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ARTICLE INFO ABSTRACT

Acute infectious diseases, especially of viral origin, remain a major global health concern. This
study evaluates recovery outcomes using nine machine learning (ML) algorithms including
Revised: 10 Sept 2024 Ordered Logit, Random Forest, Light GBM, and Naive Bayes to identify key predictors such as
age, hospital stay duration, and treatment costs. Data were collected from 5,066 patients
hospitalized for respiratory infections at the National Center for Communicable Diseases,
Mongolia (2022-2024). Recovery was assessed at admission and discharge, categorized into
four ordinal levels (0—3). Machine learning models such as Gradient Boosting and SVM achieved
the highest predictive accuracy, while the Ordered Logit model offered interpretability,
highlighting significant variables including age, length of stay, drug expenditures, pregnancy
status, and year of hospitalization. The study demonstrates the complementary value of
statistical and ML approaches in predicting clinical outcomes. Future research should explore
additional variables such as genetics and mental health to improve model performance.
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1. INTRODUCTION

Acute infectious diseases represent a persistent global health threat, accounting for approximately 17 million deaths
annually and imposing an economic burden exceeding USD 500 billion (WHO, 2023). These diseases, ranging from
viral infections like influenza and COVID-19 to bacterial infections such as pneumonia and tuberculosis, continue to
challenge healthcare systems worldwide.

In Mongolia, the incidence of respiratory infections increased by 32% between 2020 and 2024, signaling growing
strain on the national healthcare infrastructure and the urgent need for more effective management strategies.
Globally, the COVID-19 pandemic highlighted critical gaps in healthcare preparedness and underscored the
importance of timely diagnosis, individualized treatment, and accurate prediction of clinical outcomes. In this
context, predicting recovery trajectories in patients with infectious diseases has become an essential aspect of
optimizing patient care, allocating hospital resources efficiently, and mitigating the impact of future outbreaks (Xu
et al., 2022). Accurate forecasting of recovery outcomes also supports triage decisions, helps identify high-risk
patients, and improves overall treatment planning. Recent advancements in artificial intelligence and machine
learning (ML) have introduced powerful tools for modeling clinical outcomes using large-scale health data. ML
algorithms such as Random Forest, LightGBM, and Support Vector Machines (SVM) have demonstrated strong
predictive performance in various clinical domains, including disease prognosis, diagnosis, and resource allocation.
Prior studies have shown that these models can accurately predict recovery timelines and mortality risks among
COVID-19 patients and other infectious disease cohorts (Xu et al., 2022). However, the majority of existing research
approaches recovery as a binary outcome recovered vs. not recovered thereby oversimplifying the nuanced
progression of patient health. In practice, recovery often occurs in stages, and ordinal data reflecting different levels
of improvement provide a more realistic representation of clinical outcomes.

The Ordered Logit model addresses this methodological gap by estimating multi-level outcomes and has gained
increasing attention in health economics, epidemiology, and medical decision-making (Santangelo et al., 2023).
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Despite these methodological advancements, few studies have examined the comparative recovery patterns between
bacterial and viral infections using both traditional statistical and modern ML approaches. Moreover, limited
research has focused on applying these tools to real-world data from low- and middle-income countries, where
infectious disease burdens are disproportionately high and data-driven decision-making is still evolving. This study
addresses these gaps by analyzing clinical and demographic predictors of recovery outcomes among 5,066 patients
treated for acute respiratory infections at the National Center for Communicable Diseases (NCCD), Mongolia,
between 2022 and 2024. Recovery was measured at both admission and discharge and categorized into four ordinal
levels. The study applies the Ordered Logit model alongside several ML algorithms including Random Forest,
LightGBM, and XGBoost to compare their effectiveness in predicting recovery levels. By doing so, the research
contributes to both clinical decision-making and public health planning by demonstrating the value of combining
interpretability and predictive power in modeling recovery from infectious diseases.

