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ARTICLE INFO ABSTRACT

Received: 26 Aug 2025 Deep learning (DL) has achieved remarkable success across various domains, including

healthcare, finance, and natural language processing; however, its reliance on sensitive

data poses significant privacy risks. Privacy-preserving deep learning (PPDL) has

Accepted: 02 Nov 2025 therefore emerged as a critical research direction, integrating cryptographic
techniques, statistical privacy mechanisms, and distributed training paradigms. This
survey reviews state-of-the-art privacy-preserving deep learning (PPDL) techniques
centered on homomorphic encryption (HE), secure multi-party computation (SMPC)
(and hybrid protocols), differential privacy (DP), and secure enclaves (SE/TEEs). We
also position federated learning (FL) as an orchestration paradigm that composes these
techniques at scale. We systematically analyze their efficacy, privacy, and efficiency
trade-offs, and map common attack vectors—such as reconstruction, inversion,
membership inference, poisoning, and hardware-level side channels—to
representative defenses. Bibliometric analysis using VOSviewer further highlights the
thematic structure of the field, with strong clusters around cryptography, differential
privacy, and system-level optimization. Our findings reveal that no single paradigm
suffices in practice: while HE and SMPC provide strong confidentiality, they incur high
costs; DP enables formal guarantees at the expense of accuracy; and FL reduces raw-
data exposure but introduces novel vulnerabilities. We conclude that hybrid, layered
strategies combining DP, cryptography, and robust aggregation are the most promising
path toward scalable, trustworthy PPDL for real-world deployment.
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INTRODUCTION

The massive collection of data in recent years has raised significant challenges for privacy preservation. On the one
hand, privacy is increasingly recognized as a fundamental right of end users and customers; on the other hand, it
poses a constraint on the utilization of data for analytics and artificial intelligence (AI). This tension is particularly
acute in machine learning (ML) and deep learning (DL), which require large volumes of data for training. Protecting
this data from leakage or misuse has become a central concern. In parallel, the computational and communication
costs of training large-scale models have surged, further complicating the design of privacy-preserving systems. Users
fear that sensitive information could be exposed, while companies are concerned about protecting the confidentiality
of their proprietary DL models. If compromised, adversaries may impersonate customers or reverse-engineer model
behaviors, undermining trust. Classical privacy-preserving approaches have emerged to mitigate these risks,
including anonymization, cryptographic methods, and differential privacy (DP).

To contextualize privacy-preserving deep learning (PPDL), it is essential to first map out the types of attacks that
exploit DL models and data. Notable threats include re-identification, reconstruction, model inversion, and
membership inference [1]. A clear understanding of these attack vectors enables systematic evaluation of PPDL
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techniques, guides the management of data leakage risks, and informs the design of mechanisms that safeguard data,
models, and results simultaneously.

More recently, the evolution of PPDL has shifted toward distributed and generative paradigms. Federated learning
(FL) enables collaborative model training without direct data sharing, but introduces novel vulnerabilities such as
model poisoning and gradient leakage [2]. At the same time, large language models (LLMs) and other generative
architectures pose new privacy risks, notably unintended memorization of training data and inference-based
extraction attacks [3]. Addressing these challenges requires integrating privacy-preserving techniques into both
distributed training frameworks and modern generative models.

Article Outline. The remainder of this article is organized as follows

Section II introduces and classifies traditional privacy-preserving techniques, presenting a taxonomy and a
comparative view of different neural network architectures. Section III reviews the main classes of attacks that
threaten privacy in ML/DL, highlighting their targets and required access assumptions. Section IV details the
methodology adopted for this survey, including research questions, analysis attributes, and evaluation criteria; it also
incorporates a bibliometric visualization generated with VOSviewer. Section V presents the survey results, structured
around the three global metrics: efficacy, privacy, and efficiency. Section VI discusses the most influential works,
compares their strengths and weaknesses, and provides answers to the research questions. Finally, Section VII
concludes by summarizing the key findings and outlining promising directions for future research.

