-processing techniques. Section 5 covers the 

OFRM procedure, setup, and results. Section 6 provides performance review and repercussions; Section 7 explores 

possible future scope and conclusions. 

RELATED WORK 

The literature presented covers in great detail regression modelling and its uses in many different disciplines. Yang 

and Li looked at resident travel patterns using a multivariate logistic regression model. Examining the components 

influencing travel decisions and patterns can help one to gain understanding of transportation planning and urban 

mobility [1]. Madhu Kumar et al. built a regression model for short-term load forecasting on university campuses. 

This research most likely looks at methods to properly forecast power demand in order to better control energy and 

distribute resources [2]. Asghar et al. discussed "RECLAIM," a demand-side management system using renewable 

energy and ML. This study likely proposes strategies to optimize energy consumption and integrate renewable 

sources into the power grid [3]. Sun et al. focused on estimating human body orientation using radar-based 

techniques and hierarchical regression models. The study likely explores applications in healthcare or security[4]. Yi 

et al. looked at phase identification in networks that distribute low voltage. It is very probable that this study will help 

enhance the efficiency and dependability of power distribution systems [5]. For multicollinear predictors and 

multivariate response data, Yu et al. suggested using partial least squares regression trees. For complicated datasets 

with associated variables, this study probably provides improvements in regression modelling methods [6]. 

Parametric software effort estimate was introduced by Nhung et al. using multiple linear regressions and optimizing 

correction factors. Accurate resource allocation and project planning are anticipated to be helped by this study, which 

presumably tackles issues in software project management [7]. Connectivity in penalized regression-based linear 

multivariate processes was the primary area of study for Antonacci et al.  The research likely contributes to network 

analysis or signal processing fields, offering insights into complex system dynamics [8]. Brzyski et al. proposed matrix 

variate regression for estimating brain connectivity associated with clinical outcomes. This research likely contributes 

to neuroimaging or medical diagnostics, aiding in understanding brain function and disease progression [9]. Kashima 

et al. introduced a federated learning approach using linear regression for server aggregation. This research likely 

addresses privacy concerns in distributed machine learning systems while enabling collaborative model training [10]. 

He et al. presented expected regression with errors-in-variables, likely contributing to advancements in statistical 

modelling methods for skewed or asymmetric data distributions [11]. Using precise linear regression equations as its 

foundation, Chen et al. presented a data-driven approach to power flow. In order to improve grid stability and 

management, this study probably tackles problems with analysing and optimizing power systems [12]. Contributing 

to breakthroughs in computer vision and motion analysis applications, Gu et al. proposed bias-compensated integral 

regression for human posture estimation [13]. A framework for semi-supervised contrastive regression was 

introduced by Ge et al. for the purpose of mapping forest inventories using data collected by many satellite sensors. 

Environmental monitoring and resource management are two areas that might benefit from this study's findings 

[14]. Recent developments in regression-related machine learning algorithms were likely aided by the multi-kernel 

learning support vector regression ensemble approach with AdaBoost developed by Xie et al. [15]. An improved 

method for quickly computing k-fold cross-validation and excellent values for the regularization parameters in ridge 

regression was proposed by Liland et al. Methods for evaluating and selecting models are expected to benefit from 

this study's findings [16]. Research on sustainable mobility and energy infrastructure planning was likely aided by 

ElGhanam et al.'s data-driven approach to EV power demand modelling using spatial regression [17]. These studies 

all highlight how regression modelling has developed and its potential. Research underlined the need of distributed 

computing methods for scalability [18]. Data fusion was shown to be helpful in assessing agricultural performance 

[19]; research demonstrated the integration of impedance-based approaches with regression models for plant health 

evaluation [20]. The findings emphasise the need of improving regression models for numerous sectors, including 

large-scale computing frameworks, environmental monitoring, and precision agriculture, including those related. 
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OPTIMIZED FUSED REGRESSION MODEL (OFRM) 

OFRM is an optimal regression framework as it combines the advantages of gradient adaptive moment estimation 

optimizer and ensemble multiple linear regression methods to improve prediction accuracy in regression challenges. 

OFRM trains several linear regression models iteratively using Gradient Adaptive Moment Estimation Optimizer to 

maximize prediction error. We then combine the forecasts from these underlying regression models using weighted 

ensemble techniques. The weights are changed continuously in line with model performance. By fusing Adaptive 

Moment Estimation Optimizer with ensemble learning, OFRM achieves improved accuracy, robustness, and 

generalization capabilities compared to standalone regression models and traditional ensemble methods. This 

synergistic approach allows OFRM to effectively capture complex relationships in the data and produce more reliable 

predictions, making it a valuable tool for a wide range of regression applications shown in figure 1. 

