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Deep learning (DL) has achieved remarkable success across various domains, including 

healthcare, finance, and natural language processing; however, its reliance on sensitive 

data poses significant privacy risks. Privacy-preserving deep learning (PPDL) has 

therefore emerged as a critical research direction, integrating cryptographic 

techniques, statistical privacy mechanisms, and distributed training paradigms. This 

survey reviews state-of-the-art privacy-preserving deep learning (PPDL) techniques 

centered on homomorphic encryption (HE), secure multi-party computation (SMPC) 

(and hybrid protocols), differential privacy (DP), and secure enclaves (SE/TEEs). We 

also position federated learning (FL) as an orchestration paradigm that composes these 

techniques at scale. We systematically analyze their efficacy, privacy, and efficiency 

trade-offs, and map common attack vectors—such as reconstruction, inversion, 

membership inference, poisoning, and hardware-level side channels—to 

representative defenses. Bibliometric analysis using VOSviewer further highlights the 

thematic structure of the field, with strong clusters around cryptography, differential 

privacy, and system-level optimization. Our findings reveal that no single paradigm 

suffices in practice: while HE and SMPC provide strong confidentiality, they incur high 

costs; DP enables formal guarantees at the expense of accuracy; and FL reduces raw-

data exposure but introduces novel vulnerabilities. We conclude that hybrid, layered 

strategies combining DP, cryptography, and robust aggregation are the most promising 

path toward scalable, trustworthy PPDL for real-world deployment. 

Keywords: Privacy-preserving deep learning, Homomorphic encryption, Secure 

multi-party computation, Differential privacy, Federated learning, Adversarial attacks, 

Bibliometric analysis. 

INTRODUCTION 

The massive collection of data in recent years has raised significant challenges for privacy preservation. On the one 

hand, privacy is increasingly recognized as a fundamental right of end users and customers; on the other hand, it 

poses a constraint on the utilization of data for analytics and artificial intelligence (AI). This tension is particularly 

acute in machine learning (ML) and deep learning (DL), which require large volumes of data for training. Protecting 

this data from leakage or misuse has become a central concern. In parallel, the computational and communication 

costs of training large-scale models have surged, further complicating the design of privacy-preserving systems. Users 

fear that sensitive information could be exposed, while companies are concerned about protecting the confidentiality 

of their proprietary DL models. If compromised, adversaries may impersonate customers or reverse-engineer model 

behaviors, undermining trust. Classical privacy-preserving approaches have emerged to mitigate these risks, 

including anonymization, cryptographic methods, and differential privacy (DP). 

To contextualize privacy-preserving deep learning (PPDL), it is essential to first map out the types of attacks that 

exploit DL models and data. Notable threats include re-identification, reconstruction, model inversion, and 

membership inference [1]. A clear understanding of these attack vectors enables systematic evaluation of PPDL 
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techniques, guides the management of data leakage risks, and informs the design of mechanisms that safeguard data, 

models, and results simultaneously. 

More recently, the evolution of PPDL has shifted toward distributed and generative paradigms. Federated learning 

(FL) enables collaborative model training without direct data sharing, but introduces novel vulnerabilities such as 

model poisoning and gradient leakage [2]. At the same time, large language models (LLMs) and other generative 

architectures pose new privacy risks, notably unintended memorization of training data and inference-based 

extraction attacks [3]. Addressing these challenges requires integrating privacy-preserving techniques into both 

distributed training frameworks and modern generative models. 

Article Outline. The remainder of this article is organized as follows   

Section II introduces and classifies traditional privacy-preserving techniques, presenting a taxonomy and a 

comparative view of different neural network architectures.  Section III reviews the main classes of attacks that 

threaten privacy in ML/DL, highlighting their targets and required access assumptions. Section IV details the 

methodology adopted for this survey, including research questions, analysis attributes, and evaluation criteria; it also 

incorporates a bibliometric visualization generated with VOSviewer. Section V presents the survey results, structured 

around the three global metrics: efficacy, privacy, and efficiency.  Section VI discusses the most influential works, 

compares their strengths and weaknesses, and provides answers to the research questions. Finally, Section VII 

concludes by summarizing the key findings and outlining promising directions for future research. 

PRIVACY-PRESERVING TECHNIQUES 

We classify classical privacy-preserving methods into four categories Figure 1: group-based anonymity, 

cryptographic techniques (e.g., HE, SMPC), differential privacy (DP), and secure enclaves (SE/TEEs). Although 

homomorphic encryption [4], functional encryption (proposed by [5], formalized by [6]), and secure multi-party 

computation techniques make it possible to perform computations on encrypted data without revealing the original 

plaintext, we need to preserve the confidentiality of sensitive personal data, such as medical and health data. The first 

step in preserving this confidentiality is to use data anonymization techniques to mask this sensitive personal data. 

 
Figure 1. taxonomy of classical pp methods 

Both FE and HE enable computation over encrypted inputs, but they differ in what the evaluator and the decryptor 

learn. In functional encryption (FE), a holder of a function-specific secret key 𝑠𝑘𝑓 can decrypt a ciphertext 𝑐𝑡 =

𝐸𝑛𝑐(𝑚) to obtain the plaintext value 𝑓(𝑚)—and nothing else about m. In homomorphic encryption (HE), the 

evaluator transforms 𝐸𝑛𝑐(𝑚)) into 𝐸𝑛𝑐(𝑓(𝑚)) using public evaluation keys; only the data owner with the decryption 

key can later recover 𝑓(𝑚). FE typically requires a trusted authority to issue function keys (one per authorized 

function), whereas HE does not require such a function-key issuer for evaluation. 

Secure Multi-party Computation is a cryptographic protocol that distributes computing among several parties 

without allowing any of them to access the data of others. In 1986, [7] introduced two-party secure computing and 

the Garbled Circuit (GC) which requires a constant number of communication rounds. Compared to HE and FE 
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schemes, in the Secure-MPC, the parties jointly calculate a function on their inputs using a protocol, instead of a 

single party. Information concerning the parties' confidentiality shall not be exposed throughout the process. 

Differential privacy is a mathematical framework [8] proposed by [9] as a strong standard for ensuring data privacy. 

Sometimes, details of this data are stored by AI models when they are trained and they may "leak" them later. DP 

measures this leakage and reduces the possibility of it happening by adding noise to data. Extensions include 

federated DP, where noise is added in distributed settings to enhance scalability [10]. 

Secure enclaves proposed by [11] (also called trusted execution environments, TEEs), refer to a computing 

environment that isolates code and data from the operating system. They use hardware isolation or isolate an entire 

virtual machine by placing the hypervisor in the Trusted Computing Base (TCB). 

A- Deep Learning for Privacy-Preserving 

After learning about the traditional approach, we will understand how its evolution leads to a new method called 

privacy-preserving deep learning. It combines the traditional approach with the emerging field of deep learning. The 

deep learning prediction algorithm, also known as a model, is designed as a layered architecture with an input layer 

and an output layer. There may be one or more hidden layers between the input and output layers; the more hidden 

layers there are, the more accurate the DL model is. However, one should beware of the problem of overfitting; to 

learn so much that we cannot generalize. 

Different neural architectures are commonly applied to PPDL tasks. Table 1 compares representative deep neural 

networks (DNN) [12], convolutional neural networks (CNN), recurrent neural networks (RNN), generative 

adversarial networks (GAN), and the more recent Transformers and Large Language Models (LLMs), highlighting 

their typical data domains and structural characteristics. These architectures have been widely adopted for privacy-

preserving applications such as medical imaging, biometric authentication, language modeling, and multimodal 

tasks. 

It is also worth noting that some studies adopt a privacy-aware rather than formally privacy-preserving approach. 