2. LITERATURE REVIEW

Acute infectious diseases continue to burden global health systems, with accurate prediction of recovery outcomes
emerging as a central challenge in clinical epidemiology. While early studies focused on traditional statistical
approaches, recent advances underscore the utility of machine learning (ML) in modeling complex, nonlinear clinical
data relationships (Santangelo et al., 2023; Make, 2023). For example, Xu et al. (2022) employed Decision Tree,
Random Forest, and AdaBoost algorithms on 13,162 Omicron-infected COVID-19 cases, achieving high predictive
accuracy for 7- and 14-day recovery outcomes. Similarly, Liu et al. (2025) demonstrated the added value of hybrid
ML-epidemiological models in improving disease trajectory assessments.

Empirical comparisons reinforce ML’s effectiveness. Smith et al. (2022) reported 85% accuracy using Random Forest
for COVID-19 recovery, while Chen et al. (2021) achieved a 78% AUC for modeling antibiotic resistance outcomes
using Gradient Boosting. In the present study, Random Forest and XGBoost reached 72% and 70% accuracy,
respectively, with performance favoring viral over bacterial infections.

Despite progress, few studies explicitly compare recovery trajectories by pathogen type. Wang et al. (2020) identified
age and treatment duration as key predictors in bacterial infections, whereas Li et al. (2023) found early antiviral
therapy improved COVID-19 recovery by 40%. Jones et al. (2022), analyzing over 15,000 cases, observed that viral
recovery rates exceeded bacteria by 8-12%. Seasonality also affects infectious disease dynamics, yet research remains
sparse. Zhang et al. (2021) applied SARIMA models to forecast seasonal infections, while WHO (2023) emphasized
climate-driven regional variation. However, single-center sampling limits generalizability (Smith et al., 2020), and
crucial predictors such as genetics and environment are often omitted, though Jones and Patel (2019) report their
influence may reach 20-30%. Additionally, most studies neglect temporal modeling techniques like ARIMA or LSTM
(Lee et al., 2021). Interpretability remains a concern for ML in clinical settings. Rudin (2019) advocates for
explainable AI to enhance trust and transparency. Moreover, reliance on retrospective data limits real-time
applicability, with WHO (2022) calling for integration of IoT-based vital sign monitoring. Finally, the lack of cross-
national analyses, particularly in cold-climate countries like Mongolia, has been highlighted by the Global Health
Observatory (2023). To address these gaps, the present study classifies 53 infectious diseases based on ICD-10 codes
into viral and bacterial categories.

By combining the interpretive strength of the Ordered Logit model with the predictive power of ML (Random Forest
and XGBoost), this research proposes a hybrid framework to evaluate recovery determinants. Accordingly, the study
tests the following hypotheses:

Hi1: Patients diagnosed with viral infectious diseases exhibit statistically higher recovery levels compared to those
with bacterial infections.

H2: Machine learning algorithms (e.g., Gradient Boosting, SVM) demonstrate superior predictive accuracy for
recovery levels compared to traditional statistical models such as the Ordered Logit model.

H3: Patient age, length of hospital stays (LOS), medical treatment cost (MEDC), and year of treatment (YEAR) exert
statistically significant effects on recovery outcomes.

Hy4: Seasonal patterns of incidence differ significantly between viral and bacterial infections.
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3. METHODOLOGY

This study employed a retrospective cohort design based on clinical data from 5,066 patients hospitalized between
2022 and 2024 in Ward No. 3 of the National Cancer Center of Mongolia. Diagnoses were classified using the 10th
revision of the International Classification of Diseases (ICD-10), with 25 bacterial and 28 viral infectious diseases
grouped accordingly. All data were anonymized and processed in compliance with ethical standards and data
confidentiality protocols. The dependent variable was the recovery level (Change), measured on a four-point ordinal
scale (0 -mild, 1 -moderate, 2 -moderately severe, 3 -severe). Explanatory variables included demographic
characteristics (age, gender), clinical indicators (length of stay, treatment costs), and administrative data (year of
diagnosis, payment type). Prior to analysis, all variables were standardized; categorical data were transformed using
one-hot encoding, and missing values were imputed using the median. The dataset was then randomly split into
training and test sets in a 70:30 ratio. A two-stage analytical approach was adopted. In the first stage, descriptive and
inferential statistics including Welch’s t-test, ANOVA, chi-square tests, and time-series correlation analysis were
employed to assess group differences between bacterial and viral infections. In the second stage, an Ordered Logit
regression model was used to estimate the relationship between explanatory variables and ordinal recovery
outcomes, with model parameters calculated via the Newton-Raphson iterative method. Model fit was evaluated
using pseudo-R2 and log-likelihood statistics.

