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Breast cancer remains one of the leading causes of cancer-related mortality among 

women globally, making early and accurate diagnosis critical for effective treatment. 

While traditional convolutional neural networks (CNNs) are proficient in extracting 

local texture features, they often struggle to capture global contextual dependencies 

and spatial hierarchies inherent in histopathological images. To overcome these 

limitations, we propose HNet, a novel hybrid deep learning architecture designed to 

leverage the complementary strengths of multiple techniques. HNet combines 

EfficientNet for scalable and efficient local feature extraction, Advanced Vision 

Transformers (AVT) for global context modeling, and Capsule Networks for relational 

reasoning and spatial hierarchy preservation. This fusion of architectures aims to 

enhance diagnostic performance and improve interpretability. Evaluated on the 

BreakHis dataset across multiple image resolutions and data split configurations, HNet 

demonstrated an accuracy up to 97.52%, showcasing enhanced classification accuracy 

and generalization. Ablation studies further validated the contribution of each module, 

highlighting the potential of hybrid deep learning frameworks in enabling robust, real-

world breast cancer diagnosis. 

Keywords: Hybrid Deep Learning, Breast Cancer Classification, Feature extraction, 

CNN, Capsule Networks, Transformer Attention Mechanisms. 

INTRODUCTION 

Cancer is a group of diseases in which cells continue to divide and spread into nearby tissues, forming a lump called 

a tumor or malignancy [1]. According to the World Health Organization (WHO), breast cancer accounts for nearly 

25% of all cancer cases in women worldwide and is the second leading cause of death due to malignant tumors. Early 

and accurate diagnosis is critical for improving survival rates and ensuring effective treatment. However, this remains 

a challenging task due to the heterogeneous nature of breast tissue and the subtle morphological differences between 

benign and malignant tumors. 

Traditional diagnostic approaches, such as mammography, ultrasound, and histopathological examination, remain 

the standard in clinical practice. Nevertheless, these methods are not without limitations. They can be invasive, time-

consuming, and often subject to inter-observer variability. In particular, histopathological analysis, while considered 

the gold standard for definitive diagnosis, requires expert interpretation of complex visual patterns making it 

susceptible to diagnostic errors, especially under high workload conditions [2]. 

In recent years, computer-aided diagnosis (CAD) systems have emerged as promising tools to support radiologists 

and pathologists in the interpretation of medical images [3]. These systems aim to enhance diagnostic efficiency, 

reduce human error, and provide consistent decision-making, especially in resource-constrained or high-volume 

clinical settings. The integration of artificial intelligence (AI), particularly in the field of medical imaging, has enabled 

the automation of complex tasks such as lesion detection, segmentation, and classification. This is particularly 

relevant in histopathological image analysis, where visual inspection is intricate and prone to variability among 
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experts. As a result, AI-driven systems have gained considerable attention for their potential to improve the 

objectivity and accuracy of cancer diagnosis. 

Early efforts in automated breast cancer diagnosis relied on classical machine learning (ML) techniques such as 

support vector machines (SVMs), decision trees, random forests (RF), and k-nearest neighbors (KNN). These models 

typically require handcrafted features such as texture descriptors, shape metrics, or statistical moments, extracted 

through domain-specific knowledge. While these approaches have demonstrated reasonable performance in certain 

scenarios, they often struggle to generalize due to the limited expressiveness of manually designed features. 

Moreover, handcrafted descriptors may fail to capture the high intra-class variability and subtle morphological 

differences that are characteristic of histopathological images [4], [5]. 

The advent of deep learning, particularly convolutional neural networks (CNNs), has significantly advanced the state-

of-the-art in medical image analysis[6], [7]. CNNs are capable of learning hierarchical feature representations directly 

from raw pixel data, thereby eliminating the need for manual feature engineering. In the context of breast cancer 

histopathology, CNNs have been shown to outperform traditional ML methods in classification tasks by effectively 

capturing local texture patterns and spatial structures [8], [9]. However, despite their success, CNNs are inherently 

limited in their ability to model long-range dependencies and global contextual information due to their localized 

receptive fields. Furthermore, they often fail to preserve spatial hierarchies and pose relationships, which are 

essential for accurately interpreting tissue organization and diagnosing malignancies. 