PRIVACY-PRESERVING TECHNIQUES

We classify classical privacy-preserving methods into four categories Figure 1: group-based anonymity,
cryptographic techniques (e.g., HE, SMPC), differential privacy (DP), and secure enclaves (SE/TEEs). Although
homomorphic encryption [4], functional encryption (proposed by [5], formalized by [6]), and secure multi-party
computation techniques make it possible to perform computations on encrypted data without revealing the original
plaintext, we need to preserve the confidentiality of sensitive personal data, such as medical and health data. The first
step in preserving this confidentiality is to use data anonymization techniques to mask this sensitive personal data.
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preseving methods
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Figure 1. taxonomy of classical pp methods

Both FE and HE enable computation over encrypted inputs, but they differ in what the evaluator and the decryptor
learn. In functional encryption (FE), a holder of a function-specific secret key sk, can decrypt a ciphertext ct =
Enc(m) to obtain the plaintext value f(m)—and nothing else about m. In homomorphic encryption (HE), the
evaluator transforms Enc(m)) into Enc(f (m)) using public evaluation keys; only the data owner with the decryption
key can later recover f(m). FE typically requires a trusted authority to issue function keys (one per authorized
function), whereas HE does not require such a function-key issuer for evaluation.

Secure Multi-party Computation is a cryptographic protocol that distributes computing among several parties
without allowing any of them to access the data of others. In 1986, [7] introduced two-party secure computing and
the Garbled Circuit (GC) which requires a constant number of communication rounds. Compared to HE and FE
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schemes, in the Secure-MPC, the parties jointly calculate a function on their inputs using a protocol, instead of a
single party. Information concerning the parties' confidentiality shall not be exposed throughout the process.

Differential privacy is a mathematical framework [8] proposed by [9] as a strong standard for ensuring data privacy.
Sometimes, details of this data are stored by ATl models when they are trained and they may "leak”" them later. DP
measures this leakage and reduces the possibility of it happening by adding noise to data. Extensions include
federated DP, where noise is added in distributed settings to enhance scalability [10].

Secure enclaves proposed by [11] (also called trusted execution environments, TEEs), refer to a computing
environment that isolates code and data from the operating system. They use hardware isolation or isolate an entire
virtual machine by placing the hypervisor in the Trusted Computing Base (TCB).

A- Deep Learning for Privacy-Preserving

After learning about the traditional approach, we will understand how its evolution leads to a new method called
privacy-preserving deep learning. It combines the traditional approach with the emerging field of deep learning. The
deep learning prediction algorithm, also known as a model, is designed as a layered architecture with an input layer
and an output layer. There may be one or more hidden layers between the input and output layers; the more hidden
layers there are, the more accurate the DL model is. However, one should beware of the problem of overfitting; to
learn so much that we cannot generalize.

Different neural architectures are commonly applied to PPDL tasks. Table 1 compares representative deep neural
networks (DNN) [12], convolutional neural networks (CNN), recurrent neural networks (RNN), generative
adversarial networks (GAN), and the more recent Transformers and Large Language Models (LLMs), highlighting
their typical data domains and structural characteristics. These architectures have been widely adopted for privacy-
preserving applications such as medical imaging, biometric authentication, language modeling, and multimodal
tasks.

It is also worth noting that some studies adopt a privacy-aware rather than formally privacy-preserving approach.
For instance, Benyamina and Slama [13] highlight the role of feature selection in limiting the exposure of sensitive
attributes. By selecting only the most informative features, their model achieved 85.76% accuracy on the UCI Adult
dataset while reducing the risk of revealing private information such as gender or race. However, such heuristic
strategies cannot replace formal PPDL guarantees, as they do not provide protection against reconstruction or
inference attacks.

TABLE 1. COMPARATIVE TABLE OF DIFFERENT NEURAL NETWORKS

DNN CNN RNN GAN LLMS
s Image Code
Tabul I 1 . . .
Type of data abular mage Sequentia (.tlme, Video Vision
Textual Video text, audio) .
Audio Speach
Para.m eters No Yes Yes Yes Yes
sharing
Fixed length data Yes Yes No Yes Flexible
Recurre.n t No No Yes No no
connections
Spatial Limited
. . Y Y
relationships No es Short-term es yes

PRIVACY ISSUES IN MACHINE LEARNING

We first outline the main categories of attacks that threaten the privacy of personal or sensitive data in ML/DL
systems, and the vulnerability points where they occur.

Conceptually, three components are involved: (i) the raw data holder, which provides inputs; (ii) the
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computation part, which executes the ML/DL tasks; and (iii) the result part, which outputs predictions or stores
trained models. If these three parts operate as a single unit, confidentiality is implicitly preserved. However, once
separated, multiple attack vectors emerge.

