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For a successful deployment of self-driven multi-robot systems in various and 
constantly changing environments, two of the most important things are efficient 

task scheduling and route optimization. This work proposes an extensive strategy 

for addressing these concerns, including optimized task scheduling; model-based 

reinforcement learning (MBRL) path planning approach has been employed while 

developing advanced object detection using transformers technique so that they 

can operate autonomously. The hybrid Prairie dog and Wobat optimization 

algorithm process encompasses total task completion time, path length, energy 

consumption, robot idle time, and urgency as metrics to enhance overall system 

performance. Path planning utilizes MBRL and DQN which are trained with a 

physics simulator to enable realistic navigation that adapts to real-time 

environmental changes. Furthermore, the inclusion of ODT enables accurate object 

detection, which is important for avoiding obstacles in a moving environment. By 

using a lot of simulations, we have been able to show that task effectiveness, 

navigation accuracy and general system functionality has been significantly 

increased. As a result, the improvement allows this to offer an effective response 

across different parts for deployment on ground using multiple robots in terms of 

task allocation and movement capacities. 

Keywords: Robot Task Scheduling, Reinforcement Learning, Navigation, Object 

Detection. 

 

1. Introduction 

Robotics has progressed significantly in task allocation as well as navigation within the last few years 

which is vital for developing autonomous systems capable of operating in intricate surroundings such 

as houses or storages among others [1-3]. Allocating tasks among robots effectively while still ensuring 

they reach their goal destination fast even when the environment changes rapidly constitutes unique 

problems and chances whose unlocking will result into practical applications for robots [4, 5]. 
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Task distribution is the division of tasks among robots to ensure that the highest level of the general 

performance of system is achieved [6]. Dynamic decluttering would therefore be defined as sharing 

various responsibilities such as recognition, grasping, transportation and categorization of items among 

different robots [7]. Task distribution tries to ensure that there is a balance in terms of workload, 

optimal utilization of resources and mission completion within the shortest time possible [8-10]. In 

order to accomplish a successful task allocation, one has to consider task importance, robot abilities 

and environmental limitations. The task grows more challenging in fast changing environments as real 

time adjustments to task assignments become required [11]. 

Dynamic settings arise because of erratic changes such as moving obstacles, different light conditions 

as well as people or other robots moving around. Decision-making in such environments necessitates 

self-adaptive way-finding routines by agents in order to avoid collision and ensure smooth and safe 

motion [12]. The traditional way-finding systems based on stable maps with specified trajectories often 

fail in the said conditions. To navigate successfully, robots require advanced perception systems, real-

time mapping abilities, as well as adaptable path-planning algorithms [13]. 

The resolution of these issues requires the use of some latest technologies. With machine learning and 

AI robots can learn from their past experiences, in addition to improving their task allocation patterns 

and navigation strategies over time [14]. Sensor fusion skills that combine information from a variety 

of sensors such as Cameras; LiDAR or Ultrasonic sensors thus creating better comprehension on the 

environment as a whole. Besides, many robots could exchange information easily with decentralized 

algorithms, hence making collective decisions to spur better overall system efficiency [15]. 

There are numerous and varied potentials for employing effective robot task assignment and navigation 

in dynamic clutter clearing. For example, self-driving robots might perform domestic chores 

autonomously and keep things tidy [16]. Likewise, robots could be employed to maintain inventories in 

an organized manner by first ensuring that they are well-organized and then moving them around [17]. 

Also, during times of disaster, robots help to transport supplies, find survivors buried under ruins, as 

well as performing other duties that are crucial to survival in perilous environments [18]. 

Currently there are many studies going on that aim at improving these technologies as well as 

addressing the challenges that they currently face. Enhancements to perception systems, more effective 

task allocation algorithms and better navigation strategies are the major focus areas for such research 

[19]. Also, the inclusion of human-robot interaction frameworks is seen as an innovative way of enabling 

robots to collaborate effectively with people. More advancements are being made and this means that 

we can expect autonomous robots to have a more significant impact on different societal domains [20-

22]. 