To address these limitations, recent research has explored alternative deep learning paradigms that go beyond 

conventional CNN architectures. Vision Transformers (ViTs) have introduced self-attention mechanisms capable of 

modeling global contextual dependencies across spatially distant regions in an image [10]. Meanwhile, Capsule 

Networks (CapsNets) aim to preserve spatial relationships and encode part-whole hierarchies using vector-based 

representations and dynamic routing [11]. While both architectures offer distinct advantages, namely contextual 

awareness and spatial interpretability, they also face practical challenges when used independently, such as high data 

requirements for transformers and computational overhead in capsule routing. These observations highlight the need 

for a unified framework that can jointly leverage local detail, global context, and spatial structure to improve the 

reliability and interpretability of histopathological image classification. 

In this context, we propose HNet, a hybrid deep learning architecture that combines the complementary strengths of 

three powerful components: EfficientNet for scalable and efficient local feature extraction, Advanced Vision 

Transformers (AVT) for modeling global contextual dependencies, and Capsule Networks for preserving spatial 

hierarchies and encoding part-whole relationships. By integrating these modules in a staged and unified framework, 

HNet addresses the individual shortcomings of each architecture and enhances both diagnostic accuracy and 

interpretability, which are two key requirements for clinical deployment. To evaluate the effectiveness and robustness 

of HNet, we conduct extensive experiments on the BreakHis dataset, exploring multiple image resolutions and 

training/validation/test split strategies. The experimental results demonstrate the effectiveness of HNet in classifying 

breast cancer histopathological images, with improved performance and generalization compared to standalone 

models—achieving an F1-score of up to 97.18%. 

The remainder of this paper is structured as follows: Section 2 reviews recent work in breast cancer image 

classification using deep learning; Section 3 describes the proposed methodology and hybrid architecture in detail; 

Section 4 presents experimental results and discussion; and Section 5 concludes the paper and outlines directions for 

future research. 

RELATED WORKS 

Recent advances in breast cancer diagnosis using histopathological images have leveraged deep learning models to 

address challenges in accuracy and limited annotated data. 

More recent work has focused on using deep learning algorithms, such as CNNs, to automate the feature extraction 

process and improve the accuracy of the classification. Others focused on combining multiple models for processing, 

or multiple types of medical images, such as histopathological and mammograms to improve classification accuracy. 
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This has been achieved by using multi-modal CNNs that combine the features extracted from different types of 

images, or by using ensemble methods that combine the predictions of multiple models. 

Raha et al. [12] employ ensemble learning techniques to predict breast cancer from the Wisconsin Breast Cancer 

Dataset (WBCD). They experimented with multiple machine learning models including Random Forest, XGBoost, 

SVM, MLP, and Gradient Boosting, with Random Forest yielding the highest performance, achieving an accuracy of 

99.46%, precision of 100%, recall of 98.21%, and F1-score of 99.09%. The study further integrated explainable AI 

methods, SHAP and LIME, to provide global and local interpretability for the Random Forest model. This approach 

not only delivered high classification accuracy but also enhanced the model’s transparency, making it suitable for 

clinical use in breast cancer prediction. 

Singh et al [13] proposed a framework that combines deep learning models and machine learning classifiers for 

features extraction from histopathological images, aiming for early and cost-effective diagnosis. The study combined 

deep neural networks with machine learning classifiers. Specifically, a comprehensive super hybrid model combining 

DenseNet + Logistic Regression an F-score of 0.81, outperforming VGG + Logistic Regression (0.73), VGG + Random 

Forest (0.74) and DenseNet + Random Forest (0.79), and VGG, DenseNet, and Logistic Regression where, 

outperforming VGG + Logistic Regression (0.73), and DenseNet + Random Forest (0.79), validated across 

histopathological datasets. 