TABLE 2. EXISTING THREATS

Type of Threats Limitations Access
. D t ML dels that st licit feat t £, .
Reconstruction Attacks S\(;Mn?] use)' models that store explicit feature vectors (e.g White-box
. Restrict outputs to black-box access; White-box
Model I Attack X ’ .
odel fnversion ARAcKs Round confidence values or release only predicted lables. Black-box
Membership Inference Limit outputs to class lables;
. Black-box
Attacks DP can mitigate the attack.

Previous works have highlighted three dominant classes of threats. Reconstruction attacks [14-17] attempt to
extract raw data from feature vectors or gradients, requiring access to internal representations. Model inversion
attacks [15] infer representative inputs from model outputs, especially when confidence scores are exposed.
Membership inference attacks [18, 19] determine whether a given record was included in the training set,
typically through repeated model queries.

Table 2 provides a concise taxonomy of these threats, their typical limitations, and the type of access (white-box or
black-box) required by the adversary. This high-level view motivates the need for privacy-preserving deep learning
(PPDL) techniques. A more detailed mapping of attacks to defenses, with representative citations, is provided later
in Table 8 (Section 5.F).

METHODOLOGY

This section outlines the methodology adopted for this survey, describing how research on privacy-preserving deep
learning (PPDL) was collected, analyzed, and synthesized. The main objective is to identify existing PPDL techniques
that enable secure training of deep learning models on sensitive data. Protecting data alone is insufficient, since
trained models may leak information, allowing adversaries to reconstruct similar or even identical records if the input
distribution is known. Therefore, ensuring the confidentiality of both data and models is essential and
complementary.

This survey further aims to (i) characterize the most frequent privacy attacks, (ii) construct a taxonomy of PPDL
techniques, and (iii) identify which approaches preserve privacy while maintaining utility.

A- Research Questions

To guide the review, we formulated the following research questions:
¢ RQ.1 What attacks can compromise the privacy of private data in machine/deep learning?
¢ RQ.2 Can we quantify and control the rate of data leakage?

¢ RQ.3 Which privacy-preserving methods are most promising to reduce model and data vulnerability to
attacks?

¢ RQ.4 How have PPDL techniques evolved, particularly for generative models and distributed networks?
B- Systematic Corpus Selection (PRISMA 2020)

We followed the PRISMA 2020 [69] recommendations to identify, screen, and include studies on privacy-
preserving deep learning (PPDL). The aim was to gather peer-reviewed works using formal methods (HE, SMPC, DP,
secure enclaves) and, in a second step, add recent papers (2023—2025) discovered through manual/citation searches.

1. Sources and time windows.: For the main search (2013—2022) we queried four databases:
SpringerLink, Wiley Online Library, ACM Digital Library, and ScienceDirect. In the PRISMA figure, the small
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2.

bucket “Others (IEEE/arXiv..)” is listed to reflect records obtained from commonly used scholarly registers
(IEEE Xplore) and preprint registers (arXiv). For the update search (2023—2025), we used manual website
checks and citation chaining to capture very recent, high-impact studies.

Search terms. We used combinations of:

(Deep OR Machine OR Federated OR Distributed) AND Learning AND (“Privacy preserving” OR Private OR
Privacy OR “Data privacy”) in the advanced search interfaces of the previously listed databases.

3.

Screening and eligibility. Screening was performed in two consecutive phases: a preliminary metadata
filter followed by full-text eligibility assessment. During the screening phase, duplicates were removed
and basic quality filters were applied. Records were excluded if they lacked full-text access, were written in a
language other than English, or—within the 2013—2022 tranche—had zero citations, ensuring the selection
of peer-recognized and mature studies. Titles and abstracts were then screened to remove works outside the
Computer Science domain or not directly addressing privacy-preserving deep learning (PPDL). During the
eligibility phase, full-text articles were examined in detail against the defined inclusion and exclusion
criteria.

The inclusion criteria required that a paper:

o

o

Proposes or implements a privacy-preserving method “applied to deep learning”;

Evaluates the method on real or benchmark datasets;

Is published in a peer-reviewed journal or conference, or indexed in a reputable research register (IEEE
Xplore, arXiv, SpringerLink, ACM, Wiley);

Clearly reports methodological and empirical contributions in English.