The contributions are: 

● Utilizing Model-Based Reinforcement Learning (MBRL), especially with Deep Q-Networks trained in a 

physics simulator allows for more realistic and efficient path planning. Taking into account dynamic 

obstacles as well as environmental changes makes it easier to develop safer ways of moving through 

space. Using MBRL, robots are capable of learning on an ongoing basis as well as adapting themselves 

to their environment which includes adjustments in route selection strategy according to immediate 

conditions from time to time. 

● Transformer-based architectures in the ODT module greatly boost the identification accuracy and 

efficiency of objects. Significantly, this means that robots can see obstacles much better and thus 

navigate around them in crowded and ever-changing environments. Because transformers can capture 

the bigger picture and relationships among image patches, they make it easier to identify complex 

objects as well as devise reliable routes for avoiding obstacles. 
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● The fitness function takes into account multiple aspects including total task duration, the length of the 

path taken by the robot during its movement, power consumption, the time during which the robot is 

idle, urgency, and resource availability. Hence, these factors can help improve task scheduling 

performance overall. Allowing one to adjust the weights of each factor makes the fitness function 

versatile, hence able to focus on specific objectives under different operational circumstances. The 

fitness function considers factors such as total time taken to accomplish tasks, distance travelled, energy 

spent on the process, idle time for robots, urgency or resource availability. 

● The ODT module captures long-range dependencies and context from the whole image, enhancing 

object detection accuracy and reliability through the use of transformers. In transformers, attention 

features enable the model to focus on crucial regions of an image which aids in spotting tiny and 

obscured objects usually found in crowded scenes. 

The remaining sections are structured as follows: section 2 gives the review of existing related works, 

section 3 explains the proposed methodology in detail, section 4 provides the experimental results, and 

section 5 gives the conclusions. 

 

2. Literature Review 

A novel approach to multi-robot task allocation and navigation was proposed by Elfakharany and Ismail 

[23] which employs deep reinforcement learning. This is distinguished by being an entire system that 

translates only sensor data for robot steering instead of creating maps for the environment. The 

recommended policy will improve robots’ finer ability to render their tasks by themselves autonomously 

and move safely in varying settings as they operate in a decentralized manner. The main achievement 

of this work remains the Task Allocation Index it has introduced, a novel yardstick that comprehensively 

gauges all of end-to-end MRTA and navigation techniques. This index gives a quantifiable judgment 

regarding performance showing how effective and efficient the proposed DRL-based approach is for 

real-world multi-robots systems. 

Okubo and Takahashi [24] presented a new technique that enhances multi-robot systems using a multi-

agent action graph framework. This framework has several levels that show environmental changes 

during task execution thereby giving a comprehensive view of dynamic environments. Solving the task 

assignment and path planning aspects of this system is viewed as an optimization problem which has 

successfully been addressed using mixed integer programming. With the multi-agent action graph, one 

is able to do advanced planning while altering robot movement hence improving efficiency for task 

execution in real-time environments. This ensures that optimal performance levels are maintained even 

when the surrounding changes occur thus resulting into improved scheduling plus operations’ 

productivity. 

Lei et al. [25] introduced a complex system for optimizing task allocation and route planning for a team 

of robots that are involved in a single mission. The key focus of this system lies in a model that reduces 

the distance each robot needs to travel to achieve its objective using a convex optimization method. It 

starts with breaking down tasks and forming groups of robots, which are then organized based on 

connections and interdependencies. To simplify the problem of minimizing the distance, the cluster of 

circles originally of arbitrary shape is approximated, thereby ensuring efficient movement from one 

location to another. Once robot teams are deployed to their respective destinations, we further enhance 

the quality of locations more using a graph-based algorithm for optimal path planning referred to as 

Delaunay triangulation. 