For instance, Benyamina and Slama [13] highlight the role of feature selection in limiting the exposure of sensitive 

attributes. By selecting only the most informative features, their model achieved 85.76% accuracy on the UCI Adult 

dataset while reducing the risk of revealing private information such as gender or race. However, such heuristic 

strategies cannot replace formal PPDL guarantees, as they do not provide protection against reconstruction or 

inference attacks. 

TABLE 1. COMPARATIVE TABLE OF DIFFERENT NEURAL NETWORKS 

 DNN CNN RNN GAN LLMS 

Type of data 
Tabular 

Textual 

Image 

Video 

Sequential (time, 

text, audio) 

Image 

Video 

Audio 

Code 

Vision 

Speach 

Parameters 

sharing 
No Yes Yes Yes Yes 

Fixed length data Yes Yes No Yes Flexible 

Recurrent 

connections 
No No Yes No no 

Spatial 

relationships 
No Yes 

Limited 

Short-term 
Yes yes 

 

PRIVACY ISSUES IN MACHINE LEARNING 

We first outline the main categories of attacks that threaten the privacy of personal or sensitive data in ML/DL 

systems, and the vulnerability points where they occur.  

Conceptually, three components are involved: (i) the raw data holder, which provides inputs; (ii) the 
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computation part, which executes the ML/DL tasks; and (iii) the result part, which outputs predictions or stores 

trained models. If these three parts operate as a single unit, confidentiality is implicitly preserved. However, once 

separated, multiple attack vectors emerge. 

TABLE 2. EXISTING THREATS 

Type of Threats Limitations Access 

Reconstruction Attacks 
Do not use ML models that store explicit feature vectors (e.g., 

SVM, kNN). 
White-box 

Model Inversion Attacks 
Restrict outputs to black-box access; 

Round confidence values or release only predicted lables. 

White-box 

Black-box 

Membership Inference 

Attacks 

Limit outputs to class lables; 

DP can mitigate the attack. 
Black-box 

 

Previous works have highlighted three dominant classes of threats.  Reconstruction attacks [14-17] attempt to 

extract raw data from feature vectors or gradients, requiring access to internal representations. Model inversion 

attacks [15] infer representative inputs from model outputs, especially when confidence scores are exposed. 

Membership inference attacks [18, 19] determine whether a given record was included in the training set, 

typically through repeated model queries. 

Table 2 provides a concise taxonomy of these threats, their typical limitations, and the type of access (white-box or 

black-box) required by the adversary. This high-level view motivates the need for privacy-preserving deep learning 

(PPDL) techniques. A more detailed mapping of attacks to defenses, with representative citations, is provided later 

in Table 8 (Section 5.F). 

METHODOLOGY 

This section outlines the methodology adopted for this survey, describing how research on privacy-preserving deep 

learning (PPDL) was collected, analyzed, and synthesized. The main objective is to identify existing PPDL techniques 

that enable secure training of deep learning models on sensitive data. Protecting data alone is insufficient, since 

trained models may leak information, allowing adversaries to reconstruct similar or even identical records if the input 

distribution is known. Therefore, ensuring the confidentiality of both data and models is essential and 

complementary. 

This survey further aims to (i) characterize the most frequent privacy attacks, (ii) construct a taxonomy of PPDL 

techniques, and (iii) identify which approaches preserve privacy while maintaining utility. 

A- Research Questions 

To guide the review, we formulated the following research questions: 

• RQ.1 What attacks can compromise the privacy of private data in machine/deep learning? 

• RQ.2 Can we quantify and control the rate of data leakage? 

• RQ.3 Which privacy-preserving methods are most promising to reduce model and data vulnerability to 

attacks? 

• RQ.4 How have PPDL techniques evolved, particularly for generative models and distributed networks? 

B- Systematic Corpus Selection (PRISMA 2020) 

We followed the PRISMA 2020 [69] recommendations to identify, screen, and include studies on privacy-

preserving deep learning (PPDL). The aim was to gather peer-reviewed works using formal methods (HE, SMPC, DP, 

secure enclaves) and, in a second step, add recent papers (2023–2025) discovered through manual/citation searches. 

1. Sources and time windows.: For the main search (2013–2022) we queried four databases: 

SpringerLink, Wiley Online Library, ACM Digital Library, and ScienceDirect. In the PRISMA figure, the small 
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bucket “Others (IEEE/arXiv..)” is listed to reflect records obtained from commonly used scholarly registers 

(IEEE Xplore) and preprint registers (arXiv). For the update search (2023–2025), we used manual website 

checks and citation chaining to capture very recent, high-impact studies. 

2. Search terms. We used combinations of: 

(Deep OR Machine OR Federated OR Distributed) AND Learning AND (“Privacy preserving” OR Private OR 

Privacy OR “Data privacy”) in the advanced search interfaces of the previously listed databases. 

3. Screening and eligibility. Screening was performed in two consecutive phases: a preliminary metadata 

filter followed by full-text eligibility assessment. During the screening phase, duplicates were removed 

and basic quality filters were applied. Records were excluded if they lacked full-text access, were written in a 

language other than English, or—within the 2013–2022 tranche—had zero citations, ensuring the selection 

of peer-recognized and mature studies. Titles and abstracts were then screened to remove works outside the 

Computer Science domain or not directly addressing privacy-preserving deep learning (PPDL). During the 

eligibility phase, full-text articles were examined in detail against the defined inclusion and exclusion 

criteria.   

The inclusion criteria required that a paper: 

o Proposes or implements a privacy-preserving method “applied to deep learning”; 

o Evaluates the method on real or benchmark datasets; 

o Is published in a peer-reviewed journal or conference, or indexed in a reputable research register (IEEE 

Xplore, arXiv, SpringerLink, ACM, Wiley); 

o Clearly reports methodological and empirical contributions in English. 

Exclusion criteria eliminated: 

o Duplicated or out-of-scope works (outside 2013–2022 for the main search); 

o Articles not in Computer Science or not research-oriented (editorials, reviews, abstracts); 

o Non-English publications; 

o Survey and systematic literature review (SLR) papers; 

o Works where privacy was not the main objective; 

o Studies classified as privacy-preserving methods based on deep learning (PPMBDL), i.e., papers that use 

DL itself as a privacy mechanism (e.g., autoencoders, GAN-based anonymization) rather than applying 

privacy mechanisms “to” DL models. 

For the 2023–2025 update, the same eligibility rules were applied except for the citation requirement, since recent 

papers may not yet have accrued citations. Articles published prior to 2023 were excluded as out of range. 

4. Included studies. From the main search, 25 primary studies (2013–2022) met all criteria. The update 

search added 11 recent papers (2023–2025). The final corpus therefore contains 36 studies. 
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FIGURE 2. PRISMA 2020 FLOW DIAGRAM FOR THE STUDY SELECTION  

(MAIN SEARCH 2013–2022; UPDATE 2023–2025). 

5. Flow diagram. Figure 2 presents the PRISMA 2020 flow summarizing identification (databases/registers 

and other methods), screening, eligibility, and inclusion. 

 

C- Corpus Construction 

The bibliographic dataset was managed with Zotero. After filtering, the corpus comprises 36 papers: 15 journal 

articles, 16 conference papers, and 5 preprints. This distribution reflects both field maturity (journal publications) 

and ongoing dynamism (conference and preprint dissemination). Summary lists appear in Table 10 (Appendix~A). 

D- Bibliometric Keyword Co-occurrence Analysis 

In addition to manual review, we conducted a bibliometric keyword co-occurrence analysis to identify dominant 

concepts and thematic clusters within the selected corpus. To strengthen the methodological framework, we 

conducted a bibliometric analysis using VOSviewer. A dataset of 36 articles was exported from Zotero in CSV format, 

including title and abstract fields. Terms were extracted with full counting, setting a minimum occurrence threshold 

of 10. Out of 1179 candidate terms, 22 met the threshold and were retained for visualization. Each term was assigned 

a relevance score, and 100% of the qualified terms were included. 