Aldakhil et al. [14] integrated attention-based deep learning with traditional machine learning by employing ECSAnet 

(Efficient Channel Spatial Attention Network). Evaluated on the BreakHis dataset across multiple magnifications, 

ECSAnet combined with classifiers like Decision Trees and Logistic Regression improved classification accuracy. 

Priyadarshni et al. [15] proposed a hybrid framework combining deep learning and traditional machine learning for 

breast cancer detection using the CBIS-DDSM dataset. Features were extracted using VGG-16 and ResNet-101 via 

transfer learning, then fused and refined through a deep instinctive stacked autoencoder for dimensionality 

reduction. The resulting 64-dimensional feature vector was classified using enhanced models—EDT, ERF, and ELR—

integrating normalized neural weights from DNNs. The proposed EDT model achieved the highest performance with 

99.02% accuracy, 99% F1-score, and 98% AUC, followed by ERF (95.75% accuracy, 97% F1-score, 100% AUC), and 

ELR (86.82% accuracy, 93% F1-score, 78% AUC). The framework outperformed state-of-the-art methods in 

classification tasks while maintaining computational efficiency and robustness, making it suitable for clinical 

deployment 

Ben Atitallah et al. [9] proposed a CNN-based model that achieved consistently high classification accuracy across 

varying magnification levels of the BreakHis dataset, recording accuracies of 97.50% at 40×, 97.61% at 100×, 99.06% 

at 200×, and 97.25% at 400×. The highest performance was attained at 200× magnification, with a precision of 

98.43%, recall of 100%, and an F1-score of 99.21%. The model maintained stable results regardless of image 

resolution, confirming its robustness to magnification variation. Unlike prior approaches such as DenseNet121-

AnoGAN and DRDA-Net—which suffered from performance degradation at certain scales or required more complex 

architectures—the proposed CNN delivered superior accuracy while preserving architectural simplicity and 

computational efficiency, making it a practical candidate for clinical deployment. 

Rafiq et al. [16] proposed a DenseNet121-based architecture for multi-class classification of breast cancer subtypes, 

achieving state-of-the-art binary classification accuracy of 98.50% and multi-class accuracy of 92.50% on the 

BreakHis dataset, underscoring the power of deep residual networks in complex cancer subtype differentiation. 

Wang et al. [17] addressed data scarcity and feature monotony by introducing an auto-encoder reconstructed semi-

supervised domain adaptation model. Their method leveraged feature reconstruction and domain adaptation to 

achieve superior classification metrics (accuracy 95.24%, F1-score 93.40%) across BreakHis and SNL datasets, 

illustrating the potential of semi-supervised learning and domain adaptation in histopathology. 

Çetin-Kaya [18] trained 20 state-of-the-art models on BreakHis with fine-tuning and proposed MultiHisNet, which 

achieved 94.69% multi-class accuracy. An ensemble model combining transfer learning and custom architectures 

reached 96.71% accuracy, emphasizing the efficacy of ensemble learning and advanced attention modules for robust 

multi-class breast cancer classification. 
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Balasubramanian et al. [19] employed ensemble deep learning techniques across BACH and BreakHis datasets, 

integrating VGG16 and ResNet variants with novel patching strategies. Their models achieved 98.43% classification 

accuracy on BreakHis, illustrating the effectiveness of ensemble methods and high-resolution image analysis in 

improving diagnostic precision. 

Cao et al. [20] introduced MbsCANet, an advanced multi-branch spectral channel attention network that functions 

within the frequency domain. By combining discrete cosine transform features, their model outperformed spatial-

domain CNNs with image-level accuracy of 99.01% on BreakHis, highlighting the benefit of frequency domain 

analysis and attention mechanisms in histopathological image classification. 

Kashif and al [21] employed a CNN for classifying mammograms from the DDSM dataset into normal, benign, and 

malignant categories, achieving an accuracy of 94% through diligent data augmentation and preprocessing 

techniques to enhance image quality. 

Preeti katiyar [22] introduced a deep learning model utilizing transfer learning with pretrained CNN architectures 

like ResNet50 and VGG-16 to classify mammograms from the MIAS dataset, enhancing breast cancer detection and 

classification efficiency and accuracy, the model under consideration attained an accuracy rate of 96.00%, an area 

under the curve (AUC) measurement of 0.95, a sensitivity rate of 94.40%, a specificity rate of 95.65%, a precision 

rate of 96.01%, and an F score of 96.99%.. 