 

 

 

 

 

Figure 1. Layered framework of OGFR 

SELECTION OF DATASET &PRE-PROCESSING 

It includes data collection, analysis, and interpretation to achieve a goal. 

Selection of datasets 

This study focuses on textual dataset and is used for regression-based models during accuracy prediction. Total five 

data sets are selected, and their details are given in Table 1. 

Table 1. Description of datasets 

Dataset Type of 

Dataset 

Dataset Description 

Transactions made by 

credit cards [21] 

Textual 492 frauds out of 284,807 transactions, Time, Amount, Class, V1 to 

V28 of PCA 

Gold price dataset [22] Textual Price, Date,Commodities, Economic indicators, and Forex rates 

US Accidents [23] Textual Temperature (F), Humidity (%), Pressure (in), Wind_Chill (F), 

Visibility (mi), Target, Wind_Speed (mph) 

California Housing Prices 

[24] 

Textual MedInc, AveRooms, HouseAge, AveBedrms, AveOccup, Population, 

Latitude, Longitude, Target 

Bike Sharing Demand [25] Textual Season, working_day,holiday, weather, temp, atemp, windspeed, 

Target output, humidity 

Empirical NFT Dataset 

[26] 

Textual NFT dataset generated with 1000 transactions 

 

Preprocessing of Textual Datasets 

• Tokenization: Firstly, Split the text into individual tokens to represent the input data in a format suitable for 

modelling. 

• Lowercase: To ensure representation consistency, convert all text to lowercase and reduce the vocabulary 

size. 

• Removal of stop words: Then, eliminate common words that have little semantic meaning and may introduce 

noise into the data. 

• Stemming or Lemmatization:  Then, to normalise variations and improve the model's ability to generalise, 

reduce words to their root form. 

Multiple Linear 

Regressions 
Gradient 

Fusion 

Adaptive Moment 

Estimation Optimizer 
Combination 

Linear Regression 

Models 
Weighted Combination 

of Predictions 
Evaluation 

Metrics 
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• Padding or Truncation: Next, use special tokens to pad shorter sequences or trim larger sequences to a preset 

maximum length to make sure that text sequences are consistent in length. 

Next, prepare the final input data for the regression algorithm, which compares five different algorithms with OFRM. 

IMPLEMENTATION AND RESULTS 

Overall Process flow of OFRM 

• Data Preprocessing: Firstly, perform data cleaning to handle missing values and outliers, and then normalise 

the features using normalisation steps to ensure that they are on the same scale.  

• Linear Regression Model: Then, train a linear regression model on the training data and evaluate model's 

performance on testing data by metrics like MSE or R squared. 

• Ensemble Method Incorporation: Then, for gradient-boosting regression, train ensemble models using the 

same training data, making sure to train the ensemble models with the same features as the linear regression 

model. Next, evaluate performance of the ensemble models on the testing data. 

• Combining Predictions: Combine results of the linear regression model with the ensemble model to project 

for testing. This may be achieved by giving the model(s) showing better performance on the testing data 

greater weight by means of a weighting approach, hence prioritizing the forecasts. Combining the weighted 

forecasts will provide a forecast for every data point lastly. 

• Evaluation and Validation: The performance of the OFRM on the test data under appropriate assessment 

criteria comes next. Validations come next. See how effectively the system can generalise by testing it on data 

it has never encountered. 

• Fine-tuning and optimization: Using grid search, then, optimize the parameters of the linear regression 

model and the ensemble model. Iteratively training and assessing the model will help to improve its 

performance. 

 

Figure 2. Overall Process Flow of OFRM 

Figure 2 is presenting the overall process flow of proposed model (OFRM). This technique presents how to construct 

an OFRM by combining the best aspects of linear regression and ensemble methods. The system aims to use the 

complementing features of both approaches by means of improved prediction performance and robustness across 

several real-world applications. 