Figure 3 illustrates the resulting keyword co-occurrence network. Node size reflects the frequency of a term, while 

edge thickness indicates co-occurrence strength. Three thematic clusters clearly emerge: (i) cryptographic 

approaches (red cluster: homomorphic encryption, FHE, protocol, server); (ii) deep learning and differential 

privacy (blue cluster: differential privacy, deep neural network, model, framework); and (iii) system-level 

performance and applications (green cluster: accuracy, training, work, user, security, party). At the center of 

the map, the terms data and privacy act as transversal concepts, strongly connected to all clusters, emphasizing 

their pivotal role in privacy-preserving deep learning research. 
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FIGURE 3. KEYWORD CO-OCCURRENCE NETWORK GENERATED WITH VOSVIEWER (36 BIBLIOGRAPHIC RECORDS, 

THRESHOLD = 10 OCCURRENCES, 22 TERMS RETAINED) 

E- Attributes for Analysis 

For each article, we extracted the following attributes:   

Bibliographic attributes: reference, authors, title, year, type (journal, conference, preprint), and publication 

venue. 

Technical attributes: dataset used, neural network architecture, training or inference phase (and perturbation 

phase for DP methods), type of threats addressed (e.g., reconstruction, model inversion, membership inference), 

system access model (white-box or black-box), techniques employed (HE, DP, SE, MPC), and reported limitations. 

 

F- Metrics for Evaluation 

The selected works were assessed across three dimensions: efficacy, privacy, and efficiency.   

4. Efficacy: This dimension evaluates model performance, typically through:   

a. Accuracy: classification accuracy of the proposed methods. 

b. Latency: delay introduced by computation and communication overhead.  

5. Privacy 

a. Data: raw data remain inaccessible to servers or third parties.   

b. Model: except for prediction results, no party learns details of the trained model. 

c. Result: neither server nor client can infer information from prediction outputs. 

6. Efficiency: is assessed through computational complexity, training and inference time, and communication 

cost. 

This methodological framework establishes the foundation for the subsequent analysis. In the next section, we apply 

these attributes and metrics to construct a taxonomy of privacy-preserving deep learning techniques, evaluate their 

efficacy, and compare their strengths and limitations. 

RESULTS 

We classify PPDL approaches into four main technique families—HE, SMPC/hybrid, DP, and SE/TEEs—and evaluate 

how FL composes these techniques at scale under practical constraints.  
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A- PPDL based on Homomorphic Encryption 

CryptoNets [20] is one of the first works on HE inference, researchers present a method to convert a trained neural 

network into an encrypted network, called CryptoNet by combining cryptography and deep learning.  

This allows clients to send their data in an encrypted format using HE and receive the encrypted result as well, without 

the data being decrypted during the transfer between the client and the cloud server. Afterward, the clients can use 

their private key (which the cloud server has generated for each client) to decrypt the prediction result. This 

guarantees the confidentiality of the client and the confidentiality of the result. The performance evaluations on 

MNIST datasets reach an accuracy of 98.95% and can make more than 51,000 predictions per hour on a single PC. 

However, the weakness of Cryptonets is the performance limitation due to their complexity. The multilevel HE does 

not work well on deeper NNs that have a large number of non-linear layers. In this case, the accuracy decreases, and 

the error rate increases. 

To improve the performance of [20], which is only good when the number of layers is restricted, the [21] researchers 

combined it with a polynomial approximation for the activation function and the batch normalization layer proposed 

by [22]. As a result, the structure of the regular NN will change. For the learning phase; the addition of a Batch 

normalization layer between the Pooling layer and the activation layer in order to avoid a strong degradation of the 

accuracy. The Max-pooling layer is not a linear function, it will be replaced by an Average-pooling layer which is more 

favorable to the FHE and has a low impact on the accuracy. Before classification; the ReLu function is replaced by a 

low-degree polynomial approximation as it gives a small error, which is very suitable to be used in this model. A batch 

normalization layer is added before each ReLu layer, it helps to restrict the input of each activation layer, which helps 

to obtain a stable distribution to avoid the strong degradation of accuracy. Performance evaluations on MNIST 

datasets, reach an accuracy of 99.30%, which significantly improves CryptoNets. However, they do not show any 

results on the latency of their method. 

In order to overcome the biggest weakness of FHE which requires considerable time to evaluate deep learning models 

on encrypted data. The researchers [23] propose TAPAS; which uses binarised neural networks to speed up their 

HE inference method. The TAPAS architecture is composed of a fully connected layer, a convolution layer, and a 

batch normalization layer with sparse encrypted computation to reduce computation time. The key idea is the co-

contribution of a new algorithm to accelerate binary computations in binary neural networks. Thus, support for 

parallel computing. They claim that, unlike [20] and [21] which only protect the data, their proposed scheme can also 

protect the confidentiality of the model. (Indeed, clients should generate parameters for the encryption based on the 

structure of f, so we are able to make inferences about the model). Nevertheless, the only limitation is that it only 

supports binary neural networks.  

Faster CryptoNets [24], speeds up homomorphic evaluation in [20] by pruning the network parameters so that 

many multiplication operations can be omitted. The main weakness of Faster Cryptonets is that it is vulnerable to 

membership inference attacks, and model stealing [seen in Section III]. 

[25] propose CryptoNN; which is a privacy-preserving method that uses functional encryption for arithmetic 

computation on encrypted data. The FE scheme protects data in the form of a feature vector inside matrices. In this 

way, the matrix computation for the formation of the NN can be performed in encrypted form. 

Orion [26] introduces a fully automated FHE framework for PyTorch models, enabling efficient private inference 

on complex networks with accuracy comparable to plaintext (e.g., 93.4% on ResNet-20 with CIFAR-10) and reduced 

latency (618s for ResNet-20). 

HE-LRM [27] applies FHE to large recommendation models, achieving 85% accuracy on the UCI Heart Disease 

dataset and inference latencies ranging from 24 to 488 seconds on UCI and Criteo datasets. 

Active ME! [28], Advances in activation functions for FHE, such as optimized polynomial approximations of Square 

and ReLU, have enabled up to 99.4% accuracy on LeNet-5 with MNIST and 89.8% on ResNet-20 with CIFAR-10, 

with latencies between 95 and 1697 seconds. Table 3 summarizes these methods alongside earlier HE-based 

approaches. 
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TABLE 3. COMPARISON OF DIFFERENT PPDL HE-BASED WORKS 

Work PP(HE) Network Dataset Phase 

CryptoNets [20] HE CNN MNIST Inference 

Chabanne [21] FHE CNN MNIST Training, Inference 

Face Match [29] FHE CNN LFW, IJB-A/B, CASIA Inference 

Tapas [23] FHE CNN 
Cancer, Diabtes, 

Faces, MNIST 
Inference 

Faster CryptoNets [24] HE CNN MNIST Inference 

CryptoNNS [25] FE CNN MNIST Training, Inference 

Orion [26] FHE 
CNN 

ResNet 
MNIST, CIFAR-10 Inference 

HE-LRM [27] FHE DLRM UCI Heart, Criteo Training, Inference 

Activate ME! [28] FHE CNN MNIST, CIFAR-10 Inference 

 

B- PPDL based on Homomorphic Encryption 

1. Secure-MPC Frameworks 

The Chameleon framework, proposed by [30], introduces a novel PPDL approach that integrates Secure-MPC with 

CNNs. Chameleon operates in two distinct phases: an online phase employing protocols such as Additive Secret 

Sharing (ASS) and Garbled Yao Circuits (GC) to enable joint computations between two parties without revealing 

their inputs, and an offline phase utilizing a semi-honest third party (STP) to precompute Oblivious Transfers (OTs) 

and multiplication triples. Performance evaluations on the MNIST dataset demonstrate that Chameleon processes 

handwritten digit images 133 times faster than Microsoft’s [20], highlighting its efficiency in secure inference. 

