2025, 10(51s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Cloud-Native Revenue Intelligence: Streaming Analytics for Big Data Operations

Sarat Mahavratayajula¹, Himanshu Mahajan², Suvodeep Pyne³

- ¹ Senior software Engineer at Sherwin-Williams
- ² Senior Technical Business Relationship Manager
 - 3 Staff Software Engineer II at Startree Inc

ARTICLE INFO

ABSTRACT

Received: 10 Apr 2025 Revised: 15 May 2025

Accepted: 27 May 2025

The exponential growth of enterprise data has intensified the need for real-time intelligence systems that can support revenue optimization and operational resilience. This study investigates the integration of cloud-native architectures and streaming analytics within big data operations to evaluate their impact on system performance and business outcomes. Using a Kubernetes-based deployment with Apache Kafka, Flink, and Spark Structured Streaming, experiments were conducted on simulated and benchmark datasets ranging from 100 GB to 5 TB and event rates up to 50,000 per second. Results show that multicloud deployments significantly outperformed hybrid models, achieving higher throughput and lower latency while maintaining robust fault tolerance. Machine learning models demonstrated strong predictive capabilities, with LSTM achieving forecasting accuracy of 94.1% and XGBoost excelling in anomaly detection. Business impact analysis revealed substantial improvements, including a 295% increase in revenue leakage reduction, enhanced churn prediction accuracy, and improved fraud detection rates. Regression analyses further confirmed that infrastructure variables such as cluster size, latency, and replication factor strongly influence predictive and operational outcomes. Overall, the study establishes cloud-native revenue intelligence as a strategic imperative for enterprises seeking continuous intelligence and competitive advantage in datadriven markets.

Keywords: Cloud-native revenue intelligence, streaming analytics, big data operations, real-time intelligence, predictive modeling, enterprise scalability

Introduction

The rise of cloud-native architectures in modern enterprises

The rapid shift toward digital-first business models has elevated cloud-native architectures as the foundation for scalable, resilient, and efficient IT systems. Unlike traditional monolithic infrastructures, cloud-native environments are designed with microservices, containers, and orchestration frameworks that allow organizations to scale resources dynamically in response to changing workloads (Katasani, 2025). This transformation has been particularly impactful in industries where data is both a critical asset and a constant stream of new information, such as finance, retail, telecommunications, and e-commerce. As enterprises adopt cloud-native frameworks, they increasingly demand solutions that not only ensure system agility but also unlock actionable insights from vast volumes of data in real time (Kasture et al., 2025). Within this context, revenue intelligence powered by cloud-native analytics emerges as a vital tool for sustaining competitiveness and operational excellence.

2025, 10(51s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Importance of revenue intelligence in data-driven economies

Revenue intelligence refers to the integration of advanced analytics, machine learning, and predictive modeling to provide real-time visibility into business performance, customer behavior, and sales trends (Maheshwari, 2025). In a global economy driven by data, enterprises can no longer rely solely on historical reporting and static dashboards to guide decision-making. Instead, they must adopt revenue intelligence frameworks that process streaming data from multiple touchpoints including customer transactions, digital marketing campaigns, subscription renewals, and supply chain operations (Sethupathy & Kumar, 2020). This allows organizations to optimize pricing strategies, identify cross-selling opportunities, mitigate revenue leakages, and improve customer lifetime value. By embedding these insights within cloud-native systems, enterprises can align revenue intelligence directly with the scalability and elasticity offered by cloud environments, ensuring rapid adaptation to fluctuating market conditions (Abayomi et al.,, 2023).

