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This paper addresses the challenge of efficient task offloading in Fog Computing for 
Internet of Drones (IoD) applications by introducing a multi-objective optimization 
framework. Unlike previous studies that optimize either delay or energy 
consumption in isolation, our approach jointly considers both metrics through a 
hybrid architecture that combines Fog nodes (UAVs and base stations) with Cloud 
resources.  We propose and evaluate three multi-objective metaheuristic algorithms 
– Multi-Objective Particle Swarm Optimization (MOPSO), Multi-Objective Genetic 
Algorithm (MOGA), and Multi-Objective Ant Colony Optimization (MOACO) – to 
enhance offloading efficiency. Simulation results show that all three methods 
improve latency and UAV energy efficiency; however, MOGA consistently achieves 
the best overall performance in high-resource configurations. These results 
demonstrate MOGA’s effectiveness in managing the trade-off between offloading 
delay and energy consumption in dynamic UAV-based networks, confirming its 
potential for scalable and energy-efficient task offloading in future IoD-Fog 
Computing environments. 

Keywords: Internet of flying things, task offloading, Fog Computing, energy 
consumption, unmanned aerial vehicles.  

 

I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs), or drones, are becoming one of the most important technologies in various 
fields, as they are widely available, smaller in size, and less expensive than ever before. They now play vital roles in 
diverse applications, including delivery services, surveillance, search-and-rescue operations, and environmental 
monitoring [1-3]. Moreover, UAVs can reduce costs and risks, accelerate some tasks, and reach places that people or 
regular vehicles cannot easily access [4]. However, UAVs cannot handle computationally intensive tasks (e.g., those 
requiring a lot of memory and processing power), and therefore need additional Computing resources [5]. Due to 
the limited onboard resources and Computing capabilities of UAVs, processing their data locally is a challenging task 
[6]. Consequently, certain Computing tasks need to be offloaded from UAVs to either Fog base stations (Fog BSs), 
or Fog UAVs within the network for remote processing [4], thereby forming what is known as the Internet of Flying 
Things (IoFT) [7]. Both Fog BSs and Fog UAVs act as mobile and distributed nodes, providing computation, storage, 
and networking services [8-11]. Within Flying Fog Computing environments, task offloading plays a vital role in 
overcoming the computational limitations of UAVs [12, 13]. As UAVs are constrained by limited onboard resources 
and battery life, it is inefficient – or sometimes infeasible – for them to execute all computational tasks locally. Task 
offloading lets UAVs pass heavy or urgent tasks to more powerful Fog nodes, depending on resource availability, 
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energy limits, and network conditions. This helps reduce delays, share the work more evenly, and extend UAV flight 
time by saving onboard energy. Optimizing task offloading is key to making Flying Fog Computing work well for fast-
changing, mobile, and time-sensitive IoT applications.  

 
Despite its benefits, task offloading in Flying Fog Computing faces significant challenges. Given UAVs’ limited battery 

life and Computing power, smart energy-aware offloading strategies are required. Task offloading can conserve 

energy by sending computations to other nodes, but it also consumes power during data transmission. Energy-aware 

strategies must balance these trade-offs to extend UAV life and improve system reliability in dynamic IoT 

environments. Energy management is vital for UAVs in Flying Fog Computing, as power is consumed by flight, 

processing data, and communication. Poor energy control can cause mission failure or data loss, especially in 

emergencies.  

While several studies in Flying Fog Computing employ metaheuristic algorithms for task offloading, they typically 

optimize a single objective—either minimizing task execution delay or reducing UAV energy consumption—without 

considering both together. In contrast, our work addresses these two objectives simultaneously through a multi-

objective optimization framework. Specifically, we propose and compare three metaheuristic algorithms— Multi-

Objective Genetic Algorithm (MOGA), Multi-Objective Particle Swarm Optimization (MOPSO), and Multi-Objective 

Ant Colony Optimization (MOACO)—that jointly optimize task delay and UAV energy consumption within a hybrid 

Fog architecture combining stationary and mobile Fog nodes. Unlike earlier GA-based and PSO-based approaches, 

our framework dynamically adapts to jointly minimize delay and energy consumption in UAV environments. 

Simulation results show that MOGA consistently outperforms the other approaches, providing a robust solution for 

task offloading in Flying Fog Computing. 