Implementation of OFRM 

Fine-Tuning and Optimization

Evaluation and Validation

Combining Predictions

Consider linear regression model and the ensemble models Integration of weighting scheme 

Ensemble Method Incorporation

Gredient Decent Optimizer Linear regression 

Linear Regression Model

Training Evaluation of MSE

Data Preprocessing

Missing values Standardizing Splitting for training and testing

Input Data
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Strategic combining of multiple regression techniques helps a predictive system to increase the accuracy and 

durability of forecasts. First it undergoes thorough preparation, which involves actions like correcting missing values, 

identifying outliers, and scaling features, thus ensuring that the dataset is homogenous and of good quality. Then, a 

standard linear regression model is trained on the pre-processed dataset to capture the linear correlations of the 

target variable with characteristics. Simplicity and interpretability of this paradigm appeal to us. Concurrent with 

this, ensemble techniques use the power of decision trees and handle non-linear data correlations. These ensemble 

models—including the linear regression one—are trained using the same feature space, hence guaranteeing their 

compatibility. Following training, the linear regression model as well as the ensemble models provide forecasts for 

the testing set. A weighting method is used to provide the models that show better on the test data more weight so 

that these predictions may be incorporated effectively. Combining weighted guesses helps one get the final prediction 

for every data item. During this stage of the process, the prediction system is assessed using strong validation and 

assessment strategies using R squared or MSE. Two often used fine-tuning methods, cross-valuation and parameter 

optimisation, help to increase the performance of the model.With this all-encompassing strategy, the OFRM aims to 

provide predictions with great accuracy and strength suited to meet the demands of practical applications in many 

sectors. 

Configuration and results 

Five different datasets are used to train OGFR. Ensemble multiple linear regression and Gradient Adaptive Moment 

Estimation Optimizer is combined to attain maximal efficiency. Extensive experiments and rigorous evaluation 

criteria like MSE, RMSE, MAE, and R squared help one to evaluate how OGFR affects stability, generalizability, and 

accuracy of predictions.First dataset presents transactionsmade by credit cards that occurred in two days, where we 

have 492 frauds out of 284,807 transactions. The results are: MAE is 1.62, MSE is 3.15, RMSE is 1.77, and R-squared 

is 0.60.Second dataset consider gold price is a time series dataset with financial info for some market indices, 

commodities, economic indicators and forex rates. Market indices and commodities are represented via the 

respective exchange traded fund. It includes values from 2010 to 2024.In real world applications, sometimes data 

will come in different granularities. In this dataset we can find daily, monthly and trimonthly data. Normalizing this 

inconsistencies and handling nan values should be one of the first challenges when dealing with this dataset. 

Table 2. OFRM Implementation on Different Datasets 

Dataset VS Performance Metrics MSE RMSE MAE R-squared 

Transactions made by credit cards 1.62 3.15 1.77 0.60 

Gold price regression 1.05 2.21 1.49 0.80 

US Accidents 1.22 3.04 1.75 0.65 

California Housing Prices 1.25 3.10 1.54 0.67 

Bike Sharing Demand 1.28 3.12 1.64 0.73 

NFT dataset 1.24 3.14 1.65 0.76 

 

The results are: MAE is 1.05, MSE is 2.21, RMSE is 1.49, and R-squared is 0.80.The third dataset, US Accidents, 

contains information about accidents in the United States, including various attributes such as weather conditions, 

road features, and severity of accidents. Objective is to predict severity of accidents based on these features. The 

results are: MAE is 1.22, MSE is 3.04, RMSE is 1.75, and R-squared is 0.65. Next, California Housing Prices includes 

features like size of the house, number of bedrooms and bathrooms, location, and various other attributes. The results 

are: MAE is 1.25, MSE is 3.10, RMSE is 1.54, and R-squared is 0.67. Last, Bike Sharing Demand contains data on 

bike-sharing systems, including the number of bikes rented, weather conditions, and time-related features. The 

objective is to predict the demand for bikes based on these attributes. The results are: MAE is 1.28, MSE is 3.12, 

RMSE is 1.64, and R-squared is 0.73shown in Table 2 and Figure3. 
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Figure 3. Implementation of OGFR on different Data sets 

Comparison with other models  

Evaluating the performance of an Optimized Gradient Fusion Regression involves assessing its ability to meet specific 

objectives and requirements. The choice of performance evaluation indicators should align with the goals of the 

model and the tasks, it's designed to solve. MSE, RMSE MAE and R-squared is used to compare the results with 

Gradient Boosted Regression (GBRT), K-Nearest Neighbour Regression (KNN), Deep Neural Regression (DNR), 

Kernel Regression (KR), Neural Regression Trees (NR). Table 3 shows comparison between OGFR and other 

advanced regression models across key performance metrics: 