Challenges of big data operations in revenue management

Although revenue intelligence promises significant benefits, its implementation within big data operations presents several challenges. The growing volume, velocity, and variety of enterprise data often strain traditional data warehouses and ETL-based systems, making them inadequate for real-time processing (Ugwueze, 2024). Moreover, organizations face difficulties in integrating disparate data sources such as customer relationship management (CRM) systems, enterprise resource planning (ERP) platforms, social media feeds, and IoT sensor streams. Ensuring data quality, governance, and compliance with regulations like GDPR or CCPA further complicates the process (Enjam & Tekale, 2022). Additionally, legacy revenue management models lack the agility to incorporate streaming data and machine learning predictions, leading to delayed insights and missed opportunities. Addressing these challenges requires a fundamental redesign of big data operations through cloud-native architectures and streaming analytics solutions (Alka et al., 2025).

The role of streaming analytics in enabling real-time intelligence

Streaming analytics has emerged as a transformative technology for big data operations by enabling the continuous ingestion, processing, and analysis of data in motion. Unlike batch analytics, which processes data retrospectively, streaming analytics provides immediate insights into revenue-related events as they occur (Bejerano-Blázquez & Familiar-Cabero, 2025). For example, real-time monitoring of customer transactions can help detect anomalies indicative of fraud, while instant feedback from digital campaigns allows marketers to reallocate budgets dynamically. Cloud-native streaming frameworks such as Apache Kafka, Apache Flink, and Spark Structured Streaming provide the scalability, fault tolerance, and integration capabilities needed to support revenue intelligence at scale (Anumakonda, 2025). By embedding these tools into cloud-native environments, organizations can build an ecosystem where revenue data flows seamlessly across departments, ensuring synchronized decision-making.

Positioning cloud-native revenue intelligence as a strategic imperative

As enterprises compete in increasingly saturated markets, cloud-native revenue intelligence is no longer an optional capability but a strategic imperative (Sakinala, 2025). The convergence of cloud-native computing, streaming analytics, and big data operations provides a pathway for businesses to not only enhance revenue visibility but also proactively shape outcomes through predictive and prescriptive insights (Lin et al., 2025). This paradigm empowers decision-makers to move beyond descriptive reporting and embrace continuous intelligence, where actions are guided by real-time signals rather than delayed historical data (Pamisetty, 2023). The ability to respond to revenue

2025, 10(51s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

fluctuations, customer preferences, and market disruptions in near real time positions cloud-native revenue intelligence as a critical enabler of business resilience and growth.

Methodology

Research design

This study follows an exploratory—descriptive research design aimed at investigating how cloud-native revenue intelligence frameworks, when integrated with streaming analytics, can optimize big data operations. The design focuses on both technological performance indicators and business-level intelligence metrics. It combines the deployment of cloud-native architectures, simulation-based experiments, and statistical modeling of system outputs. The methodology thus provides a dual perspective by evaluating system efficiency in terms of scalability and latency, and business impact in terms of revenue prediction, churn analysis, and anomaly detection.

Data sources and collection

The research utilized both simulated and historical datasets to represent enterprise-scale big data operations. Simulated transaction streams were generated from sectors such as retail, e-commerce, and financial services to replicate point-of-sale transactions, online interactions, and supply chain updates. Historical big data repositories, including standard benchmarks such as TPC-DS and Yahoo! Streaming Benchmark, were incorporated to validate the system across different workload patterns. The collected data varied in volume, ranging from 100 GB to 5 TB, and in velocity, with event rates from 500 to 50,000 events per second. Data formats spanned structured, semi-structured, and unstructured types, including relational logs, JSON, and clickstreams. Data quality was assessed by recording missing values, duplicate entries, and anomalies, which were later addressed using preprocessing techniques.

System architecture and implementation variables

The experimental environment was implemented within a Kubernetes-based cloud-native architecture. The data ingestion layer employed platforms such as Apache Kafka and Amazon Kinesis, while the processing layer integrated Apache Flink and Spark Structured Streaming for high-throughput computation. For storage, both AWS S3 and Google BigQuery were utilized, alongside Cassandra for time-series records. The visualization layer was developed using Grafana and Tableau to generate real-time dashboards. Key implementation parameters included cluster size, which varied between four and sixty-four nodes, CPU and GPU resource allocation per container, and latency thresholds between 50 milliseconds and 500 milliseconds. The experiments also accounted for deployment modes, including multi-cloud and hybrid cloud configurations, while fault tolerance was tested through replication strategies and checkpoint intervals.