To complement traditional modeling, supervised machine learning algorithms Random Forest, XGBoost, and
Gradient Boosting were applied to predict recovery levels and capture nonlinear relationships. Hyperparameter
optimization was conducted using GridSearchCV (for Random Forest), with XGBoost configured using a learning
rate of 0.1, a maximum tree depth of 5, and 200 estimators. Model performance was assessed using multiple metrics:
accuracy, mean absolute error (MAE), root mean squared error (RMSE), class-wise Fi-scores, and area under the
receiver operating characteristic curve (ROC-AUC). Special attention was given to evaluating predictions across the
ordered levels of recovery severity. All data processing, statistical analysis, and model implementation were carried
out in Python 3.10, using key libraries such as pandas, NumPy, SciPy, statsmodels, scikit-learn, XGBoost, matplotlib,
and seaborn.

4. RESULTS AND DISCUSSION

This study analyzed clinical data from 5,066 patients diagnosed with acute infectious diseases between 2022 and
2024. Of these, 71.9% had viral infections, 28.0% bacterial, and 0.2% other etiologies based on ICD-10
classification. Among bacterial cases, four diagnoses comprised 90.4%: scarlet fever (A38, 48.6%), erysipelas (A46,
20.0%), spotted fever (A77, 12.1%), and shigellosis (A03, 9.6%). Similarly, five viral conditions accounted for
87.9%: varicella (Bo1, 23.0%), viral skin/mucosal infections (B08, 22.3%), COVID-19 (Uo7, 21.3%), unspecified
viral infections (B34, 13.4%), and viral pneumonia (J12, 8.0%).

Recovery level was defined as the difference between clinical condition on admission (COA) and at discharge (COD),
measured on an ordinal scale. Admission severity ranged from 1 (moderate) to 4 (critical), while discharge condition
ranged from o (mild) to 3 (severe). The recovery variable (Change) captured the extent of improvement during
hospitalization, from one-step to four-step recovery. To identify key predictors, an Ordered Logit regression model
was employed, complemented by eight machine learning algorithms including Random Forest, Gradient Boosting,
XGBoost, and LightGBM to enhance predictive accuracy and assess model robustness (Table 1).

Table 1: One-Way tabulation

Condition on Admission (CO4; ;) | Condition on Discharge (COD; ) Recovery Level (Change; ,)

Value Count Percent Value Count Percent Value Count Percent
1 1401 27.65 0 3366 66.44 0 25 0.49
2 3468 68.46 1 1664 32.85 1 2063 58.49
3 190 3.75 2 30 0.59 2 2004 39.56
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Total 5066 100 Total 5066 100 Total 5066 100

Among all patients, 96.1% presented with either moderate (27.65%) or moderately severe (68.46%) conditions at the
time of hospital admission. By the end of treatment, 99.29% of patients had improved to either mild (66.44%) or
moderate (32.85%) status. In terms of recovery progression, 98.05% of patients demonstrated clinical improvement,
with 58.49% showing a one-level improvement and 39.56% showing a two-level improvement in their condition.

Over the three-year period, the lowest incidence of acute infectious diseases was recorded in January (5.9%), while
peak levels were observed in April-May and October-November, each exceeding 9% of total cases. However, seasonal
trends varied by type of pathogen. Bacterial infections were most prevalent during April to July and in October, with
monthly shares exceeding 10%, whereas their incidence from January to April remained around 4%. In contrast, viral
infections displayed elevated rates in February and June to September (approximately 7%), with the highest peak

observed in October (10%), and remained above 9% in most other months (Table 2).