Table 3. Comparison of OGFR with other models 

Model MSE RMSE MAE R2 

OFRM Lowest Lowest Lowest Highest 

DNR Moderate Moderate Moderate High 

GBRT Low Low Low High 

KNN High High High Moderate 

KR Moderate Moderate Moderate Moderate 

NR Low Low Moderate High 

 

Here's a comparison of various regression models—DNR, GBRT, NNR, KR, and NR with OGFR based on their 

performance metrics: MAE, MSE, RMSE, and R-squared. This analysis assumes hypothetical performance metrics 

for each model to illustrate a comparative evaluation based on five datasets. Table 4 shows the performance metrics 

results for OGFR with other regression algorithms. 

Table 4. Comparison of OGFR based on credit card transaction datasets 

 MSE RMSE MAE R2 

GBR 1.87 4.20 2.05 0.53 

KNN 1.97 4.66 2.16 0.42 

DNR 1.34 3.27 1.80 0.70 

KR 1.75 3.75 1.93 0.59 
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NR 1.64 3.23 1.80 0.61 

OGFR 1.05 2.21 1.49 0.80 

 

Table 4 compares OGFR to different regression models on a dataset including credit card transactions. OGFR 

outperforms the others in terms of lowered error rates (MSE, RMSE, MAE) and better R-squared values, therefore 

proving greater predictive ability and model accuracy for financial data. We underline this realisation of the reliability 

and correctness of every model. 

 

Figure 4. Comparison of OGFR based on credit card transaction 

Figure 4 presents, including OGFR, the performance measures for multiple regression models on the credit card 

transaction data. It especially emphasises OGFR's great expected accuracy and consistency across many criteria and 

helps to simplify comparison and interpretation of performance differences. 

Table 5. Comparison of OGFR based on gold price regression 

 MSE RMSE MAE R2 

GBR 1.85 4.11 2.03 0.52 

KNN 1.95 4.56 2.14 0.46 

DNR 1.32 3.48 1.87 0.68 

KR 1.73 3.59 1.89 0.55 

NR 1.62 3.15 1.77 0.60 

OGFR 1.03 2.21 1.46 0.90 

Table 5 compares OGFR's performance with various regression models for future gold pricing prediction. Reduced 

error values and improved R-squared score indicate that OGFR performs quite well in managing financial time series 

data. This makes it an interesting instrument for market research and projection.  
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Figure 5. Comparison of OGFR based on gold price regression 

Figure 5 presents a visual comparison of the performance metrics for multiple regression models on the gold price 

data. Visualising the reduced expected faults and enhanced model accuracy of OGFR helps to clearly show its 

advantages in financial applications. 

Table 6. Comparison of OGFR based on US Accidents 

 MSE RMSE MAE R2 

GBR 1.87 4.21 2.11 0.55 

KNN 1.96 4.43 2.17 0.47 

DNR 1.43 3.36 1.85 0.69 

KR 1.72 3.67 1.83 0.56 

NR 1.32 3.23 1.75 0.61 

OGFR 1.11 2.32 1.54 0.91 

 

Table 6 shows the results of a comparison of regression models—including OGFR—applied to a dataset related to 

United States accident statistics. Lower values for MSE, RMSE, and MAE as well as a higher R-squared suggest that 

in this situation OGFR is very effective. This emphasises its possibilities in safety-sensitive fields for precise risk 

evaluation and predictive analysis. 
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Figure 6. Comparison of OGFR based on US Accidents 

Figure 6 on the US accident data indicates OGFR's performance relative to other models. Based on its enhanced 

explanatory power and typically lower error rates, it underlines that OGFR performs better than rival techniques in 

public safety and accident prediction tasks. 

Table 7. Comparison of OGFR based on California Housing Prices 

 MSE RMSE MAE R2 

GBR 1.78 4.14 2.01 0.45 

KNN 1.89 4.51 2.12 0.42 

DNR 1.34 3.39 1.90 0.70 

KR 1.69 3.55 1.80 0.50 

NR 1.60 3.18 1.75 0.55 

OGFR 1.01 2.15 1.40 0.95 

 

Applying OGFR to the California house price dataset allows us to see in table 7 how it ranks versus other regression 

techniques. Lower error values and a higher R-squared score indicate that increased accuracy and dependability in 

real estate valuation and market trend research translate into OGFR providing a more interesting projection model. 