According to the findings of Pradhan et al. [26], a novel technique was studied involving the scheduling 

of tasks among mobile robots through a distributed queuing system. This way, it is possible for multiple 

robots to be assigned different tasks while coordinating their efforts effectively through a combination 
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of strategic reasoning and rule-of-thumb methods. With both strategic decision-making and 

sophisticated reward-punishment architectures, each robot can decide on its own actions 

independently.  

Valero et al. [27] introduced a fuzzy optimization approach to task allocation using response threshold 

methods to deal with tasks that were time-sensitive. By using fuzzy sets in task modelling, they 

developed a flexible system that can handle uncertainties in different situations. Meanwhile, in a multi-

robot system, robots can change their task assignments in response to changes in the environmental 

conditions (Bellmon-Zadeh fuzzy optimization). Dynamic decision making processes, enhanced 

productivity as well as efficiency in robot systems were achieved especially in the management of 

uncertain and complicated settings which demand timeliness in executing various assignments and 

collaboration between different machines this approach is quite practical. 

Faccio et al. [28] studied how tasks in human-robot collaborations can be allocated, looking at how the 

distance affects task efficiency. They developed a method to address the issue of robots slowing down 

when working near people or objects, which decreased their effectiveness. To solve this problem, their 

approach considers physical distances between resources when making decisions about task 

assignment. This allows the robots to move quickly while maintaining safe distances. This improved 

overall system performance. This way, they can adjust the task assignments according to spatial 

considerations hence human-robot collaboration efficiently balanced between safety and productivity. 

Chakraa et al. [29] have developed a thorough method for multi-robot task allocation using a centralized 

approach. They used a Genetic Algorithm for each robot’s task allocation and sequencing while also 

putting forward a Mixed-Integer Linear Programming formulation as a mathematical MRTA problem 

model. They additionally presented an evolutionary centralized algorithm that considers the individual 

capabilities of each robot and the requirements for such specific tasks, yielding solutions that are robust 

with regard to assigning and routing robots for inspections in complex missions. 

 

3. Proposed Methodology 

 

Figure 1: Flow Diagram of the proposed Navigation Methodology 
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3.1 Task scheduling 

Initially, the task scheduling is optimized by the hybrid Prairie dog-Wobat Optimization algorithm. 

3.1.1 Prairie dog optimization 

The prairie dog's location in the PDO model is considered the preferred alternative with the top foragers 

making the most optimal decision at every point as well as responding best to predator warnings. Four 

strategies using the implementation process explore the PDO technique across four stages. Two ways 

to explore are used between 4
0 maxI
I 

 and 24

maxmax I
I

I


, while two methods for exploitation 

are applied between 4

3

2

maxmax I
I

I


 and 
max

max

4

3
II

I

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After initializing the population of prairie dogs, the fitness of each solution is computed. 

Fitness evaluation 

In order to develop fitness function for scheduling tasks of a robot different factors that affect the 

efficiency and success of the task schedule have to be taken into account. These factors include total 

time taken to complete tasks, distance travelled, time taken to complete an individual task, energy 

consumption, reduction of idle time in robots, urgency, and availability of resources. Each element is 

explained below and how it is formulated as a fitness function. 

Total Task Completion Time: The maximum time taken by a single robot to accomplish all the tasks 

assigned to them. It is the time within which the whole process gets completed when one of the robots 

takes the longest to complete their given tasks.  

( )iitotal TT max=
         (1) 

where iT  is the time taken to complete task i . 

Path Length: The overall distance covered by all of the robots while doing their task. 
= r rpath LL

          (2) 

where rL  denotes the total distance travelled by robot r based on its activities.. 

Energy Consumption: The amount of total energy used by all robots while performing the task.  

( )rrtotal EE max=
         (3) 

where rE  signifies the energy consumed by robot 

Robot Idle Time: The amount of time a robot is on idle, having nothing particular to do. 

−= i irtotalr TTI ,
         (4) 

where irT , denotes the time robots r spends on task i . 

Urgency: A measure of the priority or importance of task, often represented as a weight. 
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i
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T

wU
1

=

          (5) 

where iw  denotes the urgency weight of task i . 