However, its reliance on a semi-honest third party introduces a trust assumption that could be a vulnerability if the 

STP is compromised, and the framework’s efficiency is limited to inference, with no significant support for training 

phases. 

Similarly, SecureNN [31] advances Secure-MPC by developing a system integrated with CNNs, with a notable 

contribution being a new protocol for Boolean operations (e.g., ReLU, Maxpool, and their derivatives). This protocol 

reduces communication overhead compared to the Yao GC used in Chameleon. Evaluations on the MNIST dataset 

reveal that SecureNN achieves a prediction accuracy exceeding 99% during training, with execution times 2-4 times 

faster than other MPC-based PPDL methods, surpassing frameworks like [30] and [32]. Despite these gains, 

SecureNN’s three-party computation model assumes semi-honest behavior, and its performance may degrade with 

malicious adversaries, while the lack of GPU support limits scalability for larger datasets. 

Recent research has focused on enhancing Secure-MPC efficiency. Efficient Shamir-MPC [33] utilizes Shamir 

secret sharing and fixed-point arithmetic to accelerate convolution and Softmax computations, achieving over 50% 

performance gains in simulations with three or more parties. However, its simulation-based evaluation lacks real-

world dataset validation, and the fixed-point arithmetic may introduce precision errors in complex models. Low-

Latency MPC [34] reduces communication rounds and optimizes non-linear functions, yielding 10-20% latency 

improvements on MNIST and CIFAR datasets. Yet, its optimization is tailored to specific non-linear functions, 

potentially limiting adaptability to diverse network architectures, and it assumes a semi-honest threat model that 

may not hold against malicious actors. 
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2. Hybrid PPDL Approaches 

Hybrid PPDL methods combine multiple privacy-preserving techniques to enhance performance and security.  

Gazelle [32] exemplifies this by merging HE with traditional two-party computation (GC) techniques for secure 

inference. To optimize HE speed, Gazelle employs Single Instruction Multiple Data (SIMD) for ciphertext addition 

and multiplication, alongside Approximate Homomorphic Encryption (AHE) and ASS to accelerate convolution and 

matrix multiplication. The framework features a CNN architecture with two convolutional layers, two ReLU 

activation layers, a pooling layer, and a fully connected layer. Performance on MNIST and CIFAR-10 datasets 

outperforms [20] in execution time. However, Gazelle’s limitation to two-party schemes and restrictions on client 

classification requests to mitigate link attacks pose challenges. Gazelle has spent a lot of time optimizing each of its 

components. However, there is still an overhead compared to native execution, among the reasons; the libraries used 

do not support GPU acceleration so it is much slower than linear layer evaluation techniques. 

Building on Gazelle, Delphi [35] addresses communication and latency issues critical for latency-sensitive 

applications. The Delphi planner inputs all ReLU activations and a precision threshold t, outputting a hybrid CNN 

that integrates ReLU and quadratic activation functions while maintaining precision above t. Evaluations on CIFAR-

10 and CIFAR-100 datasets show Delphi outperforming Gazelle by 9 to 22 times in efficiency, depending on 

parameters such as transferred data and execution time, through a synthesis of system, cryptographic, and machine 

learning techniques. Nevertheless, Delphi’s reliance on a two-party HE/MPC hybrid assumes semi-honest 

participants, and its performance may suffer with increased network latency or when handling deeper networks due 

to computational complexity. 

CrypTFlow [36] adopts a hybrid approach by combining Secure Enclaves with secret sharing for DNNs and CNNs, 

targeting the MNIST, CIFAR, and ImageNet datasets. Despite its innovative design, CrypTFlow’s inability to support 

GPU processing results in significant computational overhead during secure learning, and its dependence on SE 

introduces risks if the trusted execution environment is compromised, limiting its robustness against advanced 

attacks. 

3. Spectrum of Party-Computation Settings 

As outlined in Table 4, Secure-MPC and hybrid PPDL frameworks span a rich spectrum of party-computation (PC) 

settings, threat models, and protocol guarantees.  

Two-party computation (2PC). Protocols such as Delphi and Gazelle rely on hybrid HE/MPC constructions (HE 

+ GC + ASS) for private inference. They operate under a “two-party client–server model” without a semi-honest third 

party (STP), and assume semi-honest adversaries (MAL = ☓). These designs are lightweight but limited to inference 

and vulnerable if one party deviates from the protocol.  Three-party computation (3PC). Frameworks like 

Chameleon, SecureNN, and CryptFlow incorporate a semi-honest third party (STP = √) that helps generate 

correlated randomness or assist with offline precomputation. This setting balances efficiency and security: operations 

such as Beaver triples, ASS, and Boolean gates are accelerated, while data, model, and intermediate results remain 

hidden. However, these protocols generally assume “semi-honest adversaries” (MAL = ☓). 3+ party Shamir-based 

protocols. The work of Efficient Shamir-MPC extends beyond 3PC by leveraging Shamir secret sharing (Shamir-

SS). STP is required (√), and the scheme remains secure under the semi-honest assumption. This setup demonstrates 

scalability and robustness in simulations but has not yet been validated under malicious adversaries. Four-party 

computation (4PC). Protocols such as FLASH and SWIFT distribute the computation across four parties, 

incorporating both Additive and Robust Secret Sharing (ASS/RSS). These are the only surveyed frameworks explicitly 

securing against malicious adversaries, through Guaranteed Output Delivery (GOD). GOD ensures that even if one 

or more parties deviate, all honest parties still receive the correct output. This robustness comes at the cost of higher 

online communication but significantly strengthens security guarantees.   

This progression from 2PC to 4PC illustrates a clear trade-off: increasing the number of parties and adversarial 

protections improves security and robustness (especially under malicious models) but imposes higher computational 

and communication costs. 
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TABLE 4. COMPARISON OF DIFFERENT PPDL SECURE MPC-BASED AND HYBRID WORKS 

Work PC 
Threat model 

Tech Network Dataset Phase 
STP MAL 

Gazelle [32] 

2 

☓ ☓ 

HE 

GC 

ASS 

CNN 
MNIST 

CIFAR-10 
Inference 

DELPHI [35] ☓ ☓ 

HE 

GC 

ASS 

CNN CIFAR-10,100 Inference 

Low-Latency 

MPC [34] 
☓ ☓ 

ASS 

OT 

Beaver triples 

DNN 
MNIST 

CIFAR 

Training 

Inference 

Chameleon 

[30] 

3 

√ ☓ 
GC 

ASS 

CNN 

SVM 

MNIST 

Credit Approval 
Inference 

SecureNN 

[31] 
√ ☓ ASS CNN MNIST 

Training 

Inference 

CryptFlow 

[36] 
√ ☓ 

SE 

ASS 

DNN 

CNN 

MNIST 

CIFAR 

Image-Net 

Inference 

Shamir-MPC [33] 3+ √ ☓ Shamir-SS CNN Simulation Inference 

FLASH [37] 4 ☓ GOD 
ASS 

RSS 

DNN 

BNN 
MNIST 

Training 

Inference 

SWIFT [38] 3+ ☓ GOD 
ASS 

RSS 
CNN 

MNIST 

CIFAR-10 

Training 

Inference 

C- PPDL based on Secure Enclaves 

Chiron, [39] provides a black-box system for PPDL. It uses SGX enclaves and the Ryoan sandbox. Chiron uses a 

secure enclave environment where model parameters are exchanged via the server. It runs the untrusted code to 

update the model and implements protection using sandboxes so that the code does not leak data outside the enclave.  