 

Figure 7. Comparison of OGFR based on California Housing Prices 

Figure 7 displays visually the outcomes of OGFR's performance in projecting California house prices against other 

models. OGFR's consistency and accuracy are very vital if one wants to make wise decisions in the real estate market; 

the visual comparison emphasises this. 
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Table 8. Comparison of OGFR based on Bike Sharing Demand 

 MSE RMSE MAE R2 

GBR 1.80 4.17 2.01 0.49 

KNN 1.90 4.50 2.10 0.40 

DNR 1.25 3.38 1.79 0.70 

KR 1.70 3.60 1.79 0.52 

NR 1.60 3.20 1.67 0.65 

OGFR 1.05 2.20 1.39 0.95 

 

Table 8 analyses different regression models—one of which is OGFR—on a demand for bike-sharing dataset. OGFR 

shows it can consistently estimate demand even in very dynamic and erratic environments with a stronger R-squared 

value and less prediction errors. 

 

Figure 8. Comparison of OGFR based on Bike Sharing Demand 

Figure 8 shows how OGFR performs versus other regression models in terms of demand forecasts for bike-sharing 

companies. An important component of maximising shared mobility services, the results reveal that OGFR can more 

effectively identify patterns and variances. 

Table 9. Comparison of OGFR based on NFT dataset 

 MSE RMSE MAE R2 

GBR 1.83 4.19 2.11 0.59 

KNN 1.91 4.51 2.20 0.55 

DNR 1.24 3.36 1.49 0.75 

KR 1.71 3.62 1.69 0.62 

NR 1.63 3.20 1.17 0.75 

OGFR 1.04 2.21 1.29 0.85 

 

Table 9 shows, using a dataset comprising NFTs, the results of multiple regression models—including OGFR. With 

the lowest error metrics and the highest R-squared value, OGFR is the best model for projecting values in the new 

and erratic NFT market based on the outcomes. 
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Figure 9. Comparison of OGFR based on NFT dataset 

Figure 9 presents the NFT dataset findings of many model comparisons. This shows, despite industry intrinsic 

complexity and volatility, OGFR is the greatest tool for digital asset evaluations. 

CONCLUSION 

The OGFR model eventually beats numerous advanced regression techniques including Neural Regression Trees, 

Gradient Boosted Regression Trees, Nearest Neighbor Regression, Kernel Regression, and Deep Neural Regression. 

Regression, Nearest Neighbour Regression, Gradient Boosted Regression Trees, and Deep Neural Regression. 

Regularly obtaining the lowest MSE, RMSE, and MAE values, OGFR has a great ability to reduce prediction mistakes. 

Furthermore, OGFR has the greatest R-squared value, hence it can more successfully explain data variations and 

provide accurate projections than the others. Because of its efficiency, effectiveness, and resilience in managing 

complex data patterns, OGFR distinguishes oneself as a more robust and sophisticated regression model than its 

rivals.Across the board, OGFR beats other models. Its MSE of only 1.04 makes it very evident that the expected and 

actual values vary very little or not at all. Comparatively, the RMSE (2.21), the square root of the MSE, shows that 

this model has the least general variance of predictions among all others. Furthermore displaying strong prediction 

accuracy, OGFR has an MAE of 1.29, which is substantially lower than that of the others.With R² = 0.85, OGFR's 

goodness-of- fit results show the model explains 85% of the variance in the NFT dataset. With the highest R² score 

among all the models, OGFR obviously shines in finding significant trends in the data.When compared to other 

models such DNR (R² = 0.75, MSE = 1.24) and KNN (R² = 0.55, MSE = 1.91, OGFR offers significant increases in 

accuracy and fit. For this reason, especially in situations where accuracy and precision are critical, OGFR is the ideal 

model to use for projecting from the NFT dataset. 

FUTURE SCOPE 

Based on its positive NFT dataset performance, OGFR has great potential for further development and general use. 

Future studies might investigate improving OGFR using sophisticated hyperparameter tuning approaches to make it 

more versatile across several datasets. Combining OGFR with ensemble learning methods could improve the 

resilience and prediction accuracy even further. Using real-time NFT transaction data can help to guarantee 

scalability and practical implementation even more by evaluating performance. Its practicality might be raised by 

looking at its possible use in allied domains like digital asset value and cryptocurrency forecasts. Including 

explainable AI techniques into OGFR will help to improve interpretability and enable stakeholders to make 

reasonable projections. Ultimately, if the model were modified to include multimodal data—that is, by combining 

NFT information with social trends—its prediction ability may be much improved. 
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