
Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 203 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

MoCaaS: A Cloud-Based Telephony Call Reception

Framework for Voice Request Processing

Mohammed Tou1, Adil Toumou2, Mimoun Malki3
1A ESI - Higher School of Computer Science, Sidi-bel-Abbes, Algeria

2 Institute of Computer Science, Sidi-bel-Abbes, Algeria
3 ESI - Higher School of Computer Science, Sidi-bel-Abbes, Algeria

ARTICLEINFO ABSTRACT

Received: 30 Dec 2024

Revised: 19 Feb 2025

Accepted: 27 Feb 2025

Ensuring service continuity in cloud-based architectures is a major challenge,

especially in scenarios where internet connectivity is disrupted. In the framework of

MoCaaS (Minimum of Continuity as a Service), this paper presents the first phase of

the solution, which focuses on establishing a telephony-to-cloud connectivity system.

The proposed approach enables users to access cloud services via traditional

telephony (PSTN) when the internet is unavailable, allowing them to send verbal

requests over a secure phone connection.

The system integrates PSTN with cloud infrastructure by leveraging Amazon Connect,

Twilio SIP Gateway, and AWS Lambda, ensuring seamless call reception, voice data

extraction, and storage in Amazon S3 for further processing. The caller’s phone

number is identified via Amazon Pinpoint, enabling contextualized authentication in

subsequent stages. This serverless architecture provides high availability, fault

tolerance, and scalability, ensuring that users can continue interacting with critical

services even during internet outages.

This paper details the PSTN-to-Cloud integration process, covering architecture,

implementation, and operational considerations. By bridging traditional telephony

systems with modern cloud services, MoCaaS ensures that organizations can

maintain a minimum level of IT service continuity, particularly in environments with

unreliable internet connectivity.

Keywords: MoCaaS, Telephony-to-Cloud, PSTN, Service Continuity, Cloud-Based

Voice Processing, Amazon Connect..

INTRODUCTION

Cloud computing serves as a fundamental backbone in the modern digital world for providing scalable, resilient

and efficient IT services. Several organizations including crucial sector companies struggle to overcome internet

connectivity breakdowns. Cloud-based service accessibility becomes impossible for users because of these network

disruptions which create severe business continuity problems. Service availability must be ensured through

network failures to uphold operational resilience.

MoCaaS establishes Minimum of Continuity as a Service which presents an operational framework to preserve IT

service continuity throughout difficult circumstances. MoCaaS delivers backup communication systems which

permit user interaction with cloud platforms regardless of internet connectivity problems. A solution connects

Public Switched Telephone Network (PSTN) to cloud infrastructure which lets users make voice requests through

standard telephony systems.

MoCaaS is a seven-stage pipeline that is meant to facilitate seamless voice-to-cloud interaction. These stages are:

(0) reception of the PSTN call, this phase is responsible to receive the voice request (VR), (1) authentication of the

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 204 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

user, (2) conversion of speech to text, (3) voice request categorization, (4) intent extraction, (5) creation of the API,

and (6) invoking the remote service.

Figure 1. MoCaaS pipeline

This paper is solely concerned with the initial stage—PSTN call reception, which establishes the groundwork for the

remainder of the processes by intercepting and safely forwarding voice requests made by end-users into the cloud.

The subsequent part of this paper contains two sections which begin with(1) the scope of this paper, (2) an

examination of related work and existing service continuity solutions, (3) a detailed overview of the proposed

architecture, (4) performing an approach evaluation and (5) Future research in telephony-to-cloud service

integration takes center stage in the concluding part of this paper.

SCOPE

In this paper, the proposed solution is the voice request intake and call reception system in the MoCaaS platform

(Minimum of Continuity as a Service). The core contribution involves the utilization of cloud telephony in order to

capture inputs in the voice form through PSTN, specifically for users who do not have an active internet connection.

The scope of this effort has the following steps of the voice to cloud pipeline:

• Handling incoming PSTN calls via cloud platforms like Twilio SIP Gateway and Amazon Connect.

• Keep voice messages in Amazon S3 for the processing later on.

• Amazon Pinpoint to link calls to users, providing context and possible authentication in the future.

• My Role: Built end-to-end call and voice intake management with fully serverless components (AWS Lambda)

to handle scalability and high availability.

