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 One of the most essential tasks for guaranteeing safety and operational efficiency in urban road 

traffic management is incident detection in real-time scenarios. In this paper, we propose a new 

hybrid framework that focuses on unidimensional convolutional neural networks (1D-CNN) for 

spatial feature extraction, residual transformers for temporal data modeling, and extreme 

gradient boosting (XGBoost) for efficient incident classification. This combination of strengths 

and performances, such as the robustness of 1D-CNN in spatial analysis and residual 

transformers in the capture of long-range dependencies in the case of temporal data, ensures 

robust feature extraction for the proposed model. The proposed framework offers significant 

competitive advantages and high precision, as demonstrated by experimental results. 

Keywords: Traffic Incident Detection, One-Dimensional Convolutional Neural Networks, 

Residual Transformer, Extreme Gradient Boosting. 

 

INTRODUCTION 

Accurate and real-time incident detection has become increasingly important in various fields, including traffic 

management, security surveillance, and industrial monitoring. It is only through rapid detection of anomalies or 

incidents that Risk can be mitigated and that downtime can be reduced and safety enhanced. but process phantoms 

are often complex in spatial and temporal dynamics that preclude their identification by traditional methods. It 

became successful because machine learning models can extract complex rules and patterns from data and they can 

prune them down. One-dimensional convolutional neural networks (1D-CNN) are a popular approach to spatial data 

analysis (Y. Liu, C.Li., M. Wang, et al, 2023). On the other hand, transformers are prominent for their self-attention 

mechanisms, which have set apart sequence modeling by capturing long-term relationships and dependencies in 

time-series data. Blending these strengths may be a promising avenue towards establishing sound incident detection 

(A. Khan, M. Islam, Z. Jan, Khan, R.U. Khan., & J. S. Park, (2023). In this article we propose a hybrid model which 

uses XGBoost for the final classification, residual transformers for temporal modeling (H. Yu, Y. Zhang, X.Li, et 

al,2022; X. Zheng, J. Li, W. Song, et al,2023). and 1D-CNN for spatial feature extraction. Specifically, the residual 

transformer captures temporal dependencies effectively through its self-attention mechanism, while the 1D-CNN 

component focuses on spatially extracting important features from structured data. These temporal and spatial 

features were combined and fed into XGBoost after extraction; XGBoost is a prediction system that compiles reliable 

and transparent predictions. The suggested framework outperformed traditional methods in terms of accuracy and 

resilience after being tested on a dataset of tagged incidents. The outcomes demonstrate how well our method can 

handle actual incident detection problems in a variety of fields. The rest of the paper is organized as follows: Section 

2 presents the related work. The state of the environment is presented in section 3. The proposed approach is 

presented in Section 4. The findings are reviewed and discussed in Section 5. Finally, a conclusion is presented in 

Section 6. 

RELATED WORK 

During the previous 20 years, several machine learning methods, especially with loop detector data, have been 

presented for traffic incident detection (T. Sivabrahmam, &S. Duvvuri, 2022). Artificial Neural Networks (ANN) have 
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emerged as a robust approach, with several ANN-based models dedicated to incident detection. (Y. Zhang, Liu, Y. Liu, 

&F. Wang, 2004). leveraged neural networks to classify spatial and temporal traffic patterns, demonstrating their 

effectiveness in detecting incidents on urban highways. More recently, machine learning models such as Support 

Vector Machines (SVM) have been employed to enhance traffic incident detection (L. –L. Wang, H. Y. T. Ngan, & N. 

H. C. Yung, 2015; S. Chen, W. Wang, & H. van Zuylen, 2009; Y. Yao, Y. Zhang, B. Du, & Y. Wang ,2014) An incident 

detection technique utilizing Support Vector Machines (SVM) was proposed by (L. –L. Wang, H. Y. T. Ngan, & N. H. 