Meher et al. [23] proposed a deep learning approach for software bug classification to improve accuracy and 

automation. The study employs four attention-based deep learning models, achieving a mean F1-Score of 84.78% 

and a macro-average ROC of 98.25%, significantly outperforming existing methods by 16.88% in F1-Score. This work 

demonstrates the effectiveness of attention mechanisms in handling large-scale bug classification tasks with high 

precision. 

Feng and Wang [24] developed a deep learning system integrating MobileNetV2, attention mechanisms, and feature 

pyramid networks for breast cancer classification on X-ray images. The model classifies images into normal, benign, 

and malignant categories using extensive preprocessing techniques—random cropping, horizontal flipping, Gaussian 

noise addition, and color variation—to enhance feature extraction. Trained and validated on a balanced Breast Cancer 

Dataset, the system achieved rapid convergence, 98.56% accuracy, and a minimal loss of 0.075, demonstrating its 

effectiveness for precise breast cancer diagnosis. 

METHODOLOGY 

The proposed HNet framework is designed to improve the classification of histopathological breast cancer images by 

combining the strengths of multiple deep learning paradigms. As depicted in Figure 1, the architecture consists of 

three main stages. First, input images undergo preprocessing and data augmentation to enhance robustness. Next, 

the image is simultaneously processed by two parallel branches: EfficientNet, which efficiently captures local and 

fine-grained visual details, and the Advanced Vision Transformer, which extracts global contextual information 

through self-attention mechanisms. The feature maps generated by these two branches are then combined and 

forwarded to a Capsule Network module, which is responsible for preserving spatial hierarchies and modeling part-

whons le relationships. Finally, the output capsules are flattened and passed through fully connected layers for final 

classification. This hybrid and staged design allow HNet to leverage the complementary strengths of local texture, 

global context, and spatial structure within a unified framework. 
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Figure 1: Proposed HNet flowchart 

1 Data preparation 

The proposed model is designed to perform binary classification (benign vs. malignant) of breast cancer 

histopathology images. We utilized the BreakHis dataset [25], which contains 7,916 annotated images, 2,487 benign 

and 5,429 malignant. To mitigate overfitting and improve generalization given the limited dataset size, we applied 

real-time data augmentation using TensorFlow’s ImageDataGenerator. The augmentation techniques included 

random rotations (90°), zooming (up to 1.2×), horizontal and vertical flips, and pixel intensity shifts. These 

transformations simulate natural variations in histopathological imaging and enhance the model's ability to learn 

robust features across classes, thereby addressing potential class imbalance. 

To evaluate the model’s adaptability to different levels of visual detail, we resized the images to three different 

resolutions: 96×96, 128×128, and 256×256. All image pixel values were normalized to the range [0, 1] prior to 

training. 

In addition, we explored several data split configurations to assess the model's performance under various training 

conditions. The dataset was divided into training, validation, and test sets using the following ratios: 70/20/10, 

70/15/15, 75/15/10, 80/10/10, 85/10/5, and 90/5/5. This analysis allowed us to study the model’s robustness with 

respect to data availability and balance across subsets. 

2 EfficientNet Backbone 

The initial segment of the framework utilizes EfficientNet, which has been pretrained on the ImageNet dataset, 

serving as the foundation for transfer learning. We systematically truncated this architecture subsequent to its 

convolutional layers, integrating global average pooling followed by a dense layer with 256 units activated by the 

ReLU function. This model demonstrates superior performance in feature extraction owing to its highly optimized 

architecture that mirrors the processing capabilities of the human visual system.  

Within the preliminary layers, it identifies fundamental features such as edges, gradients, and textures, which are 

vital for the construction of higher-level representations pertaining to tissue architectures. The subsequent layers 

adeptly capture intricate patterns, encompassing nuclei forms, cellular boundaries, and subcellular configurations, 

which are imperative for distinguishing benign from malignant tissues in histopathological imagery. As shown in 

Figure 2, the structure of EfficientNet highlights its layers and the flow of information within the model. 