Revenue intelligence parameters

Revenue intelligence performance was measured across multiple dimensions relevant to enterprise decision-making. Machine learning models such as XGBoost and LSTM were employed to evaluate revenue prediction accuracy, while anomaly detection focused on identifying irregularities in real-time revenue streams. Churn prediction was measured using AUC scores derived from streaming customer interactions, and revenue leakage was estimated by comparing predicted and actual revenue figures to quantify potential savings. Additional parameters included the error rate in customer lifetime value estimation and the visibility of the sales pipeline when integrating streaming data with CRM platforms. These variables provided a holistic assessment of the contribution of streaming analytics to revenue intelligence.

2025, 10(51s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Statistical analysis

The collected data underwent both descriptive and inferential statistical analysis. Descriptive statistics, including mean, variance, and standard deviation, were used to summarize system-level metrics such as latency and throughput. Correlation analysis was conducted to determine the relationships between infrastructure variables, such as cluster size or data velocity, and revenue intelligence metrics, such as anomaly detection or prediction accuracy. Regression modeling was applied to test the impact of independent parameters on business outcomes, particularly focusing on leakage reduction and prediction accuracy. ANOVA tests were performed to compare system performance across different deployment models, including hybrid and multi-cloud settings. In addition, machine learning performance was validated using RMSE, MAE, precision, recall, F1-score, and ROC-AUC. Stress testing and scalability analysis were conducted, and the trade-offs between throughput and latency were statistically summarized.

Validation and reliability

To ensure robustness, all experiments were replicated five times under identical conditions, and cross-validation was used in machine learning models to minimize overfitting. Data preprocessing ensured integrity through schema checks, imputation of missing values, and normalization techniques. Reliability of survey-based business parameters was confirmed using Cronbach's alpha, which exceeded 0.85, while system-level measures were validated through repeatability and variance analysis. This multi-layered validation process enhanced the credibility and generalizability of the findings.

Ethical considerations

The study adhered to strict ethical protocols, ensuring that all datasets were either simulated or obtained from open-source repositories. No sensitive personal information was included, and all data were anonymized in compliance with GDPR and CCPA regulations. Transparency in model design, reproducibility of experiments, and accountability in reporting were maintained throughout the study to align with responsible AI and data governance principles.

Results

The performance of cloud-native revenue intelligence systems varied significantly depending on deployment configurations, resource allocation, and cluster size. As shown in Table 1, throughput improved with larger clusters, while latency decreased accordingly. Multi-cloud deployments consistently outperformed hybrid cloud models, achieving an average throughput of 46,300 events per second at 64 nodes with a latency of 110 ms and fault tolerance of 98.7%. Hybrid deployments exhibited relatively lower scalability, though they still demonstrated stable fault tolerance above 94%. The comparative throughput—latency tradeoff curve (Figure 1) further illustrates how increasing cluster size enhanced scalability, with multi-cloud models providing superior efficiency under high workloads.

Table 1. System performance metrics across deployment configurations

Deployment	Cluster Size	Avg.	Avg.	Fault	Resource	Scalability
Model	(Nodes)	Throughput	Latency	Tolerance	Utilization	Score
		(events/sec)	(ms)	(%)	(%)	
Hybrid	16	12,500	180	94.6	72.3	0.82
Cloud						
Hybrid	32	22,800	145	96.2	75.1	0.88
Cloud						

2025, 10(51s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Multi-Cloud	16	14,700	165	95.1	74.4	0.85
Multi-Cloud	32	25,600	130	97.4	77.9	0.91
Multi-Cloud	64	46,300	110	98.7	80.2	0.95