This paper explores the call reception framework as one of the step domains for the following steps. MoCaaS aims

at assuring that beyond Internet outages, users can start a service request in spoken language by simple phone call

and the users voice request will be reliably captured to be routed for further processing, treating cloud as a resilient

telephony platform.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 205 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The scope of this work enables a deep technical elaboration of cloud-centric PSTN integrations, ensuring that the

implementation is scalable, safe, and versatile for different applications in need of critical service continuity.

RELATED WORK

Incorporating conventional Public Switched Telephone Network (PSTN) systems with cloud computing schemes for

processing voice requests has attracted considerable attention in the academic as well as corporate communities. In

this section we summarize related studies and implementations that have worked on this combination, noting their

strengths and weaknesses. In [1] authors investigate whether VoIP can be deployed with open-source PBX software

(Elastix) on Amazon Web Services. The research illustrates the virtualization of SIP-based telephony solutions in

the virtual environment of clouds for enhanced elasticity, cost-effectiveness, and service continuity.

Though this research sets the initial insight for IP-based communications over the platform of clouds, it mostly

considers end users' presence with the availability of the internet connection and does not include scenarios with

conventional PSTN lines in the absence of internet connections. [1] discusses integrating VoIP with cloud

computing platforms, with the authors' own implementation of Elastix PBX on AWS to ingest SIP traffic.

This work demonstrates that it's possible to run telephony infrastructure in the cloud, which is scalable and cost-

efficient. But it is also based on the assumption of end-to-end internet connectivity, and does not provide for fall

back communicating over traditional PSTN. In contrast, [2] and [3] zoom into another dimension—security in

cloud-based voice systems, it discusses the design of a robust VoIP architecture with the ability to protect against

adaptive attacks via securing SIP communication channels and detecting nefarious behavior on cloud-hosted voice

platforms. Moreover, this study becomes narrow as it concentrates on IP-based security without the potential

vulnerability through offline attack or legacy of telephony-based protocols. On the topic of architectural

modernization, [4] describes various migration strategies from legacy PBX to Cloud-Based Phone (CBP) systems,

with a specific focus on small and medium-sized enterprises. In contrast, this paper offers a business-centered view

of the multi-tenant cloud migration advantages, including cost-efficiency and operational flexibility. It also leaves

out the technical challenges of PSTN integration and lacks a plan for service continuity in the event of internet

outages. Meanwhile, [5] investigates cloud incarnate voice processing via embedded systems, wherein a network is

introduced that captures an audio data, filters the noise, and offloads the audio data for processing into the cloud.

Which means you don’t have to customize data all the way and all you’ll be getting will be audio quality and signal

processing which will be mainly done on the cloud. While this work is rich in technical depth, it omits addressing

that a PSTN system has to receive voice in real-time but also the underlying infrastructure has to route calls to the

cloud. Lastly, [6] offers perspective from industry practice, as well as pragmatic considerations from actual

deployments of cloud contact center technologies such as Amazon Connect. These vendors showcase scalable

voice-user interaction systems integrated into their cloud services and analytics. That said, they tend to have

limited application to customer service cases based on internet-enabled devices or mobile networks, rather than

the telephony fallback approaches.

That said, though [1-6] represent incremental stepwise progress along stature in the general cloud telephony

echelons of infrastructure deployment and security, voice migration strategies, signaling elements, etc., they fall

short: none discuss how to process voice requests from PSTN lines when the client cannot connect to the Internet.

This paper aims to fulfill this gap by introducing a novel framework that considers the cloud as a telephony

platform, where PSTN-based voice access can be securely intercepted, preserved and routed for further

processing—the first step of a much broader MoCaaS architecture.

METHOD

In this research, we adopt an engineering-based approach to address the problem of ensuring continuity of cloud-

based services in scenarios characterized by intermittent or absent internet connectivity. The methodology involves

multiple stages beginning with an extensive literature review to identify gaps and shortcomings in existing

telephony-to-cloud integration solutions, particularly in handling PSTN-based voice requests during network

outages [1][2]. Subsequently, requirements were defined based on identified needs for critical continuity in service

operations, focusing on scalability, high availability, security, and ease of integration [3].

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 206 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The design stage followed an iterative process where various architectural models were evaluated against

predefined criteria of resilience, modularity, and technological feasibility. Our evaluation methodology combined

qualitative analysis—assessing modularity, integration complexity, and scalability potential—with quantitative

assessments focusing on anticipated performance metrics such as response latency, throughput, and fault tolerance

[4].