Exclusion criteria eliminated:

O O O O O O

Duplicated or out-of-scope works (outside 2013—2022 for the main search);

Articles not in Computer Science or not research-oriented (editorials, reviews, abstracts);

Non-English publications;

Survey and systematic literature review (SLR) papers;

Works where privacy was not the main objective;

Studies classified as privacy-preserving methods based on deep learning (PPMBDL), i.e., papers that use
DL itself as a privacy mechanism (e.g., autoencoders, GAN-based anonymization) rather than applying
privacy mechanisms “to” DL models.

For the 2023—2025 update, the same eligibility rules were applied except for the citation requirement, since recent
papers may not yet have accrued citations. Articles published prior to 2023 were excluded as out of range.

4.
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Records identified from:
Databases (n = 3,030):
Wiley Online Library (n = 637)
Science Direct (n = 125)
ACM Digital Library (n = 125)
Springer Link (n = 2,103)
Others (IEEE/arXiv..) (n = 40)

Identification

Identification of new studies via databases and registers

Records removed before screening:
Duplicate records (n = 4)
Records marked as ineligible by automation
tools (n =2,391)
Records removed for other reasons (n =
130)

Identification of new studies via other methods

Records identified from:
Websites (n = 10)
Citation searching (n = 15)

Records screened Records excluded
(n=2308) (n=197)

\
Reports not retrieved Reports sought for retrieval > Reports not retrieved
(n=1) (n=15) (n=10)

Reports excluded: l

Survey/SLR (n = 49) P
Privacy-preserving methods based on IREeli ass(is:eﬁ )for &l lartisy e

deep learning (n = 188)
Privacy not primary research focus (n = 45)

Reports sought for retrieval
(n=307)

Screening

Reports excluded:
Survey/SLR (n = 3)
Out of 2023-2025 update range (n = 1)

Reports assessed for eligibility
(n=25)

New studies included in review
(n=5)

Reports of new included studies
(n=36)

Included

FIGURE 2. PRISMA 2020 FLOW DIAGRAM FOR THE STUDY SELECTION
(MAIN SEARCH 2013—2022; UPDATE 2023—2025).

5. Flow diagram. Figure 2 presents the PRISMA 2020 flow summarizing identification (databases/registers
and other methods), screening, eligibility, and inclusion.

C- Corpus Construction

The bibliographic dataset was managed with Zotero. After filtering, the corpus comprises 36 papers: 15 journal
articles, 16 conference papers, and 5 preprints. This distribution reflects both field maturity (journal publications)
and ongoing dynamism (conference and preprint dissemination). Summary lists appear in Table 10 (Appendix~A).

D- Bibliometric Keyword Co-occurrence Analysis

In addition to manual review, we conducted a bibliometric keyword co-occurrence analysis to identify dominant
concepts and thematic clusters within the selected corpus. To strengthen the methodological framework, we
conducted a bibliometric analysis using VOSviewer. A dataset of 36 articles was exported from Zotero in CSV format,
including title and abstract fields. Terms were extracted with full counting, setting a minimum occurrence threshold
of 10. Out of 1179 candidate terms, 22 met the threshold and were retained for visualization. Each term was assigned
a relevance score, and 100% of the qualified terms were included.

Figure 3 illustrates the resulting keyword co-occurrence network. Node size reflects the frequency of a term, while
edge thickness indicates co-occurrence strength. Three thematic clusters clearly emerge: (i) cryptographic
approaches (red cluster: homomorphic encryption, FHE, protocol, server); (ii) deep learning and differential
privacy (blue cluster: differential privacy, deep neural network, model, framework); and (iii) system-level
performance and applications (green cluster: accuracy, training, work, user, security, party). At the center of
the map, the terms data and privacy act as transversal concepts, strongly connected to all clusters, emphasizing
their pivotal role in privacy-preserving deep learning research.
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FIGURE 3. KEYWORD CO-OCCURRENCE NETWORK GENERATED WITH VOSVIEWER (36 BIBLIOGRAPHIC RECORDS,
THRESHOLD = 10 OCCURRENCES, 22 TERMS RETAINED)

E- Attributes for Analysis
For each article, we extracted the following attributes:

Bibliographic attributes: reference, authors, title, year, type (journal, conference, preprint), and publication
venue.