The remainder of this paper is organized as follows: Section II discusses the related work. Section III describes the 
proposed system architecture, formulates the task offloading problem, and introduces the multi-objective 
optimization algorithms: MOGA, MOPSO, and MOACO. Section IV presents the simulation setup and evaluates their 
performance. Finally, Section V concludes the paper and highlights potential directions for future research. 

II. RELATED WORK 

In recent years, many studies have investigated intelligent approaches to task sharing and resource management in 

UAV-assisted Edge Computing. These methods aim to handle the growing need for fast responses and heavy data 

processing in network services. The authors in [12] proposed PSO BS-Fog, an optimization approach for task 

offloading that integrates the PSO heuristic with Fog Computing technology in the IoD. The proposed solution uses 

PSO to offload tasks from UAVs to Fog base stations, aiming to reduce offloading delays and increase available storage 

and processing capacity. However, it does not explicitly address UAV battery consumption, which remains a critical 

limitation in energy-constrained UAV environments. The authors in [13] introduced GA Hybrid-Fog, a task-

offloading optimization strategy that uses a heuristic genetic algorithm (GA) combined with hybrid Fog Computing 

for the Internet of Drones. The solution reduces offloading delays by offloading tasks from Edge UAVs to both Fog 

BSs and Fog UAVs, thereby enhancing processing and storage capacity. Nevertheless, this approach mainly focuses 

on delay reduction and does not jointly optimize energy consumption, which limits its suitability for dynamic, energy-

sensitive UAV scenarios. 

Other researchers have applied deep reinforcement learning (DRL) to manage and control unmanned aerial vehicles 

(UAVs) [14]. The authors in [15] presented a multi-agent deep reinforcement learning framework that combines the 

Distance to Task Location and Capability Match (DTLCM) method with the Multi-Agent Deep Deterministic Policy 

Gradient (MADDPG) algorithm. The proposed framework jointly improves UAV path planning, task offloading, 

resource utilization, and communication management. The optimization uses both the UAVs’ processing ability and 

their distance from tasks to improve energy use and shorten delays. The authors in [16] aimed to jointly optimize 

trajectory planning, task offloading, and resource allocation (TTR). They proposed a hybrid solution consisting of a 

PSO-based algorithm (P-TTR) and a deep reinforcement learning method (S-TTR).  In [17], a UAV-assisted system 

combining Cloud and Edge Computing is proposed for 5G networks. Using a DDPG algorithm to optimize scheduling, 

trajectory, and offloading, the approach significantly reduces delays, with hybrid Cloud–Edge offloading performing 

best. In [18], the authors propose TinyDeepUAV, a multi-objective DRL framework based on TinyML for resource-
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constrained UAV–IoT systems. By using vector-based reinforcement and D3QN, it balances delay and energy 

consumption with low-complexity offloading decisions. In [19], the authors proposed a novel framework combining 

DRL with Zero-Reflection Intelligent Surfaces (Ze-RIS) to optimize task offloading in UAV-Mobile Edge Computing 

(UAV-MEC) systems. In [20], the authors proposed an iterative approach that optimizes task offloading, data 

transmission, UAV computational capacity, UAV positioning, and service latency. In [21], the authors proposed an 

optimization framework for task offloading in a collaborative UAV environment integrated with Fog and Cloud 

Computing resources. The authors modelled the task-offloading problem as a Mixed-Integer Linear Programming 

(MILP) problem to jointly optimize UAV energy use and offloading latency. 

Overall, existing studies in Flying Fog Computing mainly concentrate on optimizing task offloading on either delay 

or UAV energy consumption, but rarely address both simultaneously. In contrast, our work considers these two 

objectives together within a unified multi-objective optimization framework. To this end, we propose and compare 

three metaheuristic approaches—MOPSO, MOGA, and MOACO—standing for multi-objective Particle Swarm 

Optimization, Genetic Algorithm, and Ant Colony Optimization, respectively. 

III. PROPOSED APPROACH 

We propose an architecture for task offloading from Edge UAVs to Fog UAVs and Fog BSs, aiming to optimize both 
total task offloading delay and UAVs energy consumption using the following proposed methods: MOPSO, MOGA 
and MOACO. In this architecture, three types of nodes are involved: Edge UAVs, Fog UAVs, and Fog BSs (see Fig.1).   
 

 
Figure 1 Architecture of the proposed model. 