Table 2: Seasonal effects on major infectious diseases

VII 6.3% 11.1% 11.5%

VIII 6.3% 3.7% 154% 6.3%
IX 9.0% 12.0% 4.1% 9.6% 81% 5.8%
X 3.8% 11.8%

XI 12.3% 10.2%
XII 9.6% 9.5%

Bacterial-origin infectious diseases Viral-origin infectious diseases
Month A38 A46 A7y Ao3 A69 Ao2 Bo1 Bo8 Uo7y B34 J12 J18

I 2.9% 3.8% 5.2%
II 7.7% 6.5% 15.1% 8.3% 13.2%
111 6.5% 9.5% 2.9% 11.5% 7.2% 6.8% 91% 9.3% 9.6%
v 8.7% 8.8% 3.8% 6.9% 9.8% 7.0% 6.2% 4.4%
A% 14.5% 3.7% 14.8% 154% 9.7% 7.4% 9.9% 7.6% 4.4%
VI 7.8% 8.8% 15.4% 7.4% 7.7% i 9.5% i

Seasonal effects were clearly observed for the leading infectious diseases. Among bacterial infections, 39.9% of A38
(scarlet fever) cases occurred during May and September to November, while 26.1% of A46 (erysipelas) cases were
concentrated in October and November. In contrast, A77 (spotted fever) and Ao3 (shigellosis) demonstrated higher

incidence rates during the summer months of June to August (Fig.1).
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Fig. 1: Leading bacterial-origin infectious diseases

Seasonal trends were distinct among viral infections, with peak incidences varying by month for example, 41% of
varicella cases occurred from October to December, while COVID-19 peaked in winter and summer months. Over
time, bacterial infections showed an increasing trend, whereas viral infections declined. Autocorrelation analysis
(appendix 3) revealed that case numbers were periodically related to previous months, indicating non-stationary,
cyclical transmission patterns as shown in Fig.1.
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Fig. 2: Leading viral-origin infectious diseases

Table 3: Seasonal impact index of patients treated for infectious diseases

Year Jan/Jul | Feb/Aug | Mar/Sep | Apr/Oct | May/Nov | Jun/Dec | AVGE

2022 80.6 / | 78.6 / | 105.4 / | 114.6 / | 111.9 / | 95.6 / | 100.0
94.0 92.9 93.6 118.4 110.7 103.8

2023 80.6 /| 78.6 / | 105.4 / | 114.6 / | 111.9 / | 95.6 / | 100.0
94.0 92.9 93.6 118.4 110.7 103.8

2024 80.6 /| 78.6 / | 105.4 / | 114.6 / | 111.9 / | 95.6 / | 100.0
94.0 92.9 93.6 118.4 110.7 103.8

Average | 80.6 /| 78.6 / | 105.4 / | 114.6 / | 111.9 / | 95.6 / | 100.0
94.0 92.9 93.6 118.4 110.7 103.8

Table 3 presents the seasonal adjustment and 2025 monthly forecasts of infectious disease incidence using the X-
13ARIMA-SEATS time series model. The monthly projections generated from this model are provided in Appendix
4. In addition, Table 4 summarizes descriptive statistics for 1,417 patient records diagnosed with 23 types of bacterial
infections, including average age, hospital stay duration, and recovery level, disaggregated by disease category.
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Table 4: Recovery levels by type of bacterial infectious disease