C. Yung, 2015), where a learning algorithm was employed to establish a decision boundary between different data 

classes.(S. Chen, W. Wang, & H. van Zuylen, 2009; Y. Yao, Y. Zhang, B. Du, & Y. Wang ,2014) developed an SVM-

based freeway incident detection model using the LibSVM toolbox, achieving better results compared to older 

detection algorithms. (Y. Yao, Y. Zhang, B. Du, & Y. Wang ,2014) applied an SVM classifier for incident detection and 

evaluated its performance using multiple metrics. More recently, (J. Xiao, 2019) introduced a hybrid method that 

integrates SVM with K-Nearest Neighbors (KNN), showing its stability on various datasets. It has been studied by 

previous research on the use of a probe vehicle for incident detection. (C.S. Basnayake, M. Chowdhury, K. Ahmed, & 

H. Rakha, 2019) are the authors of traffic flow characterization and detection of incidents. Using probing vehicle data 

collected from GPS devices onboard automobiles. The data collection procedure caused delays, even though this 

method showed acceptable detection rates. A model for event detection based on probing vehicles was developed by 

Li and McDonald (Y.Li, & M. McDonald, 2005) using a bivariate analysis of two important variables: the average 

journey time of the probe cars and the intervals between successive intervals. This method was tested on multiple 

motorway segments, showing effective incident detection. Other researchers have applied regression-based and 

hybrid models. These various approaches highlight the evolution of traffic incident detection techniques, ranging 

from neural networks and SVMs to hybrid models integrating video analysis, regression, and fuzzy logic. 

STATE OF THE ENVIRONMENT AND DATASET 

Environment Description 

Typically, the primary objective of any incident detection mechanism aims to cover incidents quickly with maximum 

accuracy. In the case of a major incident, one or more lanes may be obstructed, causing traffic congestion, blocking 

vehicles upstream, and generating a queue that propagates backward, as illustrated in Figure 1. 

 

  

                                                            Figure 1. Road sections involved in a road accident. 

A traffic incident can have an impact on the dynamics of the flow, which in turn can create disparities between 

upstream and downstream sections. In the case of the upstream section, a reduction in speed and flow implies an 

increase in the occupancy rate, as vehicles accumulate due to lane obstructions. While in the downstream section, 

decreasing velocity and flow mean increasing occupancy since vehicles queue due to lane blockage. Consequently, 

the occupancy of the downstream detector decreases and the vehicle speed increases. Data collected from both 

portions exhibits differences in speed, flow, and occupancy, which makes this aberration in the flow of traffic an 

important event indication. Systems for incident detection monitor these variations in real time, detecting 

identifiable anomalies in traffic patterns. 

Figures 2-4 depict upstream and downstream changes in speed, flow, and occupancy due to the incident, thus 

indicating the extent of the effects of the incident on traffic parameters. Patterns described by (L. Lin, Y.Li, B. Du, F. 
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Yang, & B. Ran, 2020) are in agreement with the trends that have been found. The authors are currently creating 

simulated traffic data under both incident and normal conditions in order to further examine these effects. 

 

                                         Figure 2. Upstream and Downstream Section Traffic Flow Effects of Incidents. 

                                    Figure 3. Upstream and downstream influence of incidents on traffic velocity. 

 

                                    Figure 4. Occupancy effect of incidents with the segments upstream and downstream 

State Representation  

        The input pushes three matrices, one for each agent – the state of the environment is formed by simply stacking 
the environment state matrices, each corresponding to a key traffic parameter for every incoming road: Speed matrix 
(Vi) represents the normalized speed of vehicles relative to the maximum allowed speed on the road. The volume 
matrix (Qi) indicates how many vehicles there are in that segment. The occupancy matrix (Oi) captures the 
percentage of road segment occupancy based on vehicle presence. At every time interval t, the model receives the 
state representation (V, Q, O,) ∈ S, where S denotes the complete state space. 
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Data Collection 

       The detection algorithm fundamentally relies on analyzing changes in traffic data. Various metrics, including 
velocity, occupancy rate, and traffic flow, are used to depict traffic conditions. In this study, traffic and incident data 
were generated using the SUMO simulator. The analysis was performed on both training and validation sets, while 
incident detection was specifically applied to the test set. Inductive loop detectors captured traffic dynamics at a 30-
second resolution, measuring speed, volume, and occupancy. Speed in the 30-second intervals for each lane is the 
mean speed of vehicles in the specific lane, while volume is the number of vehicles through each lane and occupancy 
refers to the fraction of the holding period in which cars were present at the detector. 
Velocity is the average speed of all vehicles that pass a given detection site in a predetermined amount of time. 

Equation (1) describes how V is computed. 

              V= 
∑ 𝑉𝑖

𝑁
𝑖=1

𝑁
                                                                                                                                              (1) 

N is the number of vehicles at a detection location over a given time period, and  𝑖𝑡ℎis   the velocity. 

Occupancy rate is computed as outlined in equation (2).                     