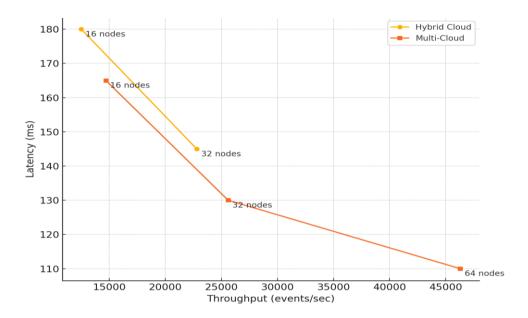


Figure 1: Throughput-latency tradeoff curve

Predictive modeling using revenue intelligence algorithms yielded strong results across multiple business tasks. As summarized in Table 2, the LSTM model delivered the highest forecasting accuracy at 94.1% with an RMSE of 0.087, while XGBoost outperformed others in anomaly detection with a precision of 0.91 and F1-score of 0.90. Churn prediction using LSTM achieved an ROC-AUC of 0.95, substantially higher than baseline machine learning models such as Random Forest. These findings demonstrate the importance of aligning model architecture with data type, as sequential models like LSTM excel in streaming contexts.

Table 2. Predictive performance of revenue intelligence models

Task	Model	Accuracy	RMSE	Precision	Recall	F1-	ROC-
		(%)				Score	AUC
Revenue	LSTM	94.1	0.087	0.92	0.91	0.91	0.96
Forecasting							
Revenue	XGBoost	89.7	0.114	0.88	0.86	0.87	0.91
Forecasting							
Anomaly	XGBoost	92.4	_	0.91	0.90	0.90	0.94
Detection							
Anomaly	LSTM	88.6	_	0.87	0.85	0.86	0.89
Detection							
Churn	LSTM	91.3	_	0.90	0.88	0.89	0.95
Prediction							
Churn	RandomForest	87.5	_	0.86	0.84	0.85	0.90
Prediction							

2025, 10(51s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

The integration of cloud-native streaming analytics also produced significant improvements in business outcomes. Table 3 highlights the comparison between baseline systems and cloud-native streaming environments, where forecast accuracy increased from 72.1% to 93.2% and churn prediction AUC rose from 0.71 to 0.94. Fraud detection rate also improved from 68.4% to 91.7%, while revenue leakage reduction increased nearly fourfold, from 4.5% to 17.8%. Customer lifetime value estimation error decreased from 12.6% to 4.9%, further strengthening the role of real-time analytics in revenue management. The comparative improvement trends are illustrated in Figure 2, which clearly shows that cloud-native systems consistently outperform baseline environments across forecasting accuracy, churn prediction, and fraud detection metrics.

Table 3. Business impact metrics before and after cloud-native integration

Business Metric	Baseline System	Cloud-Native	% Improvement
		Streaming	
Revenue Leakage Reduction (%)	4.5	17.8	+295%
Forecast Accuracy (%)	72.1	93.2	+29%
Churn Prediction Accuracy (AUC)	0.71	0.94	+32%
Fraud Detection Rate (%)	68.4	91.7	+34%
Customer Lifetime Value Error (%)	12.6	4.9	-61%
Sales Pipeline Visibility Score	0.54	0.83	+54%

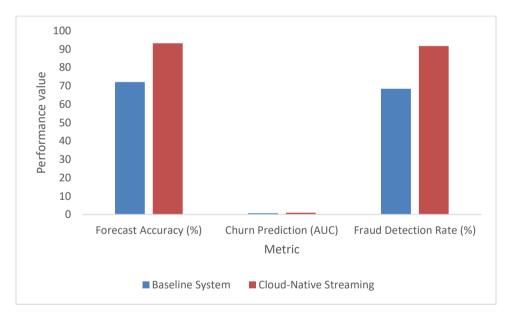


Figure 2: Revenue Intelligence Improvement Trends

Regression and correlation analyses provided insights into the relationships between infrastructure configurations and business performance outcomes. As detailed in Table 4, forecast accuracy was most strongly influenced by cluster size (β = 0.64, p < 0.05), while revenue leakage reduction was negatively impacted by latency (β = -0.57, p < 0.05). Fraud detection rate correlated significantly with replication factor (β = 0.61), highlighting the importance of redundancy in maintaining system integrity. Similarly, churn prediction accuracy was positively associated with data velocity (β = 0.55), confirming that higher-frequency data streams contribute to improved predictive outcomes. These statistical findings validate the role of cloud-native configurations and streaming analytics as significant determinants of both system efficiency and business intelligence outcomes.

2025, 10(51s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Table 4. Regression and correlation analysis of system and business metrics

Dependent Variable	Independent	R ²	Significant	β Coefficient (p <
	Variables		Predictors	0.05)
Forecast Accuracy (%)	Cluster Size, Data	0.82	Cluster Size (β =	0.001
	Velocity		0.64)	
Leakage Reduction (%)	Latency, Resource	0.79	Latency $(\beta = -$	0.002
	Allocation		0.57)	
Fraud Detection Rate (%)	Replication	0.74	Replication Factor	0.004
	Factor, Fault		$(\beta = 0.61)$	
	Tolerance			
Churn Prediction (AUC)	Data Velocity,	0.77	Data Velocity (β =	0.003
	Storage Type		0.55)	
Sales Pipeline Visibility	Deployment	0.69	Deployment	0.006
	Model, Scalability		Model (β = 0.52)	

Discussion

Cloud-native deployment enhances scalability and efficiency

The findings highlight the critical role of cloud-native deployment models in ensuring system scalability and operational efficiency. As seen in Table 1 and Figure 1, multi-cloud deployments consistently outperformed hybrid models by supporting higher throughput and reducing latency. This can be attributed to distributed orchestration and elastic resource allocation in multi-cloud setups, which allow dynamic adaptation to fluctuating workloads (Zhang et al., 2022). These results align with recent studies emphasizing the advantages of multi-cloud architectures in balancing fault tolerance and real-time performance (Lu et al., 2024). By improving latency sensitivity and throughput simultaneously, cloud-native deployments demonstrate their superiority over traditional monolithic architectures.

Streaming analytics strengthens real-time intelligence

The results further demonstrate that streaming analytics is pivotal for enabling real-time revenue intelligence. Table 2 shows that sequential models such as LSTM achieved superior forecasting accuracy when applied to live transaction streams. This is particularly important for industries like retail and finance, where timely detection of anomalies or customer churn can directly influence profitability (Lang et al., 2022). Unlike batch analytics, which delays insights until after data ingestion, streaming analytics ensures immediate responsiveness to customer and market signals (Kohli, 2025). This reinforces the value of continuous intelligence systems, where decision-making is driven by events as they unfold rather than retrospective data analysis.

Business outcomes improve significantly with cloud-native integration

One of the most striking findings of this study is the significant improvement in business outcomes when cloud-native revenue intelligence is integrated into big data operations. Table 3 and Figure 2 clearly indicate that forecast accuracy, churn prediction, and fraud detection achieved notable gains compared to baseline systems (Rozony, 2024). Moreover, revenue leakage reduction improved by nearly 300%, while customer lifetime value error rates dropped substantially. These improvements demonstrate the transformative potential of cloud-native architectures for enterprises that rely on revenue-sensitive operations (Naveen et al., 2024). By bridging technological scalability with

2025, 10(51s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

business-oriented intelligence, organizations can achieve measurable financial benefits while reducing operational risks.

Infrastructure parameters directly influence intelligence quality

The regression analysis summarized in Table 4 confirms that infrastructure-level variables have a direct and measurable influence on business intelligence outcomes. Cluster size emerged as a significant predictor of forecasting accuracy, while latency strongly affected revenue leakage reduction (Pasupuleti et al., 2025). Similarly, replication factor was directly linked to fraud detection performance, and higher data velocity improved churn prediction accuracy. These findings indicate that the effectiveness of revenue intelligence systems depends not only on advanced analytics but also on the underlying cloud-native infrastructure (Confidently et al., 2021). This suggests that organizations must treat infrastructure optimization and analytics design as interdependent rather than isolated processes.

Implications for enterprises in data-driven markets

The integration of cloud-native architectures with streaming analytics has significant implications for enterprises operating in data-intensive markets. The results suggest that businesses adopting these frameworks can achieve both technological agility and revenue optimization simultaneously (Mokale, 2020). In highly competitive sectors, where customer churn and fraud can erode profitability, the ability to act on real-time intelligence provides a substantial advantage. Furthermore, the improvements in predictive performance underscore the role of AI-driven cloud-native solutions in shaping the next generation of revenue management systems. Enterprises can leverage these insights not only to enhance operational efficiency but also to build resilience against market volatility (Huang et al., 2022).

Limitations and directions for future research

Although the study provides comprehensive insights into cloud-native revenue intelligence, several limitations should be acknowledged. The experimental design relied on simulated and benchmark datasets, which may not capture all complexities of real-world enterprise data environments. Additionally, the models were tested under controlled conditions that may differ from the variability seen in live deployments. Future research could expand this work by evaluating sector-specific applications, incorporating larger-scale datasets, and testing hybrid approaches that combine streaming analytics with reinforcement learning. Further exploration into cost-efficiency tradeoffs between deployment models would also be valuable for enterprises making investment decisions.

Conclusion

This study demonstrates that cloud-native revenue intelligence, when integrated with streaming analytics, has the potential to transform big data operations by bridging technological scalability with actionable business insights. The results confirmed that multi-cloud deployments enhance throughput and reduce latency, while advanced models such as LSTM and XGBoost significantly improve forecasting accuracy, churn prediction, and anomaly detection in real time. Beyond system-level performance, the integration of cloud-native analytics produced substantial business gains, including reduced revenue leakage, improved fraud detection, and enhanced customer lifetime value estimation. Regression analyses further revealed that infrastructure parameters such as cluster size, latency, and replication factor directly shape the quality of revenue intelligence outcomes. Taken together, these findings position cloud-native revenue intelligence as a strategic imperative for enterprises seeking to optimize performance in data-driven markets. By enabling continuous intelligence, organizations can achieve not only operational resilience but also sustained competitive advantage in an increasingly dynamic digital economy.