3.1 Mathematical model 

Fig. 1 presents the architecture of the proposed model. To model channel connectivity across large geographical areas, 

it is necessary to compute the transmission delay between aerial nodes (UAVs or Fog UAVs) and ground devices (Fog 

BSs). Ensuring seamless data transmission between these nodes requires maintaining adequate network quality, 

which is closely related to the transmission delay. This delay can be expressed in terms of the transmission rate R i, 

as shown in Eq. (1) [10]:                                

                                                                                            𝐷𝑖𝑗 =  
𝑆𝑗

𝑅𝑖
                                                                                  (1)                                                                     

Where Sj denotes the data size of task j. The transmission rate Ri depends on the channel conditions and is determined 

using Eq. (2), Eq. (3), and Eq. (4). Based on the transmission bandwidth W, the maximum achievable data rate from 

an aerial to a ground device is defined by [11]:               

                                                                                   𝑅𝑖 = 𝑤 ·  𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑖)                                                                         (2) 

The signal-to-noise ratio SNRi is calculated as:                      

                                                                                               𝑆𝑁𝑅𝑖 =  
𝑃𝑡𝑥

𝐿𝑑𝐵 (𝑑𝑖)· 𝑁0 
                                                                              (3)                                                                                       
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Where Ptx is the transmit power, LdB(di) is the path loss in decibels at distance di, and N0 is the noise power. The path 

loss LdB(di)  is calculated using the free-space path loss model: 

                                                        𝐿𝑑𝐵  (𝑑𝑖) = 20 log(𝑑𝑖)  +  20 log(𝑓) +  20 log (
4𝜋

𝑐
) +   𝐿𝑒𝑥                                               (4)  

Here, di is the distance between the aerial node UAVi and the corresponding ground device Fog BSi (as depicted in 

Fig. 1), f is the carrier frequency, c is the speed of light, and Lex represents the excess path loss, accounting for both 
Line-of-Sight (LoS) and Non-Line of Sight (NLoS) components [10]. 

3.1.1 Computing model 

The Computing time of the Fog node i depends on its CPU frequency fi. The CPU cycles required to process each bit 

of data are represented by ηj. The Computing delay of task j in Fog node i, denoted as Cij, is calculated using [11]: 

                                                                              𝐶𝑖𝑗 =  
𝑆𝑗 .  𝜂𝑗

𝑓𝑖
                                                                         (5)        

3.1.2 Energy consumption model 

The total energy consumption includes both transmission and processing energy. The transmission energy 𝐸𝑖𝑗
𝑡𝑥 

required by the UAV i to send task j is given by:     

                                                                                        𝐸𝑖𝑗
𝑡𝑥 = 𝑃𝑡𝑥  .  𝐷𝑖𝑗 =  𝑃𝑡𝑥  .

𝑆𝑗 

𝑅𝑖
                                                             (6) 

The processing energy 𝐸𝑖𝑗
𝑝𝑟𝑜𝑐

 to execute task j on Fog node i is calculated as: 

                                                                                       𝐸𝑖𝑗
𝑝𝑟𝑜𝑐

 = 𝜅 ·  𝑆𝑗  ·  𝜂𝑖   ·   𝑓𝑖
2                                                                     (7)       

Where: κ is the effective switched capacitance. 

3.1.3 Offloading cost 

To make an optimal offloading decision, a cost function is defined to capture the trade-off between task latency and 
energy consumption. The offloading cost Costij reflects this balance when task j is processed by Fog node i, and is 
defined as:                          

                                                                                    𝐶𝑜𝑠𝑡𝑖𝑗
 = 𝛼𝑖 .  𝐷𝑖𝑗 +  𝛽𝑖  .  (𝐸𝑖𝑗

𝑡𝑥  +  𝐸𝑖𝑗
𝑝𝑟𝑜𝑐

)                                                       (8) 

Where : 

● 𝛼𝑖 and  𝛽𝑖 are weighting coefficients such that  𝛼𝑖 +  𝛽𝑖=1 

● 𝐷𝑖𝑗  represents the total delay for executing task j on node i (see Eq. (1)), 

● 𝐸𝑖𝑗
𝑡𝑥 is the energy consumed for transmitting the task to node i (see Eq. (6)), 

● 𝐸𝑖𝑗
𝑝𝑟𝑜𝑐

 is the energy required to process the task at node i (see Eq. (7)). 