                                 O=
∑ 𝐿𝑖

𝑁
𝑖=1

𝐿
                                                                                                                                          (2)                                                                                 

L is the length of the observed road, and 𝐿𝑖  is the length of the  𝑖𝑡ℎ  vehicle. 

The number of cars that pass through a detection point in a predetermined amount of time is referred to as traffic 

flow (Q).                    

                                 Q=
∑ 𝑁𝑖

𝜏
𝑖=0

𝜏
                                                                                                                                           (3)                                                                 

where 𝜏  is the time interval and 𝑁𝑖  is the number of vehicles seen at a detection location within a 1-second interval. 

PROPOSED ARCHITECTURE BASED ON THE HYBRIDITY OF 1D-CNN, RESIDUAL 

TRANSFORMER, AND XGBOOST 

In this section, the architecture of the proposed hybrid incident detection model that consists of 1D-CNN, Residual 

Transformer, and XGBoost, which are combined, is introduced. 1D-CNN extracts local spatial relationships between 

different feature values in the data. The RT enables the extraction of global temporal features by focusing on crucial 

sequential data segments. The obtained extracted features are fused and passed to the XGBOOST model for incident 

detection. The following Figure 5 illustrates the architecture of the proposed 1D-CNN-RT-XGBOOST model. 

                                                       

                                                      Figure 5. Architecture of 1D-CNN-RT-XGB model 
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1D-CNN-Based Model  

       A one-dimensional convolutional neural network (1D-CNN) is a feedforward neural network built with a 

convolutional architecture, where we share internal weights in the system and make use of localized receptive fields. 

1D-CNNs are specialized in extracting latent features through convolutional layers, and are useful for various tasks 

such as incident detection, where spatial relationships of data points are essential to properly distinguish events (Y. 

Wang, H. Zhang, & X. Liu, 2023; R. Luo, Y. Song, L. Huang, Y. Zhang, & R. Su, 2022). Such architecture maintains a 

lower model complexity while effectively enabling the extraction of deep local features from the data. The previous 

convolutional layers apply convolution operations to extract features from the input image and learn local patterns, 

while the following pooling layers use down sampling techniques to decrease data dimensionality and computation 

time (G. Tang, Y. Yu, C. Qin, et al, 2021). We use convolution and pooling operations in this study to capture local 

spatial relationships across the different feature values in the data. 

Residual Transformer for Temporal Feature Modeling 

      The Residual Transformer is an adaptation of the Transformer architecture (M. G. Al-Thani, Z Sheng, Y. Cao, & Y. 

Yang, 2024) designed to model temporal dependencies in sequential data. Temporal feature modeling is critical in 
tasks like incident detection, where understanding temporal trends and patterns is essential to identify anomalies or 
potential events (K. Saleh, A. Grigorev, & A.-S. Mihaita, 2022).  
Effective traffic incident detection relies on robust temporal modeling to capture both long-range dependencies (B. 

M. T. H. Anik, Z. Islam, & M. Abdel-Aty, 2023), such as sustained congestion patterns, and short-term variations, like 
sudden speed drops, which are critical indicators of incidents. When it comes to modeling long term dependencies, 
traditional approaches such as RNNs, LSTMs and the GRUs often suffer from gradient issues. Pure Transformers 
are good at capturing long-range dependencies but are expensive and less stable in deeper settings. Residual 
Transformers offer a balanced solution by combining the self-attention capabilities of Transformers with residual 
connections, which enhance gradient flow, stabilize training, and reduce computational demands. This approach 
enables efficient modeling of temporal variations by focusing on crucial segments of sequential data (H. Kamal, & M. 

Mashaly, 2024). 

XGBoost Model 

      Robust and efficacy algorithms include XGBoost, widely used for classification tasks due to its robustness, 
scalability, and high accuracy (L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush., & A. Gulin, 2018).and is 
particularly valued for its scalability across different scenarios, as highlighted in (C. Bentéjac, A. Csörgö, & G. Martínez-

Muñoz,2021) .In the context of our study, XGBoost acts as the final classifier, processing the fused features extracted 
by the 1D-CNN (spatial features) and the Residual Transformer (temporal features). 

Tuning Hyper-parameters with Cross-Validation and Grid Search 

      The most efficient algorithms include XGBoost, which generally delivers excellent performance. However, it 
comes with some challenges, particularly the large number of hyperparameters it requires and the fact that varying 
parameter combinations can lead to different evaluation outcomes. As a result, identifying the optimal 
hyperparameters is crucial to maximize its potential. to identify optimal hyperparameters by testing all possible 
combinations, we can use the Grid search method. In our case, we focus on tuning for common parameters: learning 
rate, number of estimations, subsampling rate, and maximum depth. 