Implementation leveraged cloud-native technologies, primarily AWS services including Amazon Connect, AWS

Lambda, Amazon S3, and Twilio SIP Gateway [5][6]. Each component was tested incrementally using unit tests

followed by integration tests to validate end-to-end interactions and ensure robustness under simulated failure

conditions [7].

Finally, a structured scenario-based testing approach was employed to validate the practical viability of the

implemented solution, particularly its effectiveness as a fallback mechanism during simulated internet disruptions

[8]. This comprehensive methodological approach ensures that the proposed solution not only meets theoretical

expectations but also addresses practical operational considerations effectively.

SOLUTION APPROACH

The envisioned system forms the underpinning infrastructure of the MoCaaS (Minimum of Continuity as a Service)

model based on the intake of voice requests and telephony call receipt through cloud infrastructure. Such a setup

targets operation within networks where the availability of the internet may be lacking and enables making service

requests over the Public Switched Telephone Network (PSTN). The solution adopts a complete serverless and

cloud-native model for the sake of high availability and elastic scaling as well as easy integration within the

downstream components of the process.

Figure 2. PSTN Module architecture in MoCaaS Ecosystem

The architecture consists of five key interconnected modules, each rigorously evaluated through iterative design

and scenario-based testing approaches as detailed in our methodological framework:

PSTN Interface: The initial step involves receiving user-initiated phone calls via PSTN, ensuring consistent access

to services regardless of internet disruptions. This module underwent rigorous qualitative assessments regarding

integration complexity and reliability.

Twilio SIP Gateway: Acting as a critical intermediate, Twilio’s SIP Gateway converts analog voice signals to digital

SIP streams, bridging legacy telephony systems with modern cloud infrastructures. The reliability and latency

performance of this gateway were key evaluation metrics in our quantitative analysis.

Amazon Connect: Central to the management of telephony operations, Amazon Connect orchestrates call-routing

logic, manages caller interactions, and triggers subsequent downstream services. Its capability for dynamic session

scaling and integration with AWS services were evaluated in terms of throughput and concurrent session handling.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 207 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

AWS Lambda: AWS Lambda facilitates lightweight, stateless event-driven processing of call metadata and routing

logic. Incremental unit and integration tests ensured Lambda’s responsiveness, robustness, and fault tolerance,

aligning with predefined resilience criteria.

Amazon S3 and Amazon Pinpoint: The recorded voice messages are securely stored in Amazon S3, providing

essential inputs for future processing stages such as transcription and natural language understanding.

Concurrently, Amazon Pinpoint links caller identification with user profiles, enriching authentication and service

personalization. Both modules were systematically tested for security, reliability, and scalability.

This architectural model embodies the resilience, modularity, and extensibility central to our research

methodology, ensuring a robust fallback communication channel. It places cloud technology at the heart of

telephony processing, securely capturing and preserving user requests via PSTN, thus maintaining continuous

digital service interactions even during internet connectivity failures.

SOLUTION IMPLEMENTATION

The proposed solution is designed as a foundational communication module within the broader MoCaaS

(Minimum of Continuity as a Service) ecosystem, we call this module corresponds to the stage0 in MoCaaS

ecosystem (Figure 1).

This module is called PSTN Module, its primary objective is to serve as a reliable transmission bridge, enabling

voice-based user requests—originating from traditional telephony systems (PSTN)—to be captured, routed, and

injected into the MoCaaS pipeline for further processing. By facilitating seamless integration between legacy

telephony infrastructure and modern cloud-native components, this module ensures that spoken requests are

securely received, interpreted, and forwarded as structured service interactions. The implementation strictly

adheres to the architectural model defined earlier, focusing on modularity, scalability, and resilience, and is

evaluated through incremental testing and scenario-based validation.

This section presents a detailed step-by-step implementation process that strictly aligns with the architectural

framework previously described.

PSTN Module consists of five rigorously evaluated interconnected modules. Below, we clarify the interactions and

functionalities among these modules through detailed algorithmic descriptions, recommended diagrams, and

illustrative Python snippets.

Step 1: PSTN Interface Implementation

This step captures user-initiated phone calls from the PSTN, ensuring the service continuity despite internet

outages.

Algorithm 1.

Start

1. Await incoming call on PSTN line.

 - Triggered by user dialing the service number associated with MoCaaS.