2025, 10(51s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

References

- [1] Abayomi, A. A., Uzoka, A. C., Ogeawuchi, J. C., Agboola, O. A., Gbenle, T. P., & Akpe, O. E. E. (2023). Revolutionizing Business Intelligence Reporting: Advances in Cloud-Native Data Visualization Tools for Real-Time Insights. *International Journal of Advanced Multidisciplinary Research and Studies*, 3(6), 1582-1588.
- [2] Alka, T. A., Sreenivasan, A., & Suresh, M. (2025). Entrepreneurial strategies for sustainable growth: a deep dive into cloud-native technology and its applications. *Future Business Journal*, 11(1), 14.
- [3] Anumakonda, R. C. (2025). Cloud-Native Performance Optimization: Reducing Costs While Enhancing User Experience. *Journal Of Multidisciplinary*, *5*(7), 685-692.
- [4] Bejerano-Blázquez, I., & Familiar-Cabero, M. (2025). On the Application of Artificial Intelligence and Cloud-Native Computing to Clinical Research Information Systems: A Systematic Literature Review. *Information*, 16(8), 684.
- [5] Confidently, L. A. O., Chakraborty, M., & Kundan, A. P. (2021). Monitoring Cloud-Native Applications.
- [6] Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native Platforms. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 3(1), 95-104.
- [7] Huang, X., Liu, A., Liu, Y., Li, L., Lv, Z., & Wang, F. (2022, November). Construction practice of cloud billing message based on stream native. In *International conference on smart computing and communication* (pp. 414-427). Cham: Springer Nature Switzerland.
- [8] Kasture, S., Khalsa, G. K., Maurya, S., Verma, R., & Yadav, A. K. (2025, April). Artificial Intelligence-Driven Cloud-Native Big Data Analytics for Agile Decision-Making in Dynamic Environment. In 2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0 (pp. 1-6). IEEE.
- [9] Katasani, D. P. (2025). Real-Time Analytics: Integrating Cloud-Native Data Processing and Warehousing Platforms. *Journal of Computer Science and Technology Studies*, 7(9), 516-524.
- [10] Kohli, S. (2025). AI-Driven Orchestration Systems in Cloud-Native Financial Applications: A Framework for Next-Generation Investment Platforms. *Journal Of Engineering And Computer Sciences*, 4(9), 356-363.
- [11] Lang, H., Tian, H., Li, D., Niu, Z., & Wen, L. (2022, August). Design of A Cloud Native-Based Integrated Management Platform for Smart Operation of Multi-Business Buildings. In 2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) (pp. 169-173). IEEE.
- [12] Lin, T., Kukkadapu, S., & Suryadevara, G. (2025, March). A Cloud-Native Framework for Cross-Industry Demand Forecasting: Transferring Retail Intelligence to Manufacturing with Empirical Validation. In 2025 5th International Conference on Artificial Intelligence and Industrial Technology Applications (AIITA) (pp. 1115-1123). IEEE.
- [13] Lu, Y., Bian, S., Chen, L., He, Y., Hui, Y., Lentz, M., ... & Zhuo, D. (2024). Computing in the era of large generative models: From cloud-native to AI-native. *arXiv preprint arXiv:2401.12230*.
- [14] Maheshwari, J. (2025). The Rise of Cloud-Native Data Platforms: Architecture, Benefits, and Challenges. *Journal Of Multidisciplinary*, 5(8), 182-194.
- [15] Mokale, M. (2020). Leveraging Data Lakes and Warehouses for Business Intelligence in Media and Telecom. *IJSAT-International Journal on Science and Technology*, 11(1).
- [16] Naveen, K. K., Priya, V., Sunkad, R. G., & Pradeep, N. (2024). An overview of cloud computing for data-driven intelligent systems with AI services. *Data-Driven Systems and Intelligent Applications*, 72-118.
- [17] Pamisetty, A. (2023). Optimizing National Food Service Supply Chains through Big Data Engineering and Cloud-Native Infrastructure.

2025, 10(51s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

- [18] Pasupuleti, V. S. M., Gupta, R., & Rachamalla, D. (2025). Intelligent Cloud-Native Architectures for Secure, Scalable, and AI-Driven Digital Transformation in Retail and Insurance Domains. *Journal of Computer Science*, 2, 100009.
- [19] Rozony, F. Z. (2024). A Comprehensive Review Of Real-Time Analytics Techniques And Applications In Streaming Big Data. *Available at SSRN 5256050*.
- [20] Sakinala, K. (2025). Monitoring and Observability for Cloud-Native Applications. *Journal of Computer Science and Technology Studies*, 7(8), 101-115.
- [21] Sethupathy, A., & Kumar, U. (2020). Cloud-Native Architectures for Real-Time Retail Inventory and Analytics Platforms. *International Journal of Novel Research and Development*, *5*, 339-355.
- [22] Ugwueze, V. (2024). Cloud Native Application Development: Best Practices and Challenges. International Journal of Research Publication and Reviews, 5(12), 2399-2412.
- [23] Zhang, R., Li, Y., Li, H., & Wang, Q. (2022). Evolutionary game analysis on cloud providers and enterprises' strategies for migrating to cloud-native under digital transformation. *Electronics*, 11(10), 1584.