No | Diagnosis | Frequency | Percentage | AGE | LOS | MEDC | COA | COD | OUT | CHANGE
1 A38 689 48.6% 7.2 154.2 1.9 0.4 0.2 1.5
2 A4q6 284 20.0% 8.1 314.3 1.9 0.4 0.3 1.5
3 A7y 172 12.1% 20.0 7.6 242.7 2.0 | 0.5 | 0.3 1.5
4 Ao3 136 9.6% 114 | 66 | 1453 | 1.6 | 03 | 0.2 1.3
5 A69 27 1.9% 28.1 8.2 258.7 1.8 0.5 0.1 1.3
6 Ao2 26 1.8% 20.2 7.0 178.8 1.8 0.2 0.3 1.7
7 Aos 26 1.8% 20.8 6.3 169.0 1.8 0.3 0.5 1.5
8 Aog4 10 0.7% 13.2 7.0 254.9 2.2 0.3 0.1 1.9
9 A23 o] 0.6% 7.4 202.7 0.2 0.3 1.3

10 A39 8 0.6% 12.6 9.0 841.0 2.6 0.4 0.1 2.3
11 A79 6 0.4% 16.7 9.5 195.9 1.8 0.2 1.7
12 A48 5 0.4% 29.6 8.8 711.2 1.8 0.4 1.4
13 As52 4 0.3% 38.5 | 13.8 550.1 1.8 0.5 0.8 1.3
14 A22 2 0.1% 1194.3 0.5
15 Aq1 2 0.1% 7.0 510.7 2.5 2.5
16 A49 2 0.1% 20.0 | 10.5 367.1 2.0 2.0
17 As1 2 0.1% 2.0 0.5 0.5 1.5

18 Lo4 2 0.1% 6.5 148.6 2.0 | 0.5 1.5

19 A16 1 0.1% 21.0 | 13.0 350.2 2.0

20 A24 1 0.1% 45.0
21 Go3 1 0.1% 11.4 6.6 145.3 0.3 0.2 1.3

22 Jo3s 1 0.1% 16.0 403.9 2.0 2.0

23 K35 1 0.1% 43.0 7.0 1076.1 2.0

Mean 20.3 7.4 213.0 1.9 0.4 | 0.2 1.5

The average age of patients with bacterial infections was 20.3 years, with a mean hospital stay of 7.4 days and an
average recovery level of 1.5. These measures varied by disease type and patient age. An inverse correlation between
length of stay and recovery level was observed for all infections except A24, while no significant link was found
between age and recovery. For viral infections, data from 3,640 patients showed an average age of 19.5 years, hospital
stay of 6.7 days, and recovery level of 1.7 (Appendix 5). Compared to viral cases, bacterial infection patients were on
average 0.8 years older and stayed 0.7 days longer in hospital. Their admission (COA) and discharge (COD) severity
scores were 0.2 and 0.1 points higher, respectively, with a 0.1-point greater recovery level. However, bacterial
infection treatment costs were on average MNT 41,400 lower than those for viral infections (Table 5).

Table 5: Comparative summary of viral and bacterial infectious diseases

Indicator AGE | LOS | MEDC | COA COD | OUT | CHANGE

Bacterial
Infections

Viral Infections

Difference 0.8 0.7 -41.4 0.2 0.1 0.1 0.1

To assess whether there were statistically significant differences in key indicators such as patient age, hospital stay
duration, and treatment cost between viral and bacterial infection groups, Welch’s t-test was employed to compare
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group means. This test was chosen due to unequal sample sizes (n = 3,640 for viral infections; n = 1,417 for bacterial
infections) and unequal variances between the two groups (Table 6).

Table 6: t-Test: Two-Sample Assuming Unequal Variances / Welch’s t-test/

AGE LOS MEDC COA COD CHANGE

S-1 S-2 S-1 S-2 S-1 S-2 S-1 S-2 S-1 S-2 S-1 S-2

Mean 20.32 | 19.50 | 7.44 | 6.73 | 213.0 | 254.4 1.89 | 171| 0.39| 0.33 1.51 | 1.39
o 4
Variance 520.1 | 592. | 3.11 2.33 | 50455 | 98063 0.16 | 0.30 0.25 | 0.24 | 0.29 | 0.28
8
Observation | 1417 | 3640 | 1417 364 1417 | 3640 1417 | 364 1417 | 3640 1417 | 364
s 0 0 0
df 2741 2286 3573 3541 2559 2532
t Stat 1.126 13.39 -5.240 13.03 3.916 7.148
1 7
P(T<=t) 0.130 0.000 0.000 0.000 0.00 0.00
one-tail 0 0
t Critical 1.645 1.646 1.645 1.645 1.645 1.645
one-tail
P(T<=t) 0.26 0.000 0.000 0.000 0.00 0.00
two-tail 0 0 0
t Critical 1.961 1.961 1.961 1.961 1.961 1.961
two-tail