2. Prepare metadata structure for downstream transmission:

 METADATA = {

 "caller_number": Calling Party Number,

"caller_location": Caller_Location,

 "call_start_time": timestamp,

 "network_type": GSM or landline,

 "status": CONNECTED,

 "session_id": generated UUID

 }

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 208 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

3. Establish physical signaling link with SIP Gateway:

 - Initiate analog-to-SIP session handshake using telecom switch/router.

4. Transmit:

 a. Analog voice stream → routed to Twilio SIP Gateway

 b. METADATA → passed as SIP header fields or accompanying payload

5. Log event for audit and debugging purposes (locally or on syslog server).

End

Table 1. Received Data|MetaData from caller and transmitted to Step2

Received Transmitted to step2

Audio Signal: Analog voice

waveform (spoken request)

Native MetaData:

Caller Number (CLID)

Dialed Service Number (DID)

Call Start Time

Call Type (GSM, landline)

Call Region or Location (if

supported)

Initial Call Status

Voice Stream: Uncompressed analog signal for SIP conversion

Structured Metadata:

caller_number → becomes SIP "From"

dialed_number → becomes SIP "To"

timestamp → custom SIP header or logging field

network_type and location → optional SIP header enrichment

session_id → uniquely identifies the call for tracking and correlation

downstream

6.2 Step 2: Twilio SIP Gateway Integration

This component converts analog voice signals received from the PSTN interface into SIP (Session Initiation

Protocol) streams to enable seamless interaction with modern cloud environments.

Algorithm 2.

Start

1. Receive incoming analog call from

PSTN Interface. →

- Audio signal delivered over standard telecom channel.

- Call metadata (caller number, dialed number, timestamp, etc.)

received as accompanying headers or control signals.

2. Initialize Twilio SIP Gateway

session →

a. Allocate a new SIP session ID (unique call session identifier)

b. Initiate SIP INVITE to Amazon Connect endpoint

3. Convert analog voice signal to

digital SIP-compatible audio stream

→

a. Use PCM (G.711 μ-law or A-law) or Opus codec depending on

configuration

b. Packetize audio stream into RTP (Real-time Transport Protocol)

4. Construct SIP INVITE message

with embedded metadata in headers

→

SIP INVITE HEADER includes:

 - `From:`caller_number

 - `To:`dialed_number

 - `Call-ID:` generated by SIP Gateway

 - `Timestamp:`call_start_time

 - `Session-ID:` for downstream correlation

 - Optional: `User-Agent`, `Geo-Info`, `Custom-Headers`

5. Transmit SIP INVITE with → a. RTP audio stream (digitized voice)

b. SIP headers (metadata)

6. Await response from Amazon - If accepted, establish RTP stream

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 209 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Connect (SIP 200 OK or error) - If rejected, log and terminate session

7. Log SIP session (with session ID, status, and duration) for audit trail

End

Table 2. Received Data|MetaData from caller and transmitted to Step3

Received (from step1) Transmitted (to step3)

Analog Voice Stream (continuous audio

from the caller)

Structured Metadata:

caller_number (CLID)

dialed_number (DID)

call_start_time

network_type (GSM, landline)

session_id (generated in Step 1)

Digital Audio Stream:

RTP packets using G.711/Opus codec (real-time

bidirectional audio)

SIP Headers (Metadata Embedded):

From: caller_number

To: dialed_number

Call-ID: unique SIP session ID

X-Session-ID: original session_id from PSTN

step

X-Timestamp:call_start_time

Step 3: Amazon Connect Call Management

Amazon Connect orchestrates the call-handling process, dynamically routing voice sessions, managing caller

interaction workflows, and invoking AWS Lambda functions.

Algorithm 3.

Start

1. Receive SIP INVITE and RTP

stream from Twilio SIP

Gateway.Interface. →

 a. Accept the SIP session (respond with 200 OK).

 b. Establish bidirectional voice stream with caller.