TABLE 5. COMPARISON OF DIFFERENT PPDL SE-BASED WORKS 

Work Tech Network Dataset Phase 

CHIRON [39] 
SGX 

SandBox Ryoan 
DNN 

CIFAR 

ImageNet 
Training 

SLALOM [40] 
SGX 

TEE 
DNN ImageNet Inference 

 

SLALOM, [40] uses Trusted Execution Environments (TEE), which isolate the computational process from 

untrusted software. The DNN computation is divided into trusted and untrusted parts. SLALOM runs DNN in the 

Intel SGX enclave which delegates the computational process to an untrusted GPU. The weakness of this approach is 

that it limits the operation of the CPU since the TEE does not allow access to the GPU. A vulnerability through a side 

channel attack can occur, as shown by [41]. 

D- PPDL based on Differential Privacy 
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This section presents recent research based on DP to protect user privacy in DL. We classify this section according 

to the level at which DP can be applied, as shown in Figure 4 below. 

 

FIGURE 4. THE DESIGN PRINCIPLES OF DIFFERENTIAL PRIVATE MACHINE LEARNING 

 

1. Input Perturbation 

These approaches add noise to the original dataset to produce a new privacy-preserving (PP) dataset. 

Researchers [42] proposed ACIES, a differential privacy-preserving classification system for edge computing, 

utilizing models such as Support Vector Machines (SVM), k-Nearest Neighbors (kNN), and Sparse Representation 

Classification (SRC). Unlike native approaches that add noise to raw data, ACIES injects Laplace noise during feature 

extraction to indirectly control information leakage from training data, with these feature vectors used for training 

and evaluation. Performance evaluation on diverse datasets including YaleB, CSI, MNIST, and HAR demonstrates 

resilience against reconstruction attacks, with a maximum accuracy impact of 5%. 

2. Perturbation of Model Parameters 

This subsection presents recent research addressing confidentiality in DL by applying DP during training to produce 

privacy-preserving models. 

1. Perturbation of the objective:  

The perturbation of the objective function is explored for machine learning tasks with convex objective functions. To 

identify the intensity of the added noise; calculating the sensitivity of the objective function is crucial due to the non-

convexity of typical DL objective functions. A solution proposed by [43] involves replacing the non-convex function 

with an approximate convex polynomial function, followed by objective function perturbation. However, this 

approximation limits the power and applicability of traditional DNNs. 

The Adaptive Laplace Mechanism (AdLM) [43] combines DP with relevance-guided noise placement. Layer-wise 

Relevance Propagation (LRP) is used only to estimate feature relevance (utility signal); it is not a privacy mechanism. 

First, the average relevance scores are privatized by adding Laplace noise to obtain DP relevance estimates. Then, 

AdLM injects adaptive Laplace noise into each layer’s affine transformation, assigning larger noise to less-relevant 

features. A normalization layer is inserted before non-linearities to control sensitivity, and the output layer is 

privatized via a polynomial loss approximation with noisy coefficients. Under comparable privacy budgets, AdLM 

reports better utility than [43] on MNIST and CIFAR-10. The privacy guarantee in AdLM comes exclusively from the 

calibrated Laplace mechanisms; LRP serves to steer the noise, not to provide privacy by itself. 

[45] adopted similar techniques to [43], enhancing accuracy by integrating DP with LRP. They perturb the target 

value at each batch via the loss function, ensuring each data access point is protected to yield a reliable privacy-

preserving model. The loss function is approximated using the Maclaurin series instead of the Taylor series used by 

[43]. Performance evaluations on the WDBC dataset, with dense noise addition, achieved accuracy close to the 

unprotected version. 
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2. Gradient Perturbation: Gradient perturbation is a widely adopted approach for private learning 

in deep learning. 

[44] proposed a Differential Private Stochastic Gradient Descent (DP-SGD). During training, at each SGD step, 

gradients of a random subset of examples are computed, with the L2 norm of each gradient clipped. These gradients 

are averaged, and Gaussian noise is added. The model is then output, and the overall privacy loss is tracked using a 

Moments Accountant (MA), which accumulates costs for each training data access and determines the optimal δ 

leakage parameter for a given privacy budget. Performance evaluation on MNIST and CIFAR-10 for image 

classification shows accuracies of 97% on MNIST (1.3% below the non-private baseline) and a larger 7% gap on 

CIFAR-10. 

In [46], researchers introduced f-DP, a recent privacy definition, for training private DL models using SGD or ADAM. 

They proposed Differential Gaussian Privacy (GDP), analyzing privacy budget depletion in DNN training with the 

Adam optimizer without relying on the Moments Accountant in the (ϵ, δ)-DP framework. Performance results across 

MNIST (image classification), IMDb (text classification), and MovieLens (recommender systems) indicate that 

trained networks are private under f-DP (e.g., 1.13-GDP) but not under (ϵ, δ)-DP due to conservative privacy bounds. 

To address the high noise costs of traditional DP-SGD, [47] introduce Spectral-DP, a novel framework that 

performs gradient perturbation in the spectral (frequency) domain. Instead of directly adding Gaussian noise to raw 

gradients, Spectral-DP applies a spectral transformation and filtering process that suppresses high-variance 

components before perturbation, thereby reducing sensitivity and minimizing the amount of noise required to 

achieve rigorous (ϵ, δ)-DP guarantees. This design naturally aligns with convolutional operations in CNNs and further 

leverages block-circulant compression to enable efficient spectral processing in fully connected layers. Empirical 

evaluations on benchmark datasets such as CIFAR-10 and ImageNet demonstrate that Spectral-DP consistently 

achieves superior privacy–utility trade-offs compared to standard DP-SGD, yielding accuracy improvements of 3–

5% in both training from scratch and transfer learning scenarios. 

[48] propose a layer-level adaptive gradient perturbation mechanism to enhance the privacy-utility balance 

in differentially private deep learning. The method dynamically allocates privacy budgets across layers during 

training: starting with equal budgets and progressively adjusting them based on iteration progress, assigning less 

noise (increased budget) to input-proximal layers and more noise to output-proximal layers to counter membership 

inference attacks. By perturbing only selected hidden layers and leveraging DP's post-processing immunity, it 

maintains strong privacy guarantees. Experiments on five well-known datasets reveal higher accuracy and greater 

resilience against attacks compared to uniform noise baselines at equivalent privacy levels. 

3. Output Perturbation 

Output perturbation involves running a non-private learning algorithm and adding noise to the result. This approach 

can degrade the model’s utility, particularly in deep learning, where high-dimensional outputs are sensitive to noise. 

To mitigate this, techniques like noisy aggregation of predictions are employed. One prominent example is the Private 

Aggregation of Teacher Ensembles PATE framework, introduced by [49], which leverages a teacher-student 

paradigm to preserve privacy. In PATE, multiple teacher models are trained on private data and aggregate their 

predictions into a single output, with Laplace noise added to the vote counts to ensure (ϵ, δ)-DP. The student model, 

trained on publicly labeled data annotated by these noisy teacher outputs using a differential privacy method (e.g., 

noisy voting in a GAN), cannot access the original data or teacher parameters, thus preventing adversaries from 

extracting confidential information. Performance evaluations on MNIST and SVHN datasets indicate reduced 

accuracy for complex or diverse data, attributed to the added noise, though it remains effective for simpler tasks.  