Resource Availability: The current availability of resources for each robot r, such as battery level. 

tr BlA =
          (6) 

where tBl  denotes the current battery level of robot r . 
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where 1w , 2w , 3w , 4w , 5w , and 6w  are the weights reflecting the importance of each metric. 

maxT
, maxL

, maxE
, maxU

, and maxA
are normalization constants corresponding to the maximum 

possible values of each metric. 

(i)  Exploration 

In the exploratory stage, coterie members start by moving from their territory in order to look for new 

food sources. They wander around like prairie dogs – with large jumps for better food searching ability. 

Upon finding a source, they produce particular sounds that tell the others about it; next they check if it 

is worth eating there before choosing the best place for feeding. They then dig fresh holes depending on 

this appraisal. 

( ) ( ) ( ) ( )
4

Im max
,,1,11,1

I
IlvyCBFEfQQ jiqu

best
j

best
j

new
ji

−−=
++

    (8) 

The position of an update for a search is determined by the equation (9) being evaluated during the 

search algorithm stage. 

( )
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where ( )
best
j

Ef
,1  evaluates how well the current best solution is working, as indicated in Eqn. (10). 
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     (10) 

Another approach would be by judging how effective past sources of food were among other factors like 

how much digging was done. The force used in digging should go down for every time, with new burrows 

dug up above them. The idea is to reduce the probability of having many tunnels dug. The Eqn. (11) 

provides a value that ensures a new tunnel is made at an improved position. 
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( ) ( ) 24
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=
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    (11) 

The coterie's digging effort is represented by the variable Dig , which depends on the food supply 

quality and has random values according to Eqn. (12). 
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   (13) 

(ii) Exploitation 

Two distinct behaviors lead prairie dogs to gather in particular locations, i.e. food alarm and anti-

predation alarm. They then look for a better or near-best possible alternative. The exploit mechanism 

in PDO points the search to the fertile territories discovered during exploration. Hence, the Eqn. () 

explain how this phase occurs. 

( ) ( ) ( ) ( )
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++

    (15) 

where eff
P

 is determined using Eqn. (16). 
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I

I
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eff 

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





−=

max

2

max

15.1

       (16) 

Bool  is either 1 or 0, depending on whether the iteration is odd or even. 

3.1.2 Wombat Optimization Algorithm 

During the beginning of WOA process, wombats' locations are changed in the problem-solving area 

through foraging behaviour simulation. Wombats are herbivorous animals that search for food well 

through large habitats.  

Foraging (Exploration) 

When we model how wombats move towards their forage, locations of WOA individuals change 

significantly within the problem-solving space. By doing so, the algorithm can better look for things all 

around it and assist people in different countries to find exactly what they are searching for. If nothing 

else, every woman must think about the possibility of eating up places where other members of the 

society show something better according to Equation. (17). 

   MlandMiilandFFYFP illi ,,2,1,,2,1,:  ==
  (17) 
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The iFP  contains the possible forage areas for every 
thi  member. A wombat that currently has an 

inferior objective function value than the current wombat is indicated by lY , while lF is its respective 

objective function value. 

In WOA's design, it is assumed that the wombat randomly selects one of these food positions and moves 

towards it. It uses Equation to estimate a new position for each WOA member by mirroring this 

movement as a constituent of their foraging process. If this new position leads to a better objective 

function value, Equation. () updates the previous position. 

( )jijiijiji
P
ji yRSPsyy ,,,,
1
, −+=

       (18) 





 

=
elseY

FFY
Y

i

i
P
i

P
i

i
,

, 11

        (19) 

where iSP  is the selected location for the 
thi  wombat while foraging. 

1P
iY  signifies employed as a fresh 

place for the 
thi  wombat at the foraging stage of WOA algorithm while 

1P
iF  signifies its respective 

estimated function value. jis ,  is randomly selected from 0 to 1 whereas either 1 or 2 are randomly 

selected using jiR , . 