 

SIMULATION AND RESULTS 

Parameterization 

The experimental parameters for the 1D-CNN-Residual Transformer-XGBoost model generally include several key 
features: The 1D-CNN layer (convolution kernel size and the activation function), Residual Transformer layer 
(number of attention head), maximum depth, number of epochs to train, dropout rate, learning rate, number of 
estimators of the XGBoost classifier. Picking the right values for parameters has a huge influence on how fast the 
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model trains, and how accurate those predictions are. The parameters that were selected for incident detection based 
on the extensive performance comparison are shown in Table 1 In addition, the XGBoost model is further tuned 
with hyperparameter optimization with GridSearch to improve its classification performance and thus to be able to 
detect more powerful incidents (L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush., & A. Gulin, 2018). 
 
                                                                  Table 1. Model Parameter Configuration. 

Component Parameter Value 

CNN Layer 

Convolutional kernel size 
Maximum pooling layer size 
Data dimensions 
Activation function 

3 
2 
3 
Relu 

Residual transformer 
layer 

Number of attention heads                          
Attention Dropout 
Hidden state dimensions 
Activation function 

12 
0,2 
64 
Relu 

XGBoost Layer 

Number of estimations 
Maximum depth 
Learning rate 
Subsampling rate 

100-300 
3-7 
0.01-0.2 
0.7-0.9 

 

Performance Measures 

     An Automatic Incident Detection (AID) algorithm is generally evaluated in terms of three fundamental 
parameters, namely the Detection Rate (DR), False Alarm Rate (FAR) and Mean Time to Detect (MTTD) (Y. Zou, G. 

Shi, H. Shi, & Y. Wang ,2011). Let us define these metrics as follows: DR (Detection Rate): Percent of actual incidents 
detected by the system (Y. J Stephanedes, A. P Chassiakos, & P. G Michalopoulos1992).  
 

                                     𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑐𝑎𝑠𝑒𝑠
 × 100%                                                            (4) 

 

      The FAR or False Alarm Rate is the fraction of alarms that are false. In the literature, two common techniques 
have been used to compute FAR. There are two ways to hold the FAR, firstly the proportion of falsely detected 
incidents among all the detected incidents (Y. Sun, T. Mallick, P. Balaprakash., & J. Macfarlane, 2022). Second the ratio 
of false alarms to the total number of times the algorithm is run is how the second method determines FAR.  
 

                                    𝐹𝐴𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑤ℎ𝑖𝑐ℎ 𝑔𝑎𝑣𝑒 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠
 × 100%                         (5) 

          

 

     Mean Time to Detect (MTTD): Measures the time taken by the AID system to correctly identify an incident after 
it occurs. In a set of (n) events, the TTD (the amount of time it takes to find an incident) is determined by taking the 
difference in time between the incident's actual occurrence (𝑡_𝑖𝑜𝑐𝑐) and the algorithm's identification of it (𝑡_𝑖𝑎𝑙𝑔): 
 

                                      𝑀𝑇𝑇𝐷 =
1

𝑛
∑ 𝑡𝑖𝑎𝑙𝑔 − 𝑡𝑖𝑜𝑐𝑐

𝑛
𝑖=1                                                                                     (6) 

 
      Together, DR, FAR, and MTTD serve as key indicators of an AID algorithm’s effectiveness, reliability, and 
efficiency. However, these metrics often involve trade-offs. For instance, raising DR could raise FAR, necessitating 
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striking a balance between reducing false alarms and enhancing detection accuracy) (Y. Zou, G. Shi, H. Shi, & Y. Wang 

,2011). Similarly, reducing MTTD could lead to an increase in FAR. A common strategy to reduce false alarms is the 
persistence test, where an incident is only confirmed if the pattern persists for multiple consecutive intervals. In the 
case of incident detection, an AID model may achieve high accuracy, primarily due to its strong performance in 
classifying majority-class instances (non-incident conditions). Since these non-incident instances dominate the 
dataset, the model may appear effective, even if it struggles to detect actual incidents. These limitations highlight the 
inadequacy of using accuracy alone as an evaluation metric for incident detection models, as it fails to fully capture 
the model’s effectiveness in detecting incidents. Precision is the percentage of positive events that were indeed 

positive out of the positive cases predicted by a model (Y. Sun, T. Mallick, P. Balaprakash., & J. Macfarlane, 2022). While 
precision is an essential evaluation metric, it ignores those positive examples that are predicted with false negatives. 
Recall is the other important metric, measuring the ratio of correctly identified positive instances compared to the 
total number of actual positive instances in the dataset (Y. Sun, T. Mallick, P. Balaprakash., & J. Macfarlane, 2022). 
Having high precision and high recall is not easy because the increase in recall directly decreases precision. The F-
score is often used as a balanced evaluation metric to deal with this trade-off. It also provides an overall score that 
summarizes both sides of your model performance by showing the harmonic mean between those two. And the F-
score is calculated using the following formula: 