According to the results of Welch’s t-test, there was no statistically significant difference in age between the bacterial
and viral infection groups. However, all other indicators showed statistically significant differences between the two
groups (p < 0.001). To identify the factors influencing recovery levels among patients with acute infectious diseases,
both an Ordered Logit regression model and several machine learning algorithms were employed. The following
explanatory (independent) variables were included in the modeling process:

This study initially utilized an Ordered Logit regression model to identify key predictors of recovery levels across the
full dataset, viral infection subgroup, and bacterial infection subgroup. Statistically significant variables (p < 0.05)
included age (AGE), length of stay (LOS), payment type (PAY), insurance coverage (INSC), medication cost (MEDC),
pregnancy status (PREG), and year of diagnosis (YEAR). Other factors showed no significant impact. Building on
these findings, machine learning algorithms were applied using these influential variables to assess and compare
predictive performance. The logistic regression equation predicting recovery level for the overall sample is expressed
as follows:

CHANGE = —0.0110258408712 = AGE + 0.164302703703 = LOS — 0.6278078088 * PAY + 0.00084462254874
INSC + 0.000754210862703 * MEDC — 0.856647011841 * PREG + 1.01357308723 * YEAR
(1)

This regression quantifies how key variables affect recovery levels in acute infectious disease patients. Year of
diagnosis (YEAR) positively influences recovery, while age (AGE) and payment type (PAY) have negative effects.
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Average probabilities of recovery improvements were: 0.49% (one-level), 58.49% (two-level), 39.53% (three-level),
and 1.49% (full recovery). These can be personalized for each patient based on their characteristics (Table7).

Table 7: Individual-level predicted probabilities of recovery levels (n = 5,066)

No Z score P(Y1) P(Y2) P(Y3) P(Y4)
1 3.167443 0.2% 45.9% 52.3% 1.7%

2 4.015379 0.1% 26.7% 69.4% 3.8%

3 3.330828 0.1% 41.9% 56.0% 2.0%

4 3.849408 0.1% 30.1% 66.6% 3.3%

5 3.888422 0.1% 20.3% 67.3% 3.4%
5066 3.263187 0.2% 43.5% 54.5% 1.8%

Individual recovery probabilities are estimated using patient-specific factors like diagnosis, age, gender, hospital stay
duration, and treatment costs. These personalized predictions support clinical decisions and planning. For example,
patient 1 had a 52.3% chance of a three-level improvement in recovery based on their variables. This modeling aids
hospitals in managing resources and optimizing treatment through data-driven forecasts (Table8).

Table 8: Summary results of Ordered Logit models across samples

Independent Full Sample Bacterial Infections Viral Infections
Variables Coefficient z-Statistic Coefficient z-Statistic Coefficient z-Statistic
AGE -0.01103*** -6.94823 -0.01448%** -5.32076 -0.00871%** -4.4279
LOS 0.164303*** 7.415875 0.127113*%* 3.072981 0.174345%** 6.255159
PAY -0.62781%** -3.24554 -0.62232%** -3.10865
INSC 0.000845%** 10.69296 0.000855%** 10.32166
MEDC 0.000754%** 5.166986 | 0.001013*** | 2.887148 0.000651*** | 4.018402
PREG -0.85665* -1.74556 -0.89358%** -1.6819
YEAR 1.013573%** 23.9489 1.047004*** 11.6869 1.015212%%* 20.32524
LIMIT 1 -3.1568 -12.875 -3.789 -7.224 -3.1338 -10.9553
LIMIT_ 2 3.04341 18.985 2.2389 7.405 3.173251 16.44251
LIMIT 3 7.26958 34.5431 6.6577 17.144 7.309882 28.94257
Pseudo R? 0.1242 0.0893 0.132234
LR statistic 967.054 198.25 725.6124

Note: p < 0.1 (%), p < 0.05 (**), p < 0.01 (***).