2. Parse SIP headers and extract call

context:→

 - From (caller_number)

 - To (dialed_number)

 - Call-ID (unique SIP session ID)

 - Timestamp

 - Session-ID

 - Additional custom headers (e.g., location, network type)

3. Initiate a contact flow (Amazon

Connect Flow Designer)→

 a. Play welcome message (optional)

 b. Handle DTMF inputs or prompt-based interactions (if

applicable)

 c. Proceed automatically to backend event

4. Trigger AWS Lambda function → -Construct payload with session metadata and caller information

 -Forward to Lambda via Amazon Connect contact flow integration

5. Log SIP session (with session ID, status, and duration) for audit trail

End

Table 3. Received Data|MetaData from caller and transmitted to Step3

Received (from step2) Transmitted (to step4)

Digital Audio Stream:

RTP packets using G.711/Opus

codec (real-time bidirectional

Amazon Connect sends metadata using the following structure (automatically

generated):

{

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 210 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

audio)

SIP Headers (Metadata

Embedded):

From: caller_number

To: dialed_number

Call-ID: unique SIP session ID

X-Session-ID: original

session_id from PSTN step

X-Timestamp:call_start_time

 "Details": {

 "ContactData": {

 "ContactId": "unique-call-id",

 "CustomerEndpoint": {

 "Address": "+213XXXXXXXXX",

 "Type": "TELEPHONE_NUMBER"

 },

 "SystemEndpoint": {

 "Address": "AmazonConnectNumber",

 "Type": "TELEPHONE_NUMBER"

 },

 "Attributes": {

 "session_id": "uuid-abc-123",

 "network_type": "landline",

"location": "Oran, DZ"

 },

 "InitiationTimestamp": "2025-05-21T16:14:22Z",

"Channel": "VOICE"

 }

 }

}

Step 4: AWS Lambda – Event-Driven processing

This step we receives the

structured call metadata

from Amazon Connect,

performs lightweight,

stateless processing, and

relays this data to

downstream components

such as Amazon S3 (for

audio), Amazon Pinpoint

(for user identification),

and optionally DynamoDB

(for traceability).

Figure 3. AWS integration

Algorithm 4.

Start

1. AWS Lambda is triggered by

Amazon Connect →

a. Receives JSON payload containing:

 - ContactId

 - Caller Number

 - Timestamp

 - Optional Attributes (session ID, network type, location)

2. Extract metadata from event → - phone_number ← ContactData.CustomerEndpoint.Address

 - call_id ← ContactData.ContactId

 - timestamp ← ContactData.InitiationTimestamp

 - session_id ← Attributes.session_id

3. Store call metadata (optional) in

DynamoDB for audit and tracking.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 211 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

4. Trigger audio storage operation in

Amazon S3 →

 - Prepare S3 key using session_id or call_id

 - Mark location for future upload from Amazon Connect

5. Query Amazon Pinpoint to attempt

caller identification

 - Match phone_number with known user endpoints

 - If user found: enrich session with user_id, profile

 - Else: flag as anonymous

6. Return result to Amazon Connect (optional): status, user identified or not

End

TESTS STRATEGIES & RESULTS

To ensure robustness and reliability, the Amazon Connect and AWS Lambda modules we do a rigorous testing

strategy composed of:

Unit Testing: Each component is tested independently (e.g., metadata extraction, Pinpoint lookup, S3 logging).

Integration Testing: Tests validate the full flow between Amazon Connect and AWS Lambda, ensuring data is

correctly passed and responses are handled gracefully

Unit testing objectives

▪ Validate individual logic within the Lambda function.

▪ Ensure proper metadata parsing and error handling.

▪ Confirm interaction with AWS services (mocked in tests).

Table 4. Unit tests scenarios

Test Case Input Expected Result

Extract caller info

from event payload

Simulated JSON from Amazon Connect Correct phone number, contact ID,

session ID parsed

Missing optional

attributes

Payload missing location or network_type Default to "NA" without error

Pinpoint returns

known user

Valid phone number mapped in Pinpoint User profile returned with success

flag

Pinpoint returns no

match

Unknown phone number Response indicates anonymous

caller

Integration testing objectives

▪ Full end-to-end interaction between Amazon Connect and AWS Lambda.

▪ Simulate a real call session with SIP routing and event delivery.

▪ Observe how Lambda reacts to metadata and invokes downstream processes.