Building on PATE, [50] proposes a solution for information retrieval (IR) applications, such as document re-

classification, achieving acceptable performance with low privacy risk. This teacher-student approach also addresses 

the challenge of limited large datasets in IR by leveraging unlabelled public data, highlighting mimic learning’s 

broader utility in privacy-preserving deep learning. Table 6 summarizes these methods alongside earlier DP-based 

approaches. 
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TABLE 6. COMPARISON OF DIFFERENT PPDL DP-BASED WORKS 

Work Tech Network Dataset Phase 

Acies [42] 

ϵ-DP, SVD 

Laplace mechanism 

kNN, SVM, SRC 

/ 

YaleB 

HAR 

MNIST 

CSI 

Inference, 

Feature 

extraction 

perturbation 

AdLM [43] 

ϵ-DP, LRP 

Laplace mechanism 

Taylor expansion 

Polynomial app. 

DNN 
MNIST 

CIFAR-10 

Model 

parameters 

perturbation 

Adesu. [45] 

ϵ-DP, LRP 

Laplace mechanism 

Maclaurin series 

Polynomial app. 

DNN WDBC 
Label 

perturbation 

DPSGD [44] 

(ϵ, δ)-DP 

SGD 

Gaussian noise 

Moment account. 

DNN 
MNIST 

CIFAR-10 

Training, 

Model 

parameters 

perturbation 

GDP [46] 

f-DP 

SGD/Adam 

Gaussian noise 

DNN 

LSTM 

RNN 

MNIST 

IMDb 

Movie-Lens 

Training, 

Model 

parameters 

perturbation 

S-DP [47] 

(ϵ, δ)-DP 

Spectral perturbation 

Gaussian noise 

CNN 

DNN 
Benchmark 

Training, 

Model 

parameters 

perturbation 

Layer. [48] 

(ϵ, δ)-DP 

Adaptive gradient 

Gaussian noise 

DNN 
MNIST 

CIFAR-100 

Training, 

Model 

parameters 

perturbation 

PATE [49] 

(ϵ, δ)-DP 

Laplace mechanism 

SSL 

Moment Account. 

DNN 

GAN 

MNIST 

SVHN 

Training, 

Label/Output 

perturbation 

Dahgh. [50] 
DP 

Laplace mechanism 
DNN IR 

Training, 

Label/Output 

perturbation 

 

E- PPDL via Federated Learning 

Federated Learning (FL) enables decentralized training across multiple data holders (clients) without 

centralizing raw data. In its canonical cross-device variant, a coordinator broadcasts the global model parameters θt 

at round 𝒕; each client 𝒌 performs local updates on its private dataset Dk starting from θt, obtaining an updated local 

model θt+1
(𝒌)

. The server then aggregates these updates typically via FedAvg rule: 

                                                        𝜃𝑡+1 ← ∑
𝑛𝑘

𝛴𝑗𝑛𝑗
𝜃𝑡+1

(𝑘)

𝑘

𝑘=1

 , 𝑛𝑘 = |Dk|.            (𝟏) 
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FL reduces raw-data exposure but does not guarantee privacy by itself: model updates and gradients may leak 

information about local records and even enable reconstruction or membership inference (see Section II). 

1. Threat Model in FL 

We consider three adversarial settings: (i) an “honest-but-curious server” attempting to infer client data from 

per-round updates, (ii) “malicious clients” performing poisoning/backdoor attacks (which can also amplify privacy 

leakage of benign clients), and (iii) “system-level adversaries” exploiting side-channels, traffic-analysis, or TEE 

leakages when hardware protection is used. 

Compared to centralized training, FL exposes additional surfaces: update/gradient inversion, property inference, 

round-wise membership inference, client deanonymization, and colluding-client attacks. 

2. Core Privacy Techniques for FL 

a) Secure Aggregation (SA). Cryptographic SA lets the server learn only the sum of client updates (hiding 

each θt
(𝑘)

, typically through pairwise masks or additive secret sharing [51]. SA is orthogonal to DP and 

reduces the server’s visibility, but does not by itself bound leakage from the aggregate. 

 

b) Differential Privacy for FL. Two deployment styles are prevalent. 

Central DP-FL clips each client update to 𝓵2 − 𝒏𝒐𝒓𝒎 C and adds Gaussian noise at the server after 

aggregation: 

𝑔̃𝑡 =
1

K
∑ clip(g

t
(k),C)+N(0,σ2C2I).                (𝟐)

K

k=1

 

with privacy accounting over rounds (e.g., RDP/GDP accountants) [46, 52, 53]. 

Local DP-FL adds noise client-side before SA, strengthening per-client protection against a curious 

server at the cost of larger utility degradation [54]. “DP-FedLoRA" Recent work adapts [55]. 

 

c) Hybrid FL with HE/MPC/TEE. Hybrid FL frameworks increasingly combine advanced cryptographic 

techniques to enhance privacy and efficiency. Multi-key homomorphic encryption (HE) allows each 

participant to encrypt updates with their own key, enabling secure aggregation without exposing 

individual data, as demonstrated in recent efficient federated learning schemes [56-58]. 

Complementarily, [59] introduce a pure MPC-based framework using secret sharing techniques (e.g., 

Sharemind) to achieve secure aggregation, enhancing robustness against inference attacks in distributed 

settings. Trusted Execution Environments (TEEs) are also used to offload sensitive operations, improving 

computational efficiency while maintaining strong security guarantees [56]. Additionally, Jin et al. [60] 

present an efficient HE-based FL system (FedML-HE) that reduces computational overhead for deep 

networks, achieving up to a 10-fold reduction in latency for ResNet-50 training by optimizing HE schemes 

such as CKKS, making it scalable for cross-silo FL deployments with minimal accuracy loss (e.g., 94.1% 

on ImageNet). Similarly, Kalapaaking et al. [61] propose a blockchain-enhanced TEE framework for 

secure aggregation in IoT contexts, leveraging Intel SGX to execute tamper-proof updates and 

Hyperledger Fabric for decentralized auditability, which mitigates model poisoning attacks with a 

reported 98% success rate in detecting malicious updates across distributed IoT nodes. 

TABLE 7. COMPARISON OF DIFFERENT PPDL VIA FL-BASED WORKS 

Work PP(FL) Network Dataset Phase 

DP-FedAvg [52] CDP LSTM 
Mobile 

keyboard data 

Training 

Aggregation 

DP-Fed LoRA [55] LDP Transformer Alpaca-GPT-4 Training 
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LLM/LoRA Fine-tuning 

SecureAgg [51] SA/MPC DNN Large scale Aggregation 

FedML-HE [60] HE 
ResNet-50 

BERT 

Wikitext 

CIFAR-100 

Training 

Aggregation 

MPC-FL [59] MPC 
CNN 

LSTM 

MNIST 

CIFAR-10 

CASA 

Training 

HE-Key [58] HE CNN UP-FALL 
Training 

Aggregation 

TEE-FL [61] TEE CNN 
MNIST 

HAR(IoT) 

Training 

Aggregation 

 

3. FL-Specific Attacks and Defenses 

Gradient/Update Inversion. Recent studies show that exposing model updates in FL still leaks sensitive 

information. [62] analyze the feasibility of gradient inversion attacks under different modes, showing that models 

using fixed batch-normalization statistics in inference mode are significantly more vulnerable than during training. 

[63] further demonstrate that in FL with text data, discrete optimization over embedding and fully-connected layer 

gradients (via their FET method) can recover private text sequences. Defenses include stronger clipping, central DP 

noise, avoiding inference-mode normalization, and limiting the number of local steps [64]. 

Membership/Property Inference. remains a persistent threat in FL. [65] propose “FedMIA”, which leverages 

the “all-for-one” principle by combining updates from non-target clients across multiple rounds, substantially 

improving attack performance even under defenses. A recent survey by Bai et al. [66] categorizes MIAs and defenses, 

highlighting that larger client datasets, higher model complexity, careful privacy accounting, and differential privacy 

mechanisms help reduce attack success. 

Poisoning/Backdoors. Malicious clients may still steer the global model toward targeted misbehavior. Defenses 

include Byzantine-robust aggregation rules such as Krum, Trimmed Mean, and Median [67], anomaly detection on 

updates, and combining differential privacy with gradient clipping to bound adversarial influence. 