Technical attributes: dataset used, neural network architecture, training or inference phase (and perturbation
phase for DP methods), type of threats addressed (e.g., reconstruction, model inversion, membership inference),
system access model (white-box or black-box), techniques employed (HE, DP, SE, MPC), and reported limitations.

F- Metrics for Evaluation
The selected works were assessed across three dimensions: efficacy, privacy, and efficiency.

4. Efficacy: This dimension evaluates model performance, typically through:
a. Accuracy: classification accuracy of the proposed methods.
b. Latency: delay introduced by computation and communication overhead.
5. Privacy
a. Data: raw data remain inaccessible to servers or third parties.
b. Model: except for prediction results, no party learns details of the trained model.
c. Result: neither server nor client can infer information from prediction outputs.
6. Efficiency: is assessed through computational complexity, training and inference time, and communication
cost.

This methodological framework establishes the foundation for the subsequent analysis. In the next section, we apply
these attributes and metrics to construct a taxonomy of privacy-preserving deep learning techniques, evaluate their
efficacy, and compare their strengths and limitations.

RESULTS

We classify PPDL approaches into four main technique families—HE, SMPC/hybrid, DP, and SE/TEEs—and evaluate
how FL composes these techniques at scale under practical constraints.
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A- PPDL based on Homomorphic Encryption

CryptoNets [20] is one of the first works on HE inference, researchers present a method to convert a trained neural
network into an encrypted network, called CryptoNet by combining cryptography and deep learning.

This allows clients to send their data in an encrypted format using HE and receive the encrypted result as well, without
the data being decrypted during the transfer between the client and the cloud server. Afterward, the clients can use
their private key (which the cloud server has generated for each client) to decrypt the prediction result. This
guarantees the confidentiality of the client and the confidentiality of the result. The performance evaluations on
MNIST datasets reach an accuracy of 98.95% and can make more than 51,000 predictions per hour on a single PC.
However, the weakness of Cryptonets is the performance limitation due to their complexity. The multilevel HE does
not work well on deeper NNs that have a large number of non-linear layers. In this case, the accuracy decreases, and
the error rate increases.

To improve the performance of [20], which is only good when the number of layers is restricted, the [21] researchers
combined it with a polynomial approximation for the activation function and the batch normalization layer proposed
by [22]. As a result, the structure of the regular NN will change. For the learning phase; the addition of a Batch
normalization layer between the Pooling layer and the activation layer in order to avoid a strong degradation of the
accuracy. The Max-pooling layer is not a linear function, it will be replaced by an Average-pooling layer which is more
favorable to the FHE and has a low impact on the accuracy. Before classification; the ReLu function is replaced by a
low-degree polynomial approximation as it gives a small error, which is very suitable to be used in this model. A batch
normalization layer is added before each ReLu layer, it helps to restrict the input of each activation layer, which helps
to obtain a stable distribution to avoid the strong degradation of accuracy. Performance evaluations on MNIST
datasets, reach an accuracy of 99.30%, which significantly improves CryptoNets. However, they do not show any
results on the latency of their method.

In order to overcome the biggest weakness of FHE which requires considerable time to evaluate deep learning models
on encrypted data. The researchers [23] propose TAPAS; which uses binarised neural networks to speed up their
HE inference method. The TAPAS architecture is composed of a fully connected layer, a convolution layer, and a
batch normalization layer with sparse encrypted computation to reduce computation time. The key idea is the co-
contribution of a new algorithm to accelerate binary computations in binary neural networks. Thus, support for
parallel computing. They claim that, unlike [20] and [21] which only protect the data, their proposed scheme can also
protect the confidentiality of the model. (Indeed, clients should generate parameters for the encryption based on the
structure of f, so we are able to make inferences about the model). Nevertheless, the only limitation is that it only
supports binary neural networks.

Faster CryptoNets [24], speeds up homomorphic evaluation in [20] by pruning the network parameters so that
many multiplication operations can be omitted. The main weakness of Faster Cryptonets is that it is vulnerable to
membership inference attacks, and model stealing [seen in Section IIT].

[25] propose CryptoNN; which is a privacy-preserving method that uses functional encryption for arithmetic
computation on encrypted data. The FE scheme protects data in the form of a feature vector inside matrices. In this
way, the matrix computation for the formation of the NN can be performed in encrypted form.