Integration Test Workflow:

1. Simulate Call using Amazon Connect test tools or Twilio emulator.

2. Amazon Connect triggers Lambda with a crafted payload.

3. Lambda performs:

▪ Metadata parsing

▪ DynamoDB entry

▪ S3 placeholder generation

▪ Pinpoint lookup

4. Capture Logs & Outputs from CloudWatch and DynamoDB.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 212 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 5. Integration tests scenarios

Metric/Test Scenario Expected Behavior
Actual Behavior (Sample

Run)
Status

Metadata parsing in

Lambda

All fields correctly extracted and

printed/logged

 All fields extracted as

expected
Pass

Pinpoint with known user User ID returned and logged user_001 found Pass

Pinpoint with unknown

user
No endpoints, log "anonymous"

 Message: "No matching

user found."
Pass

S3 placeholder generation
S3 key format

call_recordings/session_id.wav created
 Correct key generated Pass

DynamoDB logging
Metadata stored with correct fields and

schema

 Record inserted with

expected attributes
Pass

Lambda execution under 1

second
Response returned < 1 second 420ms avg execution Pass

Lambda failure on

malformed event

Logs error, returns 500, does not crash

system
 Handled gracefully Pass

Observation and evaluation

Table 6. evaluation

Test Layer Coverage Notes

Unit Testing
High (logic + error

cases)
Fast execution; logic isolated using mocks

Integration

Testing
Medium-to-High Validated Connect-to-Lambda path; included S3/Pinpoint/DynamoDB flow

Performance Acceptable Sub-second response time; parallel sessions tested with no timeout

Error Handling Robust Invalid input, missing fields, and timeouts all handled gracefully

FUTURE WORK AND ENHANCEMENTS

While the current implementation of the MoCaaS communication module successfully establishes a reliable PSTN-

to-cloud bridge for voice request transmission, several enhancements are planned to further improve system

robustness, security, and functionality. Future work will focus on extending the module’s capabilities to support

real-time speech-to-text conversion using automatic speech recognition (ASR) services, enabling earlier

interpretation of user intent. Additionally, a multi-language interaction layer will be integrated to accommodate

diverse linguistic environments, including French, Arabic, and local dialects.

A primary enhancement will involve the incorporation of advanced security mechanisms across all stages of the

voice transmission pipeline. This includes SIP-level encryption using TLS and SRTP, identity verification via voice

biometrics, and the application of token-based authentication between cloud components (e.g., Lambda, S3,

Pinpoint). Moreover, anomaly detection and logging integrity will be enforced using AWS services such as

CloudTrail and Amazon GuardDuty, ensuring compliance, traceability, and resilience against spoofing or tampering

attacks. These improvements will reinforce the system’s readiness for production-scale deployment and its

alignment with best practices in secure cloud telephony integration.

CONCLUSION

The proposed architecture provides a scalable and cogent underpinning for voice-based service continuity by

integrating PSTN with contemporary cloud services like Twilio SIP Gateway, Amazon Connect, AWS Lambda,

Amazon S3, and Amazon Pinpoint. The user is provided with the ability to make service requests over voice calls

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 213 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

even when they do not have access to the internet. The design not just contributes towards high availability as well

as resilience but also enables the modularity of expansion towards advanced service layers.

The serverless paradigm allows for elastic scaling and fault tolerance, while the decoupled components drive

extensibility. The call reception framework thus constitutes the absolute initial step of the MoCaaS pipeline securely

capturing audio and linking it to user context for subsequent processing.

Future work will extend the system to support state-of-the-art natural language processing features. These include

the addition of automatic speech recognition (ASR) for speech-to-text conversion, intent identification through

fine-tuned language models, and entity extraction for invocation of structured APIs. In addition, future work will

take note of multilingual voice inputs, voice biometric-based authentication of the user, and privacy mechanisms

for protected audio content. All of these features will round out the complete voice-to-service pipeline and bring

MoCaaS to the status of a full platform for robust service delivery over connectivity-challenged networks.

REFRENCES

[1] F. Palacios, M. Vásquez Bermúdez, F. Orozco, and D. Espinoza Villón, “IP Telephony Applicability in Cloud

Computing,” J. Sci. Res. Rev. Cienc. Investig., vol. 3, pp. 128–133, 2018. [Online]. Available:

https://doi.org/10.26910/issn.2528-8083vol3issCITT2017.2018pp128-133

[2] T. Elnawawy, K. Mohamed, and H. M. Harb, “Design and install secured VoIP system over cloud,” J. Al-Azhar

Univ. Eng. Sect., vol. 16, pp. 16–24, Sep. 2021. [Online]. Available:

https://www.researchgate.net/publication/354821831

[3] A. Satapathy and J. Livingston, “A Comprehensive Survey of Security Issues and Defense Framework for VoIP

Cloud,” Indian J. Sci. Technol., vol. 9, no. 6, Feb. 2016. [Online]. Available:

https://www.researchgate.net/publication/297651179

[4] B. S. Savino, M. R. Alsharif, and Y. Yabiku, “Implementation of a Cloud Processing Based Voice

Communication and Noise Reduction Embedded System Network,” in Proc. 3rd Int. Congr. Technol. Eng. Sci.