Deanonymization/Traffic Analysis. Side channels such as update timing, size, and client participation patterns 

can deanonymize users or link updates to clients. Mitigations include fixed update sizes, randomized batching and 

padding, and secure aggregation protocols that hide individual client contributions. 

4. Positioning FL in the PPDL Taxonomy 

FL is an orchestration paradigm that leverages DP, HE/MPC, TEEs, and robust aggregation rather than replacing 

them. In our taxonomy, FL forms a top-level branch with sub-techniques (DP-FL, SA, HE-FL, MPC-FL, TEE-FL), 

and cross-references to cryptographic and DP Sections II, III. Practically, combining SA + central DP achieves a 

favorable privacy–utility–efficiency trade-off for many cross-device deployments, while HE/MPC/TEE variants 

address stronger adversaries or regulatory constraints. 

F- Attack-Defense Mapping 

The following mapping Table 8 summarizes representative attack classes against ML/DL systems and the principal 

defenses evaluated in the literature. For each attack, we list a characteristic attack vector (example papers) and the 

defensive families that have been proposed and empirically tested. This compact reference helps practitioners select 

targeted countermeasures and highlights gaps where defenses remain immature or impose high system costs. 
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Cryptographic approaches and TEEs provide strong guarantees against reconstruction and gradient-inversion 

attacks, but impose significant computational and communication overhead. DP remains the most versatile defense 

against membership and inversion threats, though at the expense of model utility—particularly in large-scale 

architectures where tighter accounting and per-layer perturbation are required. FL–specific vulnerabilities (e.g., 

poisoning, Sybil, free-rider) are most effectively countered through robust aggregation, anomaly detection, and 

access control, ideally combined with SA/DP for a balanced trade-off between privacy, robustness, and efficiency. 

TABLE 8. MAPPING OF PRIVACY ATTACKS IN ML/DL TO REPRESENTATIVE DEFENSE TECHNIQUES 

Attack Type Attack Vector / Example Representative Defenses 

Reconstruction 

Attacks 

Recover raw inputs from feature vectors 

or gradients [14, 16, 17] 

HE [20, 21], Secure-MPC protocols (GC, ASS) 

[30, 31], Hybrid HE+MPC [32, 35], TEE [36, 40]  

Model Inversion 

Attacks 

Infer representative inputs from model 

outputs or confidence scores [15, 62, 63] 

DP (DP-SGD, AdLM) [43, 44], output 

perturbation [50], restricting access to 

logits/confidences, HE/MPC inference 

Membership 

Inference Attacks 

Decide whether a record was in the 

training set [18, 19, 65] 

DP mechanisms (DP-SGD, GDP, PATE) [44, 46, 

49], federated DP (DP-FedAvg) [52], limiting 

model outputs (label-only), robust aggregation 

in FL [67] 

Gradient Leakage 

in FL 

Reconstruct client data from shared 

updates/gradients [62-64] 

SA [51], clipping + central DP noise [52, 53], 

local DP-FL [54], HE/MPC-FL [57, 59] 

Poisoning / 

Backdoor Attacks 

in FL 

Malicious clients inject corrupted 

updates or triggers [68] 

Byzantine-robust aggregation (Krum, Trimmed-

Mean, Median) [67], DP clipping, anomaly 

detection, TEE-based secure aggregation [61] 

Side-channel / 

Hardware Attacks 

Leakage from TEEs (e.g., SGX, TDX) or 

GPU memory [41] 

TEE hardening [40, 41], constant-time 

protocols, hybrid TEE+MPC for enclave 

robustness [36] 

Unintended 

Memorization 

(LLMs) 

LLMs regurgitate rare sensitive 

sequences verbatim [3] 

DP-SGD/GDP for transformers [3, 44, 46], 

dataset deduplication/redaction [3], secret 

filtering 

Extraction / 

Prompt Attacks 

(LLMs) 

Adversarial prompting to extract 

training snippets or inject instructions 

DP training [3], retrieval/content sanitization, 

tool-use constraints, policy-tuned decoding 

 

G- Metrics Evaluation 

In this subsection, we consolidate all surveyed works and score them against the three global criteria introduced in 

Section 4: efficacy, privacy, and efficiency. Rather than re-describing each method, we present a unified 

comparison Table 9 that surfaces the dominant trade-offs across approaches.  Broadly, HE methods (e.g., 

CryptoNets, Orion) preserve accuracy but incur high computational latency; SMPC and hybrid schemes (e.g., Gazelle, 

SecureNN, MPCFL) strengthen privacy at the cost of communication overhead; DP techniques (e.g., DP-SGD, 

Spectral-DP) offer tunable privacy–utility trade-offs with noticeable accuracy drops on complex datasets; and 

federated-learning variants integrate these primitives at scale to balance accuracy and deployment constraints. No 

single paradigm dominates all three axes, which motivates hybrid designs tailored to task, threat model, and system 

constraints. 
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Legend. “√” =used/reported; “☓” =not used/not reported. Privacy columns (Data/Model/ Result) indicate whether 

confidentiality is guaranteed by design (not merely assumed). Efficiency subcolumns report whether 

compute/communication cost and time metrics were empirically measured. 

TABLE 9. METRIC EVALUATION 

Work 

PPDL METHOD EFFICACY PRIVACY EFFICIENCY 

H

E 
SMPC DP SE FL 

Accuracy 

(%) 

Latency 

(ms) 

Dat

a 
Model 

Resul

t 

Computation/ 

Communicatio

n Cost 

Inference 

Time (s) 

Training 

Time (s) 

CryptoNets [20] √ ☓ ☓ ☓ ☓ √ √ √ ☓ √ ☓ √ ☓ 

Chabanne [21] √ ☓ ☓ ☓ ☓ √ ☓ √ ☓ √ √ ☓ ☓ 

Face Match [29] √ ☓ ☓ ☓ ☓ √ ☓ √ √ √ √ √ ☓ 

Tapas [23] √ ☓ ☓ ☓ ☓ √ ☓ √ √ √ √ √ ☓ 

F-CryptoNets 

[24] 
√ ☓ ☓ ☓ ☓ √ ☓ √ ☓ √ √ √ ☓ 

CryptoNNs [25] √ ☓ ☓ ☓ ☓ √ ☓ √ √ ☓ √ ☓ √ 

Orion [26] √ ☓ ☓ ☓ ☓ √ √ √ √ ☓ √ √ ☓ 

HE-LRM [27] √ ☓ ☓ ☓ ☓ √ √ √ √ √ √ ☓ √ 

Activate ME! [28] √ ☓ ☓ ☓ ☓ √ √ √ √ ☓ √ √ ☓ 

Chameleon [30] ☓ √ ☓ ☓ ☓ √ √ √ ☓ √ √ √ ☓ 

SecureNN [31] ☓ √ ☓ ☓ ☓ √ √ √ √ √ √ √ √ 

Flash [37] ☓ √ ☓ ☓ ☓ √ √ √ √ ☓ √ √ √ 

Swift [38] ☓ √ ☓ ☓ ☓ √ √ √ √ ☓ √ √ √ 

Efficient Shamir 

[33] 
☓ √ ☓ ☓ ☓ √ √ √ √ ☓ √ √ ☓ 

Low-Latency [34] ☓ √ ☓ ☓ ☓ √ √ √ √ √ √ √ √ 

Gazelle [32] √ √ ☓ ☓ ☓ ☓ √ √ √ √ √ √ ☓ 

Delphi [35] √ √ ☓ ☓ ☓ √ √ √ √ √ √ √ ☓ 

CryptFlow [36] ☓ √ ☓ √ ☓ √ √ √ √ √ √ √ ☓ 

ACIES [42] ☓ ☓ √ ☓ ☓ √ √ ☓ √ √ √ √ ☓ 

AdLM [43] ☓ ☓ √ ☓ ☓ √ ☓ ☓ √ √ √ ☓ ☓ 

Adesuyi [45] ☓ ☓ √ ☓ ☓ √ ☓ ☓ √ √ √ ☓ ☓ 

DPSGD [44] ☓ ☓ √ ☓ ☓ √ ☓ ☓ √ √ √ ☓ ☓ 

GDP [46] ☓ ☓ √ ☓ ☓ √ ☓ √ √ ☓ √ ☓ ☓ 
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Spectral-DP [47] ☓ ☓ √ ☓ ☓ √ ☓ ☓ √ √ √ ☓ √ 

Layer-LA [48] ☓ ☓ √ ☓ ☓ √ ☓ ☓ √ √ √ ☓ √ 

Pate [49] ☓ ☓ √ ☓ ☓ √ ☓ √ √ √ ☓ ☓ ☓ 

Dahghani [50] ☓ ☓ √ ☓ ☓ √ ☓ √ √ √ ☓ √ ☓ 

DP-FedAvg [52] ☓ ☓ √ ☓ √ √ ☓ √ ☓ ☓ √ ☓ ☓ 

DP-Fed LoRA 

[55] 
☓ ☓ √ ☓ √ √ ☓ √ √ ☓ √ ☓ ☓ 

SecureAgg [51] ☓ √ ☓ ☓ √ √ √ √ ☓ ☓ √ ☓ √ 

FedML-HE [60] √ ☓ ☓ ☓ √ √ √ √ √ ☓ √ ☓ √ 

MPC-FL [59] ☓ √ ☓ ☓ √ √ √ √ ☓ ☓ √ ☓ ☓ 

HE-Key [58] √ ☓ ☓ ☓ √ √ √ √ √ ☓ √ ☓ ☓ 

Chiron [39] ☓ ☓ ☓ √ ☓ √ ☓ √ √ √ √ √ √ 

Slalom [40] ☓ ☓ ☓ √ ☓ √ ☓ √ √ √ √ √ ☓ 

TEE-FL [61] ☓ ☓ ☓ √ √ √ √ √ √ √ √ ☓ √ 

 

DISCUSSION 

To consolidate the findings of this survey, we revisit the research questions posed in Section 4 and provide evidence-

based answers. 

RQ.1: What attacks can compromise the privacy of private data in machine/deep learning? 

Our review shows that privacy in ML/DL can be compromised through a wide spectrum of attacks. “Reconstruction” 

and “gradient inversion” attacks allow adversaries to recover raw input features from gradients or intermediate 

representations. “Model inversion” exploits output confidence scores to infer representative inputs, while 

“membership inference” identifies whether a specific record was used in training. In federated learning, “gradient 

leakage” and “poisoning/backdoor” attacks represent particularly severe risks, as client updates can be exploited or 

manipulated. Additionally, “side-channel exploits” in trusted hardware and “unintended memorization” in large 

generative models expand the attack surface beyond traditional learning paradigms. These findings, summarized in 

Table 8, confirm that vulnerabilities exist across all phases of the learning pipeline. 

RQ.2: Can we quantify and control the rate of data leakage? 

Differential privacy provides the most rigorous framework for quantifying privacy leakage through formal (ϵ, δ)-

bounds. Advanced variants such as Rényi DP and Gaussian DP improve accounting under iterative optimization, 

making them suitable for deep learning. However, empirical evidence indicates that utility degrades as stricter 

privacy guarantees are enforced, particularly in large-scale or high-dimensional tasks. Recent refinements, such as 

spectral perturbation (Spectral-DP) and adaptive noise allocation at the layer level, show that leakage can be 

“controlled” more efficiently without incurring prohibitive accuracy loss. While complete elimination of leakage 

remains infeasible, these approaches demonstrate that privacy budgets can be tuned to balance protection with 

performance. 

RQ.3: What is the most promising method to make DL models and data less vulnerable to attack? 
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While some works such as Delphi and Low-Latency MPC achieve excellent scores across efficacy, privacy, and 

efficiency, their strengths remain bounded by specific assumptions (e.g., inference-only setting, semi-honest 

adversaries). Similarly, systems like HE-LRM, CrypTFlow, and TEE-FL approach near-complete coverage but still 

leave certain attack vectors unaddressed. This confirms that no single method universally dominates across all 

contexts. Instead, the trajectory of PPDL research points toward hybrid approaches—integrating DP, cryptographic 

protocols, and system-level safeguards—as the most promising way to achieve both robustness and practicality across 

diverse deployment scenarios. 

RQ.4: How have PPDL techniques evolved for generative models and distributed networks? 

The evolution of PPDL reflects a shift from protecting classical supervised learning to addressing vulnerabilities in 

“generative models” (GANs, transformers, LLMs) and “distributed training frameworks” (federated learning). For 

LLMs, privacy risks include unintended memorization and adversarial extraction. Defenses now integrate DP-SGD 

for transformers, dataset deduplication, and secret filtering at inference. Federated learning has matured from DP-

FedAvg to advanced designs such as local DP-FL, DP-FedLoRA for LLM fine-tuning, and hybrid aggregation 

frameworks leveraging HE, MPC, and TEEs. These developments highlight a trend toward “application-aware 

PPDL”, where techniques are tailored to the practical threat surfaces of emerging architectures.  

General Synthesis and Outlook 

The survey reveals three overarching insights. First, privacy–utility–efficiency trade-offs remain central: stronger 

privacy mechanisms often entail computational or accuracy costs that must be carefully managed. Second, effective 

protection requires “layered defenses” combining DP, cryptography, and system-level measures (e.g., robust 

aggregation, anomaly detection). Third, future research must address the scalability of defenses to large models and 

decentralized infrastructures, particularly where regulatory or resource constraints limit the applicability of heavy 

cryptographic schemes. Hybrid PPDL designs, adaptive DP accounting, and privacy-aware system optimizations offer 

promising avenues for bridging the gap between theoretical guarantees and practical deployment. 

CONCLUSION 

This survey provided a comprehensive review of privacy-preserving deep learning (PPDL) methods, spanning 

homomorphic encryption (HE), secure multi-party computation (SMPC), differential privacy (DP), secure enclaves 

(SE/TEEs), and federated learning (FL) as an orchestration paradigm. We systematically analyzed how these 

approaches address reconstruction, inversion, membership inference, poisoning, and hardware-level attacks, while 

evaluating them under unified criteria of efficacy, privacy, and efficiency. 

Our findings demonstrate that no single paradigm offers a complete solution: HE and MPC deliver strong 

confidentiality but at high computational and communication cost; DP achieves formal guarantees but reduces 

accuracy; SE/TEEs provide hardware-backed isolation but are vulnerable to side-channel leakage; and FL reduces 

raw-data exposure yet introduces novel vulnerabilities. Hybrid methods—integrating secure aggregation, differential 

privacy, and lightweight cryptographic or hardware-assisted protocols—emerge as the most promising path toward 

practical deployment. 

Looking ahead, three challenges remain critical. First, scaling defenses to large generative models and decentralized 

infrastructures without prohibitive overhead. Second, tailoring privacy mechanisms to diverse application domains 

such as healthcare, finance, and IoT. Third, bridging the gap between theoretical guarantees and real-world 

robustness against adaptive adversaries. 

Overall, the evolution of PPDL reflects a shift from isolated techniques toward holistic, layered strategies. By uniting 

formal privacy guarantees, efficient cryptographic protocols, TEE-backed isolation, and robust system designs, future 

research can enable deep learning systems that are both trustworthy and practical for sensitive, large-scale 

applications. 
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