 

Figure 2: EfficientNet model flowchart 

3 Advanced Vision Transformer (AVT) 
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To capture long-range dependencies and global contextual information in histopathological images, we incorporate 

an AVT branch in parallel with the EfficientNet module. Vision Transformers have demonstrated strong performance 

in image classification tasks by modeling relationships between distant regions using self-attention mechanisms, 

which are particularly valuable in medical imaging where tissue structures exhibit complex spatial arrangements. 

The proposed AVT architecture, shown in Figure 3., combines three synergistic components to achieve optimal local-

global feature integration for medical image analysis. The framework begins with a modified Inception-Residual 

hybrid block that employs parallel convolutional pathways (1×1, 3×3, and 5×5 kernels) with residual skip 

connections, enabling simultaneous multi-scale feature extraction while preserving gradient flow through deep 

networks. This is followed by a patch-based multi-head attention mechanism that decomposes the feature maps into 

overlapping patches, where each attention head independently computes depth-wise convolutional projections for 

queries, keys, and values before applying scaled dot-product attention. This design captures long-range spatial 

dependencies while maintaining computational efficiency through patch-wise processing rather than global 

attention.  

The attention heads' outputs are dynamically weighted and fused through a learnable 1×1 convolution, producing an 

attention-refined feature representation. The final output of the AVT branch is a feature vector that complements the 

local texture descriptors extracted by EfficientNet. This vector is then concatenated with the EfficientNet output and 

forwarded to the Capsule Network module for further spatial reasoning and classification. 

 

Figure 3: Advanced Vision Transformer flowchart 

4 Feature Combination Strategy 

After the input images are processed in parallel by the EfficientNet and Advanced Vision Transformer branches, the 

resulting feature vectors are combined to form a unified representation. This combination strategy is designed to 

integrate the local features captured by EfficientNet with the global contextual information extracted by the 

transformer. 

To ensure compatibility, each feature vector is projected to a matching dimensional space using dense layers before 

combination. The vectors are then concatenated, forming a rich and complementary feature embedding that 

encapsulates both fine-grained textures and high-level semantic information. 

This combined feature representation is forwarded to the Capsule Network module, which performs spatial reasoning 

and part-whole modeling to support the final classification task. 

5 Capsule Network 

The final stage of the HNet architecture involves a Capsule Network (CapsNet) module shown in Figure 4., which 

operates on the fused feature vector obtained from the EfficientNet and AVT branches. Unlike traditional neural 

layers that output scalar activations, capsules produce vector outputs that encode both the probability of the presence 

of a class and its instantiation parameters, such as pose, orientation, and texture variation. 

This property is particularly valuable in histopathological image analysis, where maintaining spatial hierarchies and 

part-whole relationships is crucial for distinguishing subtle morphological differences between benign and 

malignant tissues. The capsule network comprises two 4D capsules and three dynamic routing iterations. The 

output is passed through a softmax classification layer to predict the class label (benign or malignant). 
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Figure 4: Capsule Network flowchart 

6 Training Setup and Optimization 

The model was trained using the Adam optimizer, with the following hyperparameters: initial learning rate (LR) = 

0.001, β₁ = 0.9, and β₂ = 0.999. Binary cross-entropy loss was used for binary classification. To prevent overfitting, 

we employed an early stopping criterion, which monitored the validation loss over 100 epochs. If no improvement 

was observed, training was terminated early. Additionally, a reduce-on-plateau scheduler was implemented to halve 

the learning rate after five epochs of stagnation. 

To further improve robustness, the model was trained across multiple data split configurations as detailed in Section 

3.1. At each split ratio, the network was retrained from scratch to assess its sensitivity to training set size and ensure 

consistent performance. Model checkpoints were saved based on validation accuracy, and the final results were 

reported on the independent test set. 