(ICTES), Feb. 2017. [Online]. Available: https://www.researchgate.net/publication/313616926

[5] C. K. Schwartz, “The Value of Transitioning to a Cloud-Based Phone Platform for an SME,” University of

Oregon, 2019. [Online]. Available: https://scholarsbank.uoregon.edu/bitstreams/0ee2aa32-d703-43e2-a459-

b49c74fb02d6/download

[6] Gerea, “Implementation of Cloud Computing into VoIP,” Database Systems Journal, vol. 3, no. 2, pp. 3–10,

2012. [Online]. Available: https://www.dbjournal.ro/archive/8/8_1.pdf

[7] A. Ghorai, “Integrating Computer Telephony (CTI) with Amazon Connect in the Cloud,” J. Sci. Eng. Res., vol.

10, no. 2, pp. 208–212, 2023. [Online]. Available: https://jsaer.com/download/vol-10-iss-2-

2023/JSAER2023-10-2-208-212.pdf

[8] Amazon Web Services, “Amazon Connect – Customer Stories.” [Online]. Available:

https://aws.amazon.com/connect/customers/

[9] AWS, “Amazon Connect Feature Overview.” [Online]. Available:

https://docs.aws.amazon.com/connect/latest/adminguide/connect-feature-overview.html

[10] AWS, “AWS Lambda Customer Case Studies.” [Online]. Available:

https://aws.amazon.com/lambda/resources/customer-case-studies/

[11] M. F. Yusuf, I. Ahmad, and A. M. Ibrahim, “An Efficient VoIP Performance Evaluation in Cloud

Environment,” Int. J. Comput. Appl., vol. 118, no. 7, pp. 5–10, May 2015. [Online]. Available:

https://doi.org/10.5120/20736-3215

[12] A. Dahiya, S. Kinger, and D. Soni, “Securing SIP Based VoIP Infrastructure,” Int. J. Comput. Appl., vol. 95,

no. 20, pp. 19–23, Jun. 2014. [Online]. Available: https://doi.org/10.5120/16794-6736

[13] S. Chavan, S. Sanghavi, and R. Patil, “Enhancing VoIP Communication over Cloud with Efficient Load

Balancing,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 5, no. 4, pp. 8372–8376, Apr. 2017. [Online].

Available: https://www.ijircce.com/upload/2017/april/102_Enhancing.pdf

[14] T. Kinnunen and H. Li, “An Overview of Text-Independent Speaker Recognition: From Features to

Supervectors,” Speech Commun., vol. 52, no. 1, pp. 12–40, 2010. [Online]. Available:

https://doi.org/10.1016/j.specom.2009.08.009

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 214 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[15] [15] Z. Wu et al., “Spoofing and Countermeasures for Speaker Verification: A Survey,” Speech Commun., vol.

66, pp. 130–153, 2015.

[16] R. Tolosana et al., “Deepfakes and Beyond: A Survey of Face Manipulation and Fake Detection,” Information

Fusion, vol. 64, pp. 131–148, 2020.

[17] L. Fridman et al., “Active Authentication on Mobile Devices via Stylometry, Application Usage, Web Browsing,

and GPS Location,” IEEE Syst. J., vol. 11, no. 2, pp. 513–521, 2017.

[18] S. Ranjan et al., “DDoS-Shield: DDoS-Resilient Scheduling to Counter Application Layer Attacks,” IEEE/ACM

Trans. Netw., vol. 17, no. 1, pp. 26–39, Feb. 2009. [Online]. Available:

https://doi.org/10.1109/TNET.2008.928675

[19] N. Feamster, J. Jung, and H. Balakrishnan, “An Empirical Study of ‘whois’ Spam,” in Proc. ACM SIGCOMM

Workshop on Reducing Unwanted Internet Traffic, 2005, pp. 15–20. [Online]. Available:

https://doi.org/10.1145/1096554.1096557

[20] ASVspoof Challenge. [Online]. Available: https://www.asvspoof.org/