To account for the energy constraints of UAVs, the weighting factors αi and βi are dynamically adjusted based on the 
current battery level Bi ∈ [0, 1] of UAV i:               

                                                                                              αi = Bi,   βi = 1 – Bi                                                                                 (9) 

This ensures that UAVs with lower battery levels prioritize energy saving, while those with higher battery levels 
prioritize minimizing delay. 

3.2 Algorithmic structure 

3.3.1 Task offloading at Edge UAV 

The task offloading strategy adopted by the Edge UAV is based on the size of the incoming task. This strategy is 
proceeded as follows: 
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● Small tasks (Task_size < TSMin): Executed locally on the Edge UAV in order to reduce latency and avoid 
communication overhead. 

● Medium tasks (TSMin ≤ Task_size < TSMax): Offloaded to either a Fog UAV or a Fog BS, based on a Multi-
Objective Optimization (MOO) decision mechanism. 

● Large tasks (Task_size ≥ TSMax): Offloaded directly to the Cloud, which provides high computational 
capacity and storage resources. 

3.3.2 Delay, and energy consumption calculation algorithms 

       In the proposed architecture, multiple Edge UAVs can offload their tasks to various Fog UAVs, Fog Base Stations 

(Fog BSs), or directly to the Cloud. The distribution of these tasks is optimized to achieve an effective trade-off 

between offloading delay and UAV energy consumption. This optimization is performed using one of three multi-

objective metaheuristic methods: MOGA, MOPSO, or MOACO. The following of this section presents the 

algorithmic structure of our approach. 

In Step 1, the algorithm calculates the data rate based on Eq. (2), Eq. (3) and Eq. (4). In Step 2, it computes both 
the transmission delay and the processing (Computing) delay for each offloaded task using Eq. (1) and Eq. (5). Finally, 
the algorithm determines the total offloading delay, which corresponds to the maximum delay among all individual 
task offloading delays. The total energy consists of two main components: transmission energy and processing 
energy.  

3.3.3 Multi-objective GA algorithm for task offloading in flying  Fog Computing 

The proposed multi-objective GA algorithm for task offloading in flying Fog Computing, is executed by the Edge 
UAV to offload tasks to a set of Fog UAVs and Fog BSs. To reduce the transmission delay, the execution time and the 
consumption energy, the algorithm applies the MOGA operation for a number of iterations. The process begins with 
Step 1, where the problem is defined by establishing a fitness function.  This function evaluates the total offloading 
delay and total energy consumption for each Fog BS and Fog UAV. In Step 2, each individual in the population is 
encoded as a binary chromosome, representing a specific allocation of tasks to Fog BSs or Fog UAVs. Then, in Step 
3, an SP vector is initialized, where each individual is assigned a fitness value computed using the fitness function.  
Step 4, a subset of individuals with the highest fitness values is selected from the population.  
Step 5, the GA heuristic applies the crossover function as follows: 

● Step 5.1: Select two chromosomes j and j + 1, if the generated random value r is less than the crossover 
probability (PC). 

● Step 5.2: Randomly determine a crossover point that indicates the position of the bits to be exchanged 
between chromosomes j and j+1. 

● Step 5.3: Perform crossover by exchanging the selected bits of the two chromosomes. 

Step 6, the GA heuristic applies the mutation function as follows: 

● Step 6.1: Select a chromosome j if the regenerated random value r is less than the mutation probability (PM
). 

● Step 6.2: Randomly determine a mutation point that indicates the position of the bit to be mutated in 
chromosome j. 

● Step 6.3: Modify the value of the selected bit of chromosome j. 

Steps 7 and 8 evaluate the population to obtain a minimal compromise between delay and energy consumption for 

all task offloading decisions to Fog BSs and Fog UAVs. Finally, Step 9 generates the overall optimal compromise 

solution in terms of delay and energy consumption for all offloaded tasks. 
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IV. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed task offloading strategy, a set of simulations was conducted using 
MATLAB r2016a ToolBox. In this study, we compare the performance of three multi-objective optimization 
algorithms: MOGA, MOPSO, and MOACO. These algorithms are evaluated across the simulation scenarios defined 
in Table 1, with the objective of optimizing task offloading decisions. The comparison focuses on key performance 
metrics, including total latency and energy consumption. By examining how each algorithm responds to variations 
in task load, resource availability, and network conditions, we aim to assess their strengths, limitations, and overall 
suitability for real-time, resource-constrained systems. 
 