Escape (Exploitation) 

In the second stage of WOA, wombats' positions in problem-solving are adjusted according to how they 

escape from predators. With their strong digging abilities, wombats create many tunnels in their 

habitat. When a wombat is threatened by a predator, it flees by diving into one of its nearby tunnels for 

safety. Simulating this escape behaviour influences the position changes of WOA members in problem-

solving space and boosts the algorithm's capacity for local search. 

In WOA design computation of a new location for each WOA member is based on the wombat’s flow 

and dive towards the adjacent tunnel as given in Eqn. (20). If this new location improves the objective 

function value, then it replaces the member’s previous location as given in Eqn. (). 
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where 
2P

iY  denotes the position computed for the 
thi  wombat and 

2P
iF  signifies the function value. 

3.1.3 Hybrid Algorithm 

Primarily, PDO's exploration phase enhances its searching capability by thoroughly exploring the 

solution space hence aiding it in finding many possibly optimal areas by mimicking the efficient digging 

and foraging behaviors of prairie dogs. In addition exploitation phase of WOA raises local search 
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accuracy by copying strategic hunting of wombats and predator evasion tactics leading to improved 

solutions that achieve high-quality optima. The two-stage process helps to ensure an equilibrium 

between exploration and exploitation, thus avoiding the possibility of premature settlements with 

suboptimal ones. Additionally, this involves detailed fitness functions which consider many factors such 

as task time or route length as well as energy consumption plus availability of resources which mitigates 

issues raised by scheduling multi-robots. 

Algorithm 1: Hybrid prairie dog- wombat Algorithm 

1. Initialize parameters: population size, maximum number of iterations, weights for the fitness 

function 

2. Initialize populations: Generate initial positions of prairie dogs and wombats randomly within the 

problem space. 

3. Compute the fitness value for each solution using the formula in equation (7). 

4. For iter = 1 to max_iter do 

    5. Evaluate fitness for each prairie dog. 

    6. For each prairie dog i  do 

         Move to new positions using large jumps as defined in equation (8). 

 Evaluate the new positions and update if they provide better fitness. 

        8. Evaluate new position. 

        9. Use the digging effort model to further refine the positions as given in equation (11). 

    10. End For 

    11. Evaluate fitness for each wombat. 

    12. For each wombat i  do 

          Move towards the best forage position as defined in equation (17). 

 If threatened, move towards an adjacent tunnel as given in equation (20). 

 Evaluate the new positions and update if they provide better fitness. 

    16. End For 

17. End For 

18. Return the best solution with the highest fitness value. 

 

3.2 Path Planning 

Model-based reinforcement learning combines elements from model-based and model-free methods. 

This process involves the use of an environment model to imitate actions and strategize effectively. we 

implement MBRL using DQN trained through physics simulation towards a robot’s path planning for it 

to move around efficiently. 

State and Action Spaces 

State ( St ): Represented the robot's current position, velocity, orientation, sensor readings, and other 

relevant information. 
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Action ( Ac ): Represented the possible movements or controls applied to the robot, such as changes in 

velocity or direction. 

At time t , the state St  and the action taken is Ac . 

Reward Function 

The reward function ( )AcStRw ,  was designed to provide feedback to the agent based on the state-

action pair. It encouraged the robot to reach its goal while avoiding obstacles and optimizing 

performance criteria like energy consumption and path length. 

Environment Model 

The environment model predicts the next state 1+tSt  given the current state tSt  and action tAc . This 

model is crucial in MBRL for simulating future states without interacting with the real environment. 

The predicted next state is ( )ttt AcStftS ,ˆ
1 =+  

Deep Q-Network (DQN) 

DQN approximated the Q-value function ( )AcStQ , , which estimated the expected return (cumulative 

future reward) of taking action Ac  in state St . The goal is to find the optimal policy that maximized 

the expected return. 