Orion [26] introduces a fully automated FHE framework for PyTorch models, enabling efficient private inference
on complex networks with accuracy comparable to plaintext (e.g., 93.4% on ResNet-20 with CIFAR-10) and reduced
latency (618s for ResNet-20).

HE-LRM [27] applies FHE to large recommendation models, achieving 85% accuracy on the UCI Heart Disease
dataset and inference latencies ranging from 24 to 488 seconds on UCI and Criteo datasets.

Active ME! [28], Advances in activation functions for FHE, such as optimized polynomial approximations of Square
and ReLU, have enabled up to 99.4% accuracy on LeNet-5 with MNIST and 89.8% on ResNet-20 with CIFAR-10,
with latencies between 95 and 1697 seconds. Table 3 summarizes these methods alongside earlier HE-based
approaches.
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TABLE 3. COMPARISON OF DIFFERENT PPDL HE-BASED WORKS

Work PP(HE) Network Dataset Phase
CryptoNets [20] HE CNN MNIST Inference
Chabanne [21] FHE CNN MNIST Training, Inference
Face Match [29] FHE CNN LFW, IJB-A/B, CASIA Inference

Cancer, Diabtes,
Tapas [23] FHE CNN Inference
Faces, MNIST

Faster CryptoNets [24] HE CNN MNIST Inference
CryptoNNS [25] FE CNN MNIST Training, Inference
CNN
Orion [26] FHE MNIST, CIFAR-10 Inference
ResNet
HE-LRM [27] FHE DLRM UCI Heart, Criteo Training, Inference
Activate ME! [28] FHE CNN MNIST, CIFAR-10 Inference

B- PPDL based on Homomorphic Encryption
1. Secure-MPC Frameworks

The Chameleon framework, proposed by [30], introduces a novel PPDL approach that integrates Secure-MPC with
CNNs. Chameleon operates in two distinct phases: an online phase employing protocols such as Additive Secret
Sharing (ASS) and Garbled Yao Circuits (GC) to enable joint computations between two parties without revealing
their inputs, and an offline phase utilizing a semi-honest third party (STP) to precompute Oblivious Transfers (OTs)
and multiplication triples. Performance evaluations on the MNIST dataset demonstrate that Chameleon processes
handwritten digit images 133 times faster than Microsoft’s [20], highlighting its efficiency in secure inference.
However, its reliance on a semi-honest third party introduces a trust assumption that could be a vulnerability if the
STP is compromised, and the framework’s efficiency is limited to inference, with no significant support for training
phases.

Similarly, SecureNN [31] advances Secure-MPC by developing a system integrated with CNNs, with a notable
contribution being a new protocol for Boolean operations (e.g., ReLU, Maxpool, and their derivatives). This protocol
reduces communication overhead compared to the Yao GC used in Chameleon. Evaluations on the MNIST dataset
reveal that SecureNN achieves a prediction accuracy exceeding 99% during training, with execution times 2-4 times
faster than other MPC-based PPDL methods, surpassing frameworks like [30] and [32]. Despite these gains,
SecureNN’s three-party computation model assumes semi-honest behavior, and its performance may degrade with
malicious adversaries, while the lack of GPU support limits scalability for larger datasets.

Recent research has focused on enhancing Secure-MPC efficiency. Efficient Shamir-MPC [33] utilizes Shamir
secret sharing and fixed-point arithmetic to accelerate convolution and Softmax computations, achieving over 50%
performance gains in simulations with three or more parties. However, its simulation-based evaluation lacks real-
world dataset validation, and the fixed-point arithmetic may introduce precision errors in complex models. Low-
Latency MPC [34] reduces communication rounds and optimizes non-linear functions, yielding 10-20% latency
improvements on MNIST and CIFAR datasets. Yet, its optimization is tailored to specific non-linear functions,
potentially limiting adaptability to diverse network architectures, and it assumes a semi-honest threat model that
may not hold against malicious actors.
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2, Hybrid PPDL Approaches
Hybrid PPDL methods combine multiple privacy-preserving techniques to enhance performance and security.