Table 1 outlines the set of simulation scenarios used to analyze the behavior of the proposed MOGA algorithm for 
task offloading under different system conditions. Each scenario varies a specific parameter to observe its individual 
impact on the performance of the proposed algorithm. These scenarios are designed to test the efficiency and 
adaptability of the MOGA algorithm. By systematically adjusting factors such as the number of tasks, the number of 
Fog UAVs, the number of Fog BSs, and channel conditions, the study identifies key elements that influence the 
scalability and robustness of the offloading strategies. 

Table 1. Simulation scenarios and expected insights. 

Scenario   Varied Parameter Expected Insight 

A Number of Edge UAVs (10–100) Algorithm capacity and manage overload 

B Number of Tasks (10–100) Algorithm scalability 

C Number of Fog-UAVs Resource availability effect in the UAV layer 

D Number of Fog-BSs infrastructure density affects 

E Channel Conditions (Data rate) Network impact 

 
Fig. 2 illustrates the impact of the number of Edge UAVs on the performance of multi-objective task-offloading 
methods, comparing MOGA, MOACO, and MOPSO. In this experiment, the number of offloaded tasks is fixed at 100, 
the number of Fog UAVs is fixed at 10, and the number of Fog BSs is fixed at 10. As shown in the figure, increasing 
the number of Edge UAVs leads to an increase in the best cost for all optimization algorithms, primarily due to the 
additional tasks generated by the larger number of Edge UAVs. Furthermore, the results show that the proposed 
MOGA algorithm achieves a lower best cost, indicating a good trade-off between delay and energy consumption 
compared to MOACO and MOPSO, as its metaheuristic search yields an optimal task-offloading strategy that 
minimizes transmission delay, processing delay, and energy consumption. 
 
Fig. 3 illustrates the best cost associated with task offloading for the three algorithms, as a function of the number of 
tasks. In this experiment, the number of offloaded tasks varies from 50 to 450, while the number of Fog UAVs is fixed 
at 10, and the number of Fog BSs is fixed at 10. As the number of tasks increases, the best cost of all methods increases 
due to the greater processing capacity required to handle the additional tasks. Furthermore, the results show that the 
proposed MOGA algorithm consistently achieves a lower best cost compared to MOACO and MOPSO. This 
improvement is attributed to the genetic algorithm’s ability to heuristically determine an optimal trade-off in task 
offloading decisions, resulting in minimal delay and reduced energy consumption for task transmission and 
processing. Fig. 4 and Fig. 5 present, respectively, the impact of the number of Fog UAVs and the number of Fog BSs 
on the performance of multi-objective task-offloading methods. In both cases, as the number of Fog nodes increases, 
the best cost of all algorithms decreases, resulting in the higher processing capacity available in the network. 
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Moreover, the proposed MOGA algorithm consistently outperforms MOACO and MOPSO in both scenarios.  

                                         
   Figure 2. Impact of Edge UAVs quantity on the                           Figure 3. Impact of number of tasks on the performance of 

performance of multi-objective task offloading methods                                multi-objective task offloading methods. 

                                           
       Figure 4. Impact of Fog UAVs quantity on the                             Figure 5. Impact of Fog BSs quantity on the performance   

performance of multi-objective task offloading methods                                      of multi-objective task offloading methods.         

V. CONCLUSION 

In this paper, we have proposed a MOGA-based multi-objective optimization approach for task offloading in Fog 
Computing environments. The proposed solution leverages the metaheuristic search capability of the Genetic 
Algorithm to optimize task allocation between Edge UAVs, Fog UAVs, Fog Base Stations, and Cloud, aiming to 
minimize the best cost, which represents a trade-off between transmission delay, processing delay, and energy 
consumption. Simulation results showed that MOGA consistently outperforms traditional multi-objective 
optimization algorithms such as MOACO and MOPSO in various network scenarios. Specifically, MOGA achieved 
superior performance when varying the number of Edge UAVs, the number of tasks, the number of Fog UAVs, the 
number of Fog BSs, and the channel conditions. The improvements were particularly evident in high-resource 
scenarios. The gain is attributed to MOGA’s ability to heuristically determine optimal task-offloading strategies under 
dynamic network conditions. As a future research direction, we intend to extend this work by integrating MOGA with 
other heuristic or machine learning-based approaches to develop a hybrid offloading framework, capable of adapting 
to even more complex and large-scale IoD–Fog networks. 
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