( )  AcAcScScrAcStQ ttktk
k === ++


=

,, 10


     (22) 

where   denotes the discount factor, 1++ktr  denotes the reward received at time 1++ kt  

3.3 Robot navigation 

In robot navigation, it's crucial to avoid obstacles, so continuous learning and real-time adaptation are 

necessary. The Object Detection with Transformers module uses transformer architectures to improve 

the accurate and quick sensing of obstacles, enabling the robot to maneuver around them. Although 

transformers were originally designed for natural language processing, they also excel in computer 

vision by effectively understanding connections and overall context. For navigating dynamic 

environments without collisions, the ODT module utilizes a transformer-based design for obstacle 

detection. Smoothly circumnavigating dynamic environments without hindrances relies on identifying 

barriers using this transformer-based design in the ODT module. 

Input Representation 

The ODT module receives series of image patches from vision sensors of the robot. These divided images 

are flattened as tiny parts that are then inserted into high-dimensional space. 

Let I  be the input image, and P  be the set of patches: 

 NpppP ,,, 21 =
         (23) 

where N  is the number of patches. 

Each patch iP  is embedded using a linear projection: 
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eiei bpWE +=
         (24) 

where eW  and e
b

 are the embedding weights and biases. 

Transformer Encoder 

The transformer encoder works with the embedded patches to understand the overall context and 

relationships between the patches. It contains multiple layers of self-attention and feedforward 

networks. 

The self-attention mechanism is defined as: 

( ) Vl
d

QrKy
softVlKyQrAttention

Ky

T

















= max,,

      (25) 

For each layer in the transformer encoder, the inputs are linearly transformed to produce queries Qr , 

keys Ky , and values Vl . 

QrEWQr =
          (26) 

KyEWKy =
          (27) 

VlEWVl =
          (28) 

where QrW
, KyW

, and VlW
 are learnable weight matrices, and E  is the matrix of embedded patches. 

The output of the self-attention mechanism is then processed by a feedforward neural network: 

( ) ( ) 2211Re bWbXWLUXF ++=        (29) 

The transformer encoder output Z  is given by: 

( )ErEncoderTransformeZ =         (30) 

Object Detection Head 

The transformer encoder findings are used in the object detection section to predict where and what 

kinds of items are in a scene. This includes predicting the outlines of objects and labeling them. 

Let iZ  be the output of the transformer encoder for patch i . The object detection head produces two 

sets of outputs: Bounding box predictions iB  and Class label predictions iC . 

Bounding box predictions are computed as: 

BBii bWZB +=
         (31) 

where BW  and Bb  are the weights and biases for the bounding box prediction. Class label predictions 

are computed as: 
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( )CCii bWZsoftC += max
        (32) 

where CW  and C
b

 are the weights and biases for the class prediction. 

Loss Function 

The training loss function of the ODT module blends localization loss from bounding box prediction 

with class label prediction loss. It uses a form of Intersection over Union to compute the former along 

with other localized losses. 

( )
( ) +

−=




ii

ii
Ioc

BBIoU

BBIoU
L

,

,
1

        (33) 

where 

iB  denotes the ground truth bounding box and  denotes a small constant to avoid division by 

zero. 

The classification loss is computed using the cross-entropy loss: 

( )icc ccls CyL log−=         (34) 

where cy  denotes the ground truth class label (one-hot encoded) and icC denotes the predicted class 

probability for class c . 

The total loss is a weighted sum of the localization and classification losses: 

clsclslocloc LLL  +=
        (35) 

where loc
and cls

are the hyperparameters that balance the two loss components. 

4. Experimental Results 

The proposed method is simulated in python and the performance is evaluated by comparing the results 

with the existing techniques such as PSO [19], BOA [20], ABC [21], ACO [22], GA [29]. The Simulation 

Result for Multi-Robot path planning is provided in Figure. 2. 