Gazelle [32] exemplifies this by merging HE with traditional two-party computation (GC) techniques for secure
inference. To optimize HE speed, Gazelle employs Single Instruction Multiple Data (SIMD) for ciphertext addition
and multiplication, alongside Approximate Homomorphic Encryption (AHE) and ASS to accelerate convolution and
matrix multiplication. The framework features a CNN architecture with two convolutional layers, two ReLU
activation layers, a pooling layer, and a fully connected layer. Performance on MNIST and CIFAR-10 datasets
outperforms [20] in execution time. However, Gazelle’s limitation to two-party schemes and restrictions on client
classification requests to mitigate link attacks pose challenges. Gazelle has spent a lot of time optimizing each of its
components. However, there is still an overhead compared to native execution, among the reasons; the libraries used
do not support GPU acceleration so it is much slower than linear layer evaluation techniques.

Building on Gazelle, Delphi [35] addresses communication and latency issues critical for latency-sensitive
applications. The Delphi planner inputs all ReLU activations and a precision threshold t, outputting a hybrid CNN
that integrates ReLU and quadratic activation functions while maintaining precision above t. Evaluations on CIFAR-
10 and CIFAR-100 datasets show Delphi outperforming Gazelle by 9 to 22 times in efficiency, depending on
parameters such as transferred data and execution time, through a synthesis of system, cryptographic, and machine
learning techniques. Nevertheless, Delphi’s reliance on a two-party HE/MPC hybrid assumes semi-honest
participants, and its performance may suffer with increased network latency or when handling deeper networks due
to computational complexity.

CrypTFlow [36] adopts a hybrid approach by combining Secure Enclaves with secret sharing for DNNs and CNNs,
targeting the MNIST, CIFAR, and ImageNet datasets. Despite its innovative design, CrypTFlow’s inability to support
GPU processing results in significant computational overhead during secure learning, and its dependence on SE
introduces risks if the trusted execution environment is compromised, limiting its robustness against advanced
attacks.

3. Spectrum of Party-Computation Settings

As outlined in Table 4, Secure-MPC and hybrid PPDL frameworks span a rich spectrum of party-computation (PC)
settings, threat models, and protocol guarantees.

Two-party computation (2PC). Protocols such as Delphi and Gazelle rely on hybrid HE/MPC constructions (HE
+ GC + ASS) for private inference. They operate under a “two-party client—server model” without a semi-honest third
party (STP), and assume semi-honest adversaries (MAL = X). These designs are lightweight but limited to inference
and vulnerable if one party deviates from the protocol. Three-party computation (3PC). Frameworks like
Chameleon, SecureNN, and CryptFlow incorporate a semi-honest third party (STP = V) that helps generate
correlated randomness or assist with offline precomputation. This setting balances efficiency and security: operations
such as Beaver triples, ASS, and Boolean gates are accelerated, while data, model, and intermediate results remain
hidden. However, these protocols generally assume “semi-honest adversaries” (MAL = X). 3+ party Shamir-based
protocols. The work of Efficient Shamir-MPC extends beyond 3PC by leveraging Shamir secret sharing (Shamir-
SS). STP is required (V), and the scheme remains secure under the semi-honest assumption. This setup demonstrates
scalability and robustness in simulations but has not yet been validated under malicious adversaries. Four-party
computation (4PC). Protocols such as FLASH and SWIFT distribute the computation across four parties,
incorporating both Additive and Robust Secret Sharing (ASS/RSS). These are the only surveyed frameworks explicitly
securing against malicious adversaries, through Guaranteed Output Delivery (GOD). GOD ensures that even if one
or more parties deviate, all honest parties still receive the correct output. This robustness comes at the cost of higher
online communication but significantly strengthens security guarantees.

This progression from 2PC to 4PC illustrates a clear trade-off: increasing the number of parties and adversarial
protections improves security and robustness (especially under malicious models) but imposes higher computational
and communication costs.
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TABLE 4. COMPARISON OF DIFFERENT PPDL SECURE MPC-BASED AND HYBRID WORKS

Threat model
Work PC Tech Network Dataset Phase
STP MAL
HE
Gazelle [32] X X GC CNN MNIST Inference
CIFAR-10
ASS
HE
DELPHI [35] 2 X X GC CNN CIFAR-10,100 Inference
ASS
Low-Latency X X %S:FS DNN MNIST Training
MPC [34] Beaver triples CIFAR Inference
Chameleon y X GC CNN MNIST Inference
[30] ASS SVM Credit Approval
SecureNN y X ASS CNN MNIST Training
[31] 3 Inference
MNIST
CryptFlow SE DNN
v X CIFAR Inference
[36] ASS CNN Image-Net
Shamