
Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 60 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Performance Optimization in Micro Frontend Architectures

Shafi Shaik

Independent Researcher, USA

ARTICLE INFO ABSTRACT

Received: 13 July 2025

Revised: 28 Aug 2025

Accepted: 12 Sept 2025

Micro frontend architecture has emerged as a transformative approach in

web application development, decomposing monolithic interfaces into

independently deployable units while introducing unique performance

challenges. This article examines critical optimization strategies essential

for distributed frontend systems, focusing on bundle size management,

advanced loading techniques, content delivery architectures, and cross-

origin communication. The architectural characteristics of micro

frontends necessitate specialized optimization approaches that differ

significantly from traditional monolithic patterns. By balancing team

autonomy with global performance objectives, organizations can

implement targeted strategies addressing bundle duplication, resource

loading, geographic distribution, and security considerations. The

effectiveness of these techniques depends on coordinated implementation

across organizational boundaries while preserving the autonomy that

makes micro frontend architectures valuable for complex applications

with diverse stakeholder needs.

Keywords: Micro Frontend Architecture, Performance Optimization,

Bundle Size Management, Lazy Loading Strategies, Cross-origin

Communication

Introduction

Modern web applications confront significant performance challenges as user interfaces grow

increasingly complex and user expectations continue to rise. Recent research demonstrates that

performance metrics directly impact key business indicators, with measurable effects on user

engagement, conversion rates, and overall satisfaction. These findings underscore the critical

importance of optimization strategies in contemporary web development environments where

applications must efficiently handle sophisticated interactions while delivering responsive experiences

across diverse devices and network conditions [1].

The micro frontend architecture has emerged as a significant evolution in frontend development

methodology, decomposing traditional monolithic interfaces into independently deployable and

maintainable units. This approach extends microservice principles to the user interface layer, allowing

development teams to work autonomously while preserving a cohesive user experience. Industry

adoption of this pattern has accelerated notably in recent years, particularly among organizations

managing complex digital products with diverse stakeholder needs and rapidly evolving requirements.

While offering substantial benefits for development workflow and organizational scaling, this

distributed approach introduces unique performance considerations that require specialized attention

[2].

Performance optimization in distributed frontend systems presents distinct challenges compared to

monolithic applications. The fragmented nature of micro frontends creates a heterogeneous

optimization landscape where multiple teams may employ different frameworks, build processes, and

development practices. Without coordinated optimization strategies, micro frontend implementations

can introduce significant overhead through framework duplication, redundant dependencies, and

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 61 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

inefficient resource utilization. Research indicates that initial payload size can increase substantially

in unoptimized micro frontend systems, directly impacting critical metrics like Time to Interactive

and First Contentful Paint [1].

The architectural characteristics of micro frontend systems necessitate tailored performance

optimization techniques that address the distributed nature of these applications. Standard

optimization approaches must be adapted to account for challenges unique to composite interfaces,

including multiple entry points, cross-origin communication, and dynamic module loading. Analysis

of production implementations reveals that organizations employing specialized optimization

strategies appropriate for distributed architectures achieve markedly better performance outcomes

than those applying conventional monolithic optimization patterns to micro frontend systems [2].

Effective performance optimization in micro frontend architectures requires balancing team

autonomy with global performance goals. This balance can be achieved through specialized techniques

addressing the distributed nature of these systems while preserving their organizational benefits. By

focusing on key dimensions including bundle size management, advanced loading strategies, content

delivery architecture, and cross-origin optimization, development teams can mitigate the performance

challenges inherent in distributed frontend systems while maintaining the scalability advantages that

make micro frontends an attractive architectural pattern [1].

Bundle Size Management in Distributed Systems

Bundle size management represents a critical concern in micro frontend architectures, significantly

impacting application performance and user experience. The distributed nature of these systems

creates unique challenges for JavaScript optimization as multiple teams independently contribute

code to a unified application. Research into frontend optimization techniques demonstrates that

JavaScript payload size directly influences critical metrics, including parsing time, execution time, and

memory consumption. In micro frontend environments, this relationship becomes more complex as

the cumulative effect of multiple independently developed components can lead to substantial

performance degradation if not properly managed. Effective bundle management strategies must

therefore balance local team autonomy with global performance objectives to create cohesive,

responsive user experiences [3].

Tree-shaking and dead code elimination present particular challenges in distributed frontend systems

where conventional build-time optimizations often fail to address cross-component inefficiencies.

Studies examining JavaScript optimization approaches highlight limitations in standard techniques

when applied to modular architectures where components are developed and built independently.

Traditional tree-shaking processes typically operate within the boundaries of discrete build processes,

limiting their effectiveness in identifying unused code across component boundaries. This limitation

becomes especially pronounced in micro frontend implementations where organizational boundaries

often align with technical boundaries, creating natural silos that impede global optimization.

Advanced approaches to code elimination in distributed systems require mechanisms that can analyze

dependency relationships across build processes or implement runtime optimization strategies [3].

Dependency duplication emerges as a significant challenge unique to micro frontend architectures.

Recent comparative research examining implementation patterns across diverse organizations

identifies redundant dependencies as a primary concern reported by development teams. The

independent nature of micro frontend components frequently results in situations where common

libraries appear multiple times across different parts of the application, substantially increasing

overall payload size. This duplication particularly affects widely used utility libraries, state

management solutions, and UI component frameworks. Successful strategies for addressing this

challenge include centralized dependency management, runtime dependency sharing mechanisms,

and architectural patterns that favor composition over duplication [4].

The build tooling ecosystem has evolved considerably to address the specific requirements of

distributed frontend architectures. Comparative analysis of implementation approaches across

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 62 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

organizations of varying sizes reveals substantial diversity in build system integration strategies based

on organizational constraints and technical requirements. Research examining micro frontend

adoption demonstrates that build tool selection significantly impacts both development experience

and runtime performance. Evaluation criteria for build tools in distributed environments extend

beyond basic bundling capabilities to include support for dynamic loading, module federation, shared

dependencies, and integration with existing development workflows. Organizations implementing

micro frontend architectures must carefully assess trade-offs between different approaches based on

specific requirements, including team structure, deployment patterns, and performance objectives [4].

Fig 1: Bundle Size Management [3, 4]

Advanced Loading Strategies for Micro Frontends

Advanced loading strategies represent a cornerstone of performance optimization in micro frontend

architectures, where multiple independent components must work together to deliver cohesive user

experiences. The distributed nature of these systems introduces unique resource loading challenges

that extend beyond traditional monolithic optimization techniques. Research into frontend

performance optimization demonstrates that carefully implemented loading strategies significantly

impact critical metrics, including initial render time, time to interactive, and overall application

responsiveness. In micro frontend environments, these strategies must balance immediate

performance needs with smooth transitions between independently developed components, requiring

both technical sophistication and organizational coordination to achieve optimal results [5].

Lazy loading implementation patterns specific to micro frontend architectures must account for the

boundaries between components, which are often aligned with team or organizational divisions.

Recent studies examining frontend performance optimization identify several patterns adapted to

distributed environments, including route-based loading, feature-based loading, interaction-based

loading, and predictive preloading. Each pattern offers distinct advantages depending on application

characteristics and user behavior patterns. The effectiveness of these patterns depends significantly on

consistent implementation across teams, requiring established conventions and shared utilities that

standardize behavior while preserving team autonomy. Organizations implementing coordinated

loading strategies across distributed teams demonstrate measurably better performance outcomes

compared to those with fragmented approaches [5].

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 63 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Code splitting strategies across organizational and technical boundaries require special consideration

in micro frontend environments. The independent development and deployment model creates

natural divisions that can impede global optimization if not properly managed. Studies focused on

frontend performance emphasize the importance of coordinated approaches to code splitting that

consider both component-specific needs and overall application architecture. Effective

implementation requires mechanisms for cross-team collaboration, such as performance working

groups or communities of practice that establish shared conventions while respecting team

boundaries. These governance structures help maintain consistent performance standards across

distributed teams while preserving the autonomy that makes micro frontend architectures valuable

[5].

Fig 2: Advanced Loading Strategies [5, 6]

Dynamic import techniques provide powerful capabilities for resource management in distributed

frontend systems, enabling precise control over component loading. Research examining dynamic

micro-frontends explores implementation approaches ranging from basic on-demand loading to

sophisticated strategies incorporating user behavior prediction and network awareness. Challenges

frequently emerge when multiple teams implement independent dynamic loading strategies without

coordination, potentially leading to inefficient loading patterns or unexpected interactions. Successful

implementations typically establish shared patterns or utilities that provide consistent behavior while

allowing teams to retain control over component-specific loading decisions. Performance analysis

between eager and lazy loading approaches reveals nuanced trade-offs specific to distributed systems,

with optimal strategies often combining multiple approaches based on application characteristics and

usage patterns [6].

Content Delivery Networks and Caching Architecture

Content Delivery Networks (CDNs) function as critical infrastructure components for optimizing

micro frontend performance, providing specialized content distribution mechanisms that enhance

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 64 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

user experience across geographic regions. Research examining distributed CDN architectures

emphasizes the importance of strategic content placement and efficient request routing to minimize

latency and maximize resource utilization. In micro frontend environments, these considerations

become particularly significant as applications comprise multiple independently deployed

components that must function cohesively. Traditional CDN implementations designed for monolithic

applications often prove insufficient for distributed frontend architectures, requiring adapted

approaches that account for component interdependencies and independent deployment cycles.

Effective CDN strategies for micro frontends must balance performance optimization with component

autonomy while creating unified user experiences [7].

Geographic distribution considerations introduce substantial complexity for globally-deployed micro

frontend architectures, requiring sophisticated approaches to content delivery and request routing.

Research into distributed CDN architectures highlights the importance of strategic node placement

and intelligent routing algorithms to minimize latency for geographically dispersed users. These

considerations become particularly significant in micro frontend environments where component

composition may occur across regional boundaries. The geographic placement of both static assets

and composition mechanisms directly impacts user experience, especially for interactive applications

requiring frequent server communication. Organizations deploying micro frontends to global

audiences must carefully consider region-specific optimization strategies, including localized build

artifacts, regional API endpoints, and CDN configurations that minimize cross-region data transfer

[7].

Cache invalidation represents a significant challenge in distributed frontend environments due to the

independent deployment patterns inherent to micro frontend architectures. Research into distributed

content delivery networks identifies cache coherence as a fundamental challenge when content

originates from multiple sources with independent update cycles. This challenge becomes particularly

acute in micro frontend environments where components may be deployed asynchronously by

different teams following independent release schedules. Inconsistent caching policies across teams

can lead to version mismatches, stale content delivery, and degraded user experiences when

components fail to interact properly. Effective cache invalidation requires coordinated approaches

that maintain consistency across component boundaries while preserving team autonomy [7].

Fig 3: Content Delivery Networks [7, 8]

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 65 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Edge computing integration with micro frontend architecture offers promising opportunities for

optimizing content delivery and application performance. Recent research examining microservice

approaches in edge computing identifies significant potential for distributed frontend architectures to

leverage edge capabilities for enhanced user experience. The decomposable nature of micro frontends

aligns naturally with edge computing paradigms, allowing specific components to execute closer to

users while maintaining centralized coordination. This alignment enables several integration patterns,

including edge-rendered components, edge-orchestrated composition, and edge-enabled data proxies.

The distribution of rendering and composition logic to edge nodes can significantly reduce latency for

interaction-heavy applications by minimizing round-trip times to central infrastructure [8].

Cross-Origin Optimization in Federated Architectures

Cross-origin communication represents a fundamental architectural concern in micro frontend

implementations, directly impacting both application performance and security posture. The

distributed nature of these architectures frequently necessitates communication across domain

boundaries, introducing additional complexity compared to traditional monolithic applications.

Research examining security considerations in web applications emphasizes the importance of proper

cross-origin resource sharing (CORS) configuration as a critical aspect of secure application design. In

micro frontend environments, this consideration becomes particularly significant as components

developed by different teams may reside on separate domains while needing to interact seamlessly.

Effective CORS configuration must balance security requirements with performance considerations,

establishing appropriate boundaries without introducing unnecessary restrictions that impede

functionality. Organizations implementing micro frontend architectures must develop consistent

CORS policies that apply across all components while addressing the specific requirements of

different interaction patterns [9].