 

Figure 2: Simulation Result for Multi-Robot path planning 
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Figure 3: Path Length Analysis 

As depicted in Figure 3, the proposed method’s path lengths were compared against several benchmark 

algorithms which include Particle Swarm Optimization (PSO) [19], Butterfly Optimization Algorithm 

(BOA) [20], Artificial Bee Colony (ABC) [21], Ant Colony Optimization (ACO) [22], and Genetic 

Algorithm (GA) [29]. The proposed method has a considerably shorter path length than other 

algorithms which makes it more efficient for moving around rapidly viewable places. Specifically, This 

method has a path length of 2.5 meters, while in comparison some other methods PSO, BOA, ABC, ACO 

,and GA are less efficient with greater values showing their paths are not optimal. 

 

Figure 4: Navigation Success Rate Analysis 

In comparison to some benchmark algorithms, Figure 4 demonstrates the success rate of navigation. 

This method demonstrates a considerably higher success rate of navigation as compared to other 

algorithms, which further demonstrates its effectiveness and reliability when it comes to navigating 
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through cluttered and changing environments. Specifically, the proposed method has a success rate of 

96% and hence attains almost perfect navigation accuracy. In contrast, the PSO, BOA, ABC, ACO and 

GA exhibit very lower success rates implying they are relatively less effective in navigation. This 

discussion reveals the durability and excellence of navigation within intricate and vibrant surroundings. 

 

Figure 5: Energy Consumption Analysis 

The Energy Consumption Analysis results are depicted in Figure 5. Compared to alternative approaches, 

it can be observed that the new technique consumes significantly less energy. Its efficiency in dealing 

with energy resources while navigating becomes apparent with these results at hand. It should be noted 

that with respect to navigation purposes only, this technique’s power requirements are fairly modest 

and thus suggesting capability or optimizing the energy usage when reaching such objectives. On the 

contrary, PSO, BOA, ABC, ACO, and GA exhibit higher energy consumption values in general, indicating 

they are less efficient in terms of energy use reduction for movement purposes.  

 

Figure 6: Performance Score Analysis 
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The new way does better than other common methods, showing that it is better at dealing with changing 

or confused situations. It is a high performer in many ways, giving a performance mark of approximately 

98, compared to PSO (around 92.5), BOA (about 91), ABC (93), and ACO (92). GA only goes up to 

around 80. Good performance has been achieved by the method he proposed as it is among the methods 

that have managed to effectively solve a variety of navigation problems. Conversely, PSO, BOA, ABC, 

ACO, GA have lower scores which demonstrate their inability to perform well regarding optimal 

navigation performance. Our findings show that our new method can be used in multi-robot navigation 

tasks as it offers better results in comparison with other known methods such as PSO etc, hence making 

it suitable for real-world scenarios due to its performance in terms of both efficiency and effectiveness 

which are key factors distinguishing it from others. 

 

Figure 7: Metrics Vs Episode analysis 

By plotting several indicators against episode numbers, Figure 7 gives an all-around view of the 

performance of the new approach through various episodes. Path length is useful in indicating on how 

good robots are at moving along some distance while navigation success rate is used to determine 

effectiveness in accomplishing duties. Energy consumption shows how resource efficiency is done with 

the performance score helping to give an all-round view through different factors.  

 

5. Conclusions 

This paper introduced a method that greatly improves job assignment and robot movement in complex 

and constantly changing environments. This new approach addresses key issues related to free-roaming 

robots by combining Model-Based Reinforcement Learning for realistic motion planning with Object 
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Detection using Transformers for precise obstacle avoidance. The MBRL strategy uses DQN trained 

with a physics simulator to help robots navigate effectively in adaptable environments, while the ODT 

module relies on transformer-based architecture to accurately identify obstacles. Additionally, a fitness 

function is proposed, taking into account total task completion time, path length, energy usage, robot 

idle time and urgency to optimize the system's performance. The simulation results demonstrate the 

methodology's effectiveness through improved task efficiency, enhanced navigation accuracy and 

resource management. These characteristics position this work at the forefront of multi-robot systems 

with minimal computational requirements. Therefore, the proposed method addresses everyday needs 

across various environments such as homes, warehouses or disaster zones. 
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