7 Evaluation Metrics and Performance Analysis 

The model's performance was evaluated using several metrics, including accuracy, precision, recall and a custom F1-

score (harmonic mean of precision and recall). Confusion matrices were generated during testing, providing insights 

into class-specific performance. Matplotlib was used for visualizing these metrics. These metrics help quantify how 

well the model distinguishes between benign and malignant tissue in histopathological images. All experiments were 

conducted on a laptop with an Intel i7-10850H CPU, 32GB of RAM, and a 6GB RTX A3000 GPU, utilizing 

TensorFlow 2.x.  

RESULTS AND DISCUSSION 

This section presents the experimental results of the proposed HNet model on the BreakHis dataset under various 

conditions, including multiple image resolutions and different training/validation/test split configurations. We 

evaluate the model using several classification metrics such as Accuracy, Precision, Recall and F1-score, to provide a 

comprehensive analysis of its diagnostic performance. The results are analyzed to assess the impact of input 

resolution, data availability, and the overall effectiveness of the hybrid architecture compared to standalone models 

and several state-of-the-art CNN architectures. 

1 Impact of Data Splitting Strategies 

To assess the robustness and generalization ability of the proposed HNet model under different data availability 

conditions, we experimented with various training/validation/test split ratios. Specifically, we evaluated six 

configurations: 70/20/10, 70/15/15, 75/15/10, 80/10/10, 85/10/5, and 90/5/5. 

All experiments in this section were conducted using input images resized to 128×128, which represents a balanced 

compromise between computational efficiency and classification performance (see section 4.7). A detailed analysis 

of the impact of input resolution is provided in Section 4.2. The results are presented in Table 1, with performance 

measured by Accuracy, Precision, Recall and F1-score. 

As expected, the model’s performance improves slightly as the proportion of training data increases. The best results 

were achieved with the 70/20/10 split, reaching an accuracy of 97.15%. However, even at higher training ratios (e.g., 

90%), HNet maintained high and stable performance, demonstrating its strong generalization capability. This 

consistency reflects the strength of the hybrid design, data augmentation strategy, and the model’s ability to learn 

discriminative features from limited data. 
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Table 1: Classification performance of HNet under different train/validation/test data splits for 128x128 image 

resolution 

 

 

 

 

 

 

 

 

 

2 Influence of Input Image Resolution 

The quality and resolution of input images are crucial factors in medical image classification, particularly in 

histopathology, where fine-grained structures such as nuclei, glands, and tissue patterns play a vital diagnostic role. 

To investigate the effect of image resolution on the performance of HNet, we conducted experiments using three 

different input sizes: 96×96, 128×128, and 224×224. All experiments in this section were conducted using the 

70/20/10 data split, which provided consistently strong results during previous evaluations. 

The classification performance at each resolution, measured in terms of Accuracy, Precision, Recall, and F1-score, is 

presented in Table 2. These experiments aim to highlight how spatial resolution impacts the model’s ability to capture 

fine-grained histopathological features crucial for accurate diagnosis. The highest performance was obtained with 

224×224, achieving an accuracy of 97.52% This can be attributed to the preservation of high-frequency details and 

spatial structures that are essential for accurate discrimination between benign and malignant tissues. 

In contrast, the 96×96 resolution, while computationally efficient, led to a decline in classification performance. This 

suggests that overly compressed images may omit critical morphological information required for reliable diagnosis. 

The 128×128 resolution offered a strong balance between computational efficiency and classification accuracy, and 

was thus selected as the default resolution for all subsequent experiments. 

Table 2: Classification performance of HNet at different image resolutions using a 70/20/10 data split. 

 

 

 

 

 

3 Ablation Study and Component-Level Comparison 

To understand the individual contributions of each component within the proposed HNet architecture, we conducted 

ablation experiments using a fixed resolution of 128×128 and the optimal 70/20/10 data split.  

The performance comparison, presented in Table 3, reveals that the EfficientNet-based configuration achieved a 

strong F1-score of 96.40%, reflecting its ability to extract rich local textures and morphological features. In contrast, 

the AVT-based configuration showed weaker performance (F1-score: 92.67%), indicating its limitations in capturing 

fine-grained histological details, despite its strength in modeling global dependencies. 