Performance impact analysis of cross-origin requests reveals important considerations for distributed

frontend systems where components frequently communicate across domain boundaries. Research

into web application security demonstrates that cross-origin requests introduce additional overhead

compared to same-origin communication due to preflight requests, connection establishment

procedures, and security policy enforcement. This performance differential becomes particularly

significant in micro frontend architectures where user journeys may span multiple domains,

potentially introducing compounding latency as users navigate through the application. The impact

varies substantially based on implementation patterns, with some architectural approaches

demonstrating better cross-origin performance than others. Strategic domain organization and

request optimization can significantly reduce the performance penalty associated with cross-domain

communication while maintaining appropriate security boundaries [9].

Security-performance trade-offs represent a critical consideration specific to micro frontend

implementations, requiring careful balancing of protection mechanisms with application

responsiveness. Research examining microservice adoption in software organizations identifies

security concerns as a significant factor in architectural decision-making, particularly for distributed

frontend architectures where components may have different security requirements. Common trade-

off patterns include decisions around domain consolidation, shared authentication mechanisms, and

content security policy configurations. The optimal balance depends significantly on application

characteristics and organizational requirements, with different sectors typically demonstrating

different priorities regarding the security-performance spectrum. The evaluation of these trade-offs

represents an important architectural consideration that should be addressed explicitly during system

design [10].

Optimization techniques for reducing latency in cross-team frontend integration focus on minimizing

the performance impact of necessary cross-origin communication while maintaining appropriate

security boundaries. Research examining microservice adoption patterns identifies several approaches

to optimize cross-origin performance, including domain organization strategies, shared API gateways,

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 66 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

and backend-for-frontend patterns. Organizations implementing these optimization techniques

achieve better user experience metrics for journeys spanning multiple teams compared to

unoptimized implementations. The selection of appropriate strategies depends significantly on

application characteristics, organizational structure, and specific performance requirements [10].

Fig 4: Cross-Origin Optimization [9, 10]

Conclusion

Performance optimization in micro frontend architectures requires a delicate balance between team

autonomy and global efficiency to address the distributed nature of these systems. The evolution of

specialized techniques across bundle management, loading strategies, content delivery, and cross-

origin communication demonstrates the maturity of the micro frontend ecosystem. The most

successful implementations share common characteristics: standardized approaches to dependency

management, coordinated loading strategies, intelligent CDN configuration, and security-aware cross-

origin optimization. Looking forward, the integration of edge computing capabilities and machine

learning-driven optimization presents exciting opportunities for further performance enhancements.

Development teams implementing micro frontends should establish cross-functional performance

governance structures while maintaining clear component boundaries. As web applications continue

to grow in complexity, these specialized optimization techniques will become increasingly essential for

delivering responsive experiences while preserving the organizational benefits that make micro

frontend architecture an attractive solution for modern development challenges.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 67 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

References

[1] Juho Vepsäläinen et al., "Overview of Web Application Performance Optimization Techniques,"

ResearchGate, 2024.

https://www.researchgate.net/publication/387026070_Overview_of_Web_Application_Performanc

e_Optimization_Techniques

[2] Neha Kaushik, "Micro Frontend Based Performance Improvement and Prediction for

Microservices Using Machine Learning," ResearchGate, 2024.

https://www.researchgate.net/publication/379869365_Micro_Frontend_Based_Performance_Impr

ovement_and_Prediction_for_Microservices_Using_Machine_Learning

[3] Vamsi Krishna Myalapalli, "Optimizing Front End Applications and JavaScript," ResearchGate,

2015.

https://www.researchgate.net/publication/281768325_Optimizing_Front_End_Applications_and_J

avaScript

[4] Anat Sutharsica and Nimasha Arambepola, "Micro-Frontend Architecture: A Comparative Study

of Startups and Large Established Companies-Suitability, Benefits, Challenges, and Practical

Insights," ResearchGate, 2025. https://www.researchgate.net/publication/392684781_Micro-

Frontend_Architecture_A_Comparative_Study_of_Startups_and_Large_Established_Companies-

Suitability_Benefits_Challenges_and_Practical_Insights

[5] Narender Reddy Karka, "Front-End Performance Optimization: A Comprehensive Guide,"

ResearchGate, 2025. https://www.researchgate.net/publication/389591304_Front-

End_Performance_Optimization_A_Comprehensive_Guide

[6] Jelena Kičić et al., "Dynamic Micro-Frontends," ResearchGate, 2024.

https://www.researchgate.net/publication/383727103_Dynamic_Micro-Frontends

[7] Jaison Mulerikkal and Ibrahim Khalil, "An Architecture for Distributed Content Delivery

Network," ResearchGate, 2007.

https://www.researchgate.net/publication/4316275_An_Architecture_for_Distributed_Content_Del

ivery_Network

[8] Md. Delowar Hossain et al., "The role of microservice approach in edge computing: Opportunities,

challenges, and research directions," ResearchGate, 2023.

https://www.researchgate.net/publication/371835855_The_role_of_microservice_approach_in_edg

e_computing_Opportunities_challenges_and_research_directions

[9] Meerim Kakitaeva and Mekia Shigute Gaso, "Cross-Origin Resource Sharing (CORS) Policy

Enforcement in Spring Boot: Security Implications and Best Practices," Preprints.org, 2025.

https://www.preprints.org/frontend/manuscript/00c5583123fcade0dae6371d231878f3/download_p

ub

[10] Severi Peltonen et al., "Motivations, benefits, and issues for adopting Micro-Frontends: A

Multivocal Literature Review," ScienceDirect, 2021.

https://www.sciencedirect.com/science/article/pii/S0950584921000549

https://www.researchgate.net/publication/387026070_Overview_of_Web_Application_Performance_Optimization_Techniques
https://www.researchgate.net/publication/387026070_Overview_of_Web_Application_Performance_Optimization_Techniques
https://www.researchgate.net/publication/379869365_Micro_Frontend_Based_Performance_Improvement_and_Prediction_for_Microservices_Using_Machine_Learning
https://www.researchgate.net/publication/379869365_Micro_Frontend_Based_Performance_Improvement_and_Prediction_for_Microservices_Using_Machine_Learning
https://www.researchgate.net/publication/281768325_Optimizing_Front_End_Applications_and_JavaScript
https://www.researchgate.net/publication/281768325_Optimizing_Front_End_Applications_and_JavaScript
https://www.researchgate.net/publication/392684781_Micro-Frontend_Architecture_A_Comparative_Study_of_Startups_and_Large_Established_Companies-Suitability_Benefits_Challenges_and_Practical_Insights
https://www.researchgate.net/publication/392684781_Micro-Frontend_Architecture_A_Comparative_Study_of_Startups_and_Large_Established_Companies-Suitability_Benefits_Challenges_and_Practical_Insights
https://www.researchgate.net/publication/392684781_Micro-Frontend_Architecture_A_Comparative_Study_of_Startups_and_Large_Established_Companies-Suitability_Benefits_Challenges_and_Practical_Insights
https://www.researchgate.net/publication/389591304_Front-End_Performance_Optimization_A_Comprehensive_Guide
https://www.researchgate.net/publication/389591304_Front-End_Performance_Optimization_A_Comprehensive_Guide
https://www.researchgate.net/publication/383727103_Dynamic_Micro-Frontends
https://www.researchgate.net/publication/4316275_An_Architecture_for_Distributed_Content_Delivery_Network
https://www.researchgate.net/publication/4316275_An_Architecture_for_Distributed_Content_Delivery_Network
https://www.researchgate.net/publication/371835855_The_role_of_microservice_approach_in_edge_computing_Opportunities_challenges_and_research_directions
https://www.researchgate.net/publication/371835855_The_role_of_microservice_approach_in_edge_computing_Opportunities_challenges_and_research_directions
https://www.preprints.org/frontend/manuscript/00c5583123fcade0dae6371d231878f3/download_pub
https://www.preprints.org/frontend/manuscript/00c5583123fcade0dae6371d231878f3/download_pub
https://www.sciencedirect.com/science/article/pii/S0950584921000549