Age, length of stay, medication cost, and year of diagnosis significantly influenced recovery levels in both bacterial
and viral infections. Viral patients most improved by two levels (61.77%), while bacterial patients more often showed
three-level improvements (47.92%). Overall, 58.49% of all patients improved by two levels, 39.53% by three levels,
and only 1.49% achieved full recovery. One-level improvements were rare across all groups. This indicates most
patients experienced moderate to substantial clinical improvement during hospitalization.
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Table 9: Prediction Evaluation for Ordered Specification

Full Sample Bacterial Infections Viral Infections
Orders % % % %
Obs. | Correct | % Incorrect | Obs. | % Correct | Incorrect | Obs. | Correct | Incorrect
o] 25 o] 100 5 o] 100 19 o] 100
1 2063 79.818 20.182 712 72.893 27.107 2247 | 82.644 17.356

2 2004 | 53.792 46.208 678 56.195 43.805 1322 | 52.799 47.201

3 74 1.351 98.649 22 0 100 52 0 100

Total | 5066 | 67.983 32.017 1417 63.514 36.486 3640 | 70.192 20.808

Table 9 shows the Ordered Logit model’s classification accuracy: about 70% for the full sample and viral subgroup,
but only 63.5% for bacterial infections. This highlights the need to include additional predictors like comorbidities,
vaccination status, and lab results. Using the seven most influential variables from the Ordered Logit results, machine
learning models including Random Forest, XGBoost, Gradient Boosting, and SVM were developed and evaluated in
Python to predict recovery outcomes (Fig. 3).
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Fig. 3: Performance comparison of machine learning algorithms

Model performance was evaluated using three key metrics: Accuracy, Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE). The results indicate that the Gradient Boosting and Support Vector Machine (SVM)
algorithms yielded the highest prediction accuracy and the lowest error rates in estimating patient recovery levels
(Fig.3).

This study confirmed that recovery levels from acute infectious diseases are significantly influenced by infection type
(viral vs. bacterial) and key clinical and demographic factors. Viral infections showed higher recovery rates, consistent
with prior research (Jones et al., 2022; Li et al., 2023). Machine learning models, especially Random Forest and
XGBoost, outperformed the traditional Ordered Logit model, achieving up to 72% accuracy compared to 67.98%.
Significant predictors included age, length of stay, treatment cost, and year of diagnosis, with the latter showing a
particularly strong effect. Distinct seasonal patterns were observed, with viral infections peaking in late autumn and
bacterial infections in late spring to summer, reflecting climatic influences (Global Health Observatory, 2023). Using
a four-level ordinal recovery scale and ICD-10 classification allowed nuanced clinical comparisons and deeper
analysis.

All hypotheses were supported, demonstrating that integrating machine learning with traditional methods enhances
prediction accuracy. However, limitations include single-center data, omission of genetic and environmental factors,
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and restricted ML model testing due to resource constraints. Future research should expand data diversity and
modeling techniques to improve clinical applicability.

5. CONCLUSIONS

This study conducted a comprehensive statistical and machine learning-based analysis of 5,066 hospitalized cases of
acute infectious diseases recorded at the National Center for Communicable Diseases (NCCD) in Mongolia between
2022 and 2024. Using the Ordered Logit model alongside machine learning algorithms such as Gradient Boosting,
XGBoost, and Random Forest, we developed an ordinal-level predictive framework capable of both accurate
classification and clinical interpretability.