Data split 

Train/Test/Val 

Accuracy Precision Recall F1-Score 

70/20/10 97.15% 99.04% 95.38% 97.18% 

70/15/15 94.98% 97.22% 92.92% 95.02% 

75/15/10 95.40% 96.07% 94.76% 95.41% 

80/10/10 93.65% 96.41% 91.28% 93.78% 

85/10/5 95.76% 94.75% 96.82% 95.77% 

90/5/5 96.13% 94.75% 96.15% 95.45% 

Resolution Accuracy Precision Recall F1-Score 

96x96 94.70% 91.40% 95.50% 93.40% 

128×128 97.15% 99.04% 95.38% 97.18% 

224×224 97.52% 98.52% 95.43% 96.95% 
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The full HNet model outperformed both individual configurations, achieving the highest f1-score of 96.95%, 

demonstrating the benefit of hybridizing local and global feature extraction with spatial hierarchy preservation via 

Capsule Networks. This synergy enhances both the discriminative power and generalization capacity of the model. 

Table 3: Component-Level Comparison using F1-Scores 

Configuration Components F1-score Model impact 

EfficientNet CNN only 96.40% EfficientNet excels in feature extraction, capturing 

local textures well, but struggles with long-range 

dependencies, resulting in a slightly lower F1-score. 

AVT Transformer 

only 

92.67% AVT captures global dependencies effectively but 

lacks in extracting detailed local features like 

cellular structures, leading to a lower F1-score. 

HNet CNN + AVT + 

Capsule 

96.95% The hybrid model combines EfficientNet, AVT, and 

Capsule Networks, enhancing local feature 

extraction, global context modeling, and spatial 

hierarchy preservation. 

Confusion Matrix and Class-wise Performance  

To further evaluate the model's class-wise predictive capabilities, confusion matrices were analyzed across three 

model configurations: AVT, EfficientNet, and the proposed HNet. This analysis helps in understanding the balance 

between sensitivity (recall) and specificity, particularly in distinguishing benign from malignant cases. 

As shown in Table 4, HNet achieved a strong balance with 1042 true positives (TP) and 1063 true negatives (TN), 

while maintaining relatively low false positives (FP = 16) and false negatives (FN = 51). Compared to the baseline 

models, EfficientNet exhibited slightly fewer false positives (FP = 26) and higher true positives (TP = 1035), while 

AVT showed increased misclassifications (FP = 46, FN = 118), indicating comparatively lower precision and recall. 

This comparative analysis confirms that the hybrid HNet model achieves better class-wise discrimination, offering 

both high sensitivity for malignant detection and low false alarms for benign cases, making it a reliable tool for clinical 

decision support. 

Table 4: Confusion Matrix Results Across Model Variants 

Model True Negatives False Positives False Negatives True Positives 

AVT 1033 46 118 975 

EfficientNet 1060 26 51 1035 

HNet 1063 16 51 1042 

 

5 Training Convergence and Learning Behavior 

The proposed HNet model was trained for 100 epochs with real-time monitoring of accuracy and loss. At 224x224 

resolution with a 70/20/10 data split, the training curves demonstrated smooth convergence, with validation loss 

stabilizing after approximately 60 epochs. The application of early stopping and learning rate scheduling effectively 

mitigated overfitting. 

As shown in Figure 5, the learning curves reflect stable optimization dynamics and strong generalization to unseen 

data, further reinforcing the model’s reliability for breast cancer histopathological image classification. 



Journal of Information Systems Engineering and Management 
2025, 10(59s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 939 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Figure 5: Accuracy and loss over 100 training epochs 

6 Comparison with State-of-the-Art 

To further validate the effectiveness of the proposed HNet model, we conducted a comparative analysis with several 

state-of-the-art methods previously applied to the BreakHis dataset. These methods include traditional machine 

learning approaches, CNN-based models, and recent transformer-enhanced architectures reported in the literature. 

Table 5 provides a comparative analysis of several state-of-the-art models and configurations for breast cancer 

detection, including the proposed HNet architecture. It summarizes the reported classification accuracies and the 

core architectural components of each approach. The proposed HNet framework achieves an impressive accuracy of 

97.52%, leveraging a synergistic integration of EfficientNet, an AVT module, and Capsule Networks. This result either 

surpasses or closely rivals the performance of existing models that incorporate attention mechanisms, ensemble 

strategies, or advanced convolutional neural networks, highlighting the effectiveness of the proposed hybrid design. 

Table 5. Comparison of the suggested hybrid model with contemporary leading methodologies. 

Model / Study Accuracy Key Features 

CBAM-EfficientNetV2, [26]  99.01% EfficientNetV2-XL with Convolutional Block Attention 

Module (CBAM) 

DeepBraestCancerNet [27] 99.35% Ensemble of ResNet18, ShuffleNet, and Inception-V3Net with 

transfer learning 

CBAM-VGGNet [28] 98.96% VGG16 and VGG19 fusion with Convolutional Block Attention 

Module (CBAM) 

Inception-ResNet-v2 with 

Gradient Boosting [29]  

96.82% Inception-ResNet-v2 features with ensemble of CatBoost, 

XGBoost, and LightGBM classifiers 

EfficientNet with Hybrid 

Attention Mechanisms [30]  

91.3% EfficientNet combined with hybrid attention mechanisms 

Proposed HNet 97.52%  

 

Hybrid model EfficientNet + AVT for features extraction, 

Capsule Networks for classification 

 

7 Computational Cost and Training Time 

As detailed in Table 6, the training time varied considerably depending on the image resolution and data split 

strategy. For the 128×128 resolution using a 70/20/10 split, EfficientNet completed training in approximately 45 

minutes, whereas the AVT model required around 1 hour. The hybrid HNet model took approximately 1 hour and 18 

minutes under the same configuration. However, increasing the resolution to 224×224 resulted in a substantial rise 
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in training time. Specifically, the HNet model at 224×224 took nearly 27 hours to complete training and evaluation, 

emphasizing the significant computational demands of high-resolution image processing in deep learning workflows. 

Table 6: Model Execution Time Across Configurations 

Model Resolution Split Execution time 

EfficientNet 128×128 70/20/10 45 min 

AVT 128×128 70/20/10 1 h 

HNet 128×128 70/20/10 1 h 18 min 

HNet  224×224 70/20/10 27 h 

 

 CONCLUSION 

In this study, we introduced HNet, a novel hybrid deep learning architecture designed for the classification of breast 

cancer histopathological images. HNet integrates three powerful components: EfficientNet, Advanced Vision 

Transformer (AVT), and Capsule Network to exploit local texture patterns, global contextual information, and spatial 

hierarchies within a unified and scalable framework. Extensive experiments conducted on the BreakHis dataset 

demonstrated that HNet consistently outperforms standalone models across various image resolutions and data split 

configurations, achieving an F1-score of up to 97.18%. The model also showed strong generalization capabilities and 

resilience to data limitations, highlighting its potential for reliable and interpretable cancer diagnosis. Ablation 

studies and confusion matrix analysis further validated the model's design, showing that hybridizing convolutional 

and transformer-based representations significantly improves classification performance. 

Compared to existing methods including CBAM-EfficientNetV2, DeepBreastCancerNet, and ensemble CNNs, our 

model HNet offers a compelling balance between performance and interpretability. It avoids the excessive parameter 

load of deep ensembles while enhancing transparency through capsule-based relational modeling. These attributes 

make it particularly suitable for clinical decision-support systems, where model accuracy, efficiency, and 

explainability are equally critical. 

Future work will explore the model’s adaptability across varying magnification levels (40×, 100×, 200×, and 400×) 

to assess robustness under different diagnostic conditions. We also plan to integrate multi-scale fusion techniques 

for better generalization across resolutions, and to extend the framework to multi-class classification of breast cancer 

subtypes, enabling a more granular and clinically relevant diagnosis beyond binary classification. Additional efforts 

will focus on explainability via Grad-CAM and capsule activation analysis, as well as cross-dataset generalization 

using external benchmarks such as BACH and Camelyon16 
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