 

                              (7) 

 
RESULTS ANALYSIS 

Speed, occupancy rate and traffic flow are the input characteristics selected for classification. extraction of these 
characteristics is carried out using inductive loop detectors at upstream and downstream. The outputs produced are 
binary: 0 indicates no incidents detected and 1 if there is an incident. Three specific incident locations, located 60, 
400, and 600 meters from reference points are used to collect data at 30-second intervals. 
There are 5752 samples in the collection, which covers a 72-hour period. Of these, thirty event cases recorded at the 
precise times of incident occurrence are reserved especially for testing. 1,721 samples are used for testing, while 4,032 
samples are used for training from the remaining data. Table 2 shows a summary of the results. 

Table 2. Results obtained for incident detection using 1D-CNN-XGBOOST, LSTM-XGBOOST, RESIDUAL BASED, 
1D-CNN-RESIDUAL-XGBOOST. 

Algorithm 
Incident 
Resolution 
Time 

Duration 
Rate DR 
(%) 

Mean 
time to 
detect 
MTTD(s) 

False 
Alarm 
Rate    
FAR (%) 

1D-CNN-
XGBoost 

Under four min 
Under six min 

82,81 
90,19 

83,12 
83,41 

2,1 
0,4 

LSTM-XGBoost 
Under four min 
Under six min 

83,78 
91,87 

82,60 
38,32 

2,1 
0,43 

TRANSFORMER 
BASED 

Under four min 
Under six  min 

85,65 
93,87 

81,66 
38,95 

2,2 
0,42 

MODEL 
PROPOSED 

Under four min 
Under six  min 

87,65 
93,87 

80,98 
37,94 

2,2 
0,46 

 

To assess the performance of the proposed hybrid system, we compared its outcomes with those of the 1D-CNN-

XGBoost, LSTM-XGBoost and Transformer-Based Classifier. We compared the performance based upon Accuracy, 

F1-Score, Precision and Recall. Table 3 summarizes the performance of our hybrid approach compared to 

baseline methods. 

                 F-score = 
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
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Table 3. Performance evaluation with accuracy, precision, recall and f1-score. 

Model 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-Score 

(%) 
MODEL 
PROPOSED 

98,1 96,8 97,9 96,4 

1D-CNN-
XGBoost 

89,6 87,2 90,8 89,0 

LSTM-XGBoost 92,3 90,4 92,8 91,6 

TRANSFORMER 
BASED 

93,8 92,2 94,1 93,1 

     

The superior performance is highlighted by the comparative analysis of the proposed hybrid model, which seamlessly 

integrates 1D CNNs for spatial feature extraction, Residual Transformers for enhanced temporal modeling, and 

XGBoost for robust classification. The hybrid model achieved better performance than all baseline methods on all 

metrics, indicating its strength in capturing spatial-temporal nuances. Residual transformers excelled compared to 

LSTMs and 

transfor20000000000000000000000000000000000000000000000000000000000000000000000000000

00000000000000000000000000000000000074mers. XGBoost addressed the curse of high dimensions and the 

imbalanced problem very well. Moreover, the model showed potential for real-time applications since it reached 

competitive inference times. In contrast, traditional methods such as Random Forest struggled to capture spatial-

temporal complexities, and a baseline method like 1D-CNN-XGBoost and LSTM-XGBoost showed limitations.  

CONCLUSION 

We introduced in this paper a hybrid model 1D-CNN-RESIDUAL-XGBOOST for early urban traffic incident 

detection, where the residual Transformers task is the extraction of temporal features, 1D-CNN for extracting 

special-domain features, and XGBOOST for final incident detection. Experimental results validate the proposed 

hybrid architecture's potential for effectively addressing the challenges of traffic incident detection. This work 

identifies strengths and weaknesses of the model, making it a suitable candidate for practical use.  
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