The findings revealed that recovery levels were significantly higher among patients with viral infections compared to
those with bacterial infections, which may be attributed to differences in treatment efficacy, clinical progression, and
immune response. These results are consistent with prior international studies (Li et al., 2023; Jones et al., 2022).
Ordered Logit model results showed that age, length of stay (LOS), medication cost (MEDC), and year of diagnosis
(YEAR) were statistically significant predictors of recovery level.

Among machine learning models, Gradient Boosting and SVM achieved the highest classification accuracy (70—-72%),
outperforming the traditional Ordered Logit model (67.98%). Seasonal trend analysis further showed that bacterial
infections peaked during May to September, while viral infections were most frequent from October to December.
These seasonal differences highlight the potential for aligning infectious disease control strategies with seasonal risk
patterns.

The observed variation in recovery level based on infection type emphasizes the need for differentiated clinical
assessment, treatment planning, and resource allocation at the hospital management level. Clinicians and hospital
managers should therefore integrate infection etiology into recovery-level assessments to better support
individualized care pathways. The comparative results of Ordered Logit and machine learning models suggest that
combining statistical and ML approaches can improve the predictive accuracy of treatment outcomes. This supports
the adoption of data-driven hybrid methodologies in internal hospital evaluations and performance monitoring
systems. Furthermore, the clearly defined seasonal distinction between viral and bacterial outbreaks underscores the
need for timely forecasting and seasonal preparedness, which could help mitigate pressure on healthcare
infrastructure during epidemic peaks. Finally, the use of a four-level ordinal classification system for recovery
provides a practical and structured approach for clinical monitoring and outcome evaluation, facilitating a more
nuanced, data-informed framework for patient care and treatment planning.
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Appendix 1: Monthly breakdown of the top three bacterial infectious diseases
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Appendix 3: Autocorrelation analysis
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Appendix 4. 2025 forecast of acute infectious disease hospitalizations
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Appendix 5: Recovery levels of viral infectious diseases
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No | Diagnosis | Frequency | Percentage | AGE | LOS | MEDC COA COD OUT | CHANGE
1 Bo1 839 23.0% 11.2 6.3 117.5 1.5 0.2 0.1 1.3
2 Bo8 811 22.3% 3.0 6.6 149.3 1.9 0.3 0.2 1.5
3 Uo7y 775 21.3% 47.3 7.3 516.6 1.7 0.3 0.1 1.3
4 B34 486 13.4% 3.5 6.4 140.3 1.6 0.3 0.2 1.3
5 J12 290 8.0% 32.9 7.3 336.6 2.0 0.6 0.2 1.4
6 J18 114 3.1% 6.9 7.1 250.0 1.9 0.5 0.1 1.4
B26 69 1.9% 10.6 6.4 142.6 1.9 0.4 0.2 1.5
8 AoS8 52 1.4% 1.6 6.2 105.4 2.0 0.7 0.6 1.3
9 K73 48 1.3% 57.7 7.3 403.7 1.9 0.3 0.2 1.6
10 K74 42 1.2% 61.5 7.2 507.5 1.8 0.5 0.3 1.3
11 B18 39 1.1% 52.8 7.2 425.1 1.9 0.3 0.3 1.6
12 A84 25 0.7% 20.3 7.4 660.8 2.3 0.8 0.4 1.5
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13 Bo2 18 0.5% 38.5 6.7 206.5
14 B27 8 0.2% 7.6 7.4 335.1
15 Boo 6 0.2% 53.2 6.8 234.8
16 Ji1 6 0.2% 1.3 6.3 183.7
17 Bos 3 0.1% 40.7 7.0 209.6
18 Big 2 0.1% 23.0 15.5 955.0
19 B17y 1 0.0% 42.0 | 13.0 585.8
20 B20o 1 0.0% 49.0 | 7.0 211.1
21 Bso 1 0.0% 34.0 7.0 569.8
22 Bs4 1 0.0% 40.0 7.0 264.4
23 Jog 1 0.0% 2.0 6.0 65.5
24 K71 1 0.0% 22.0 | 2.0 | 1322.1
25 K72 1 0.0% 88.0 6.0 6385.4
Mean 19.5 6.7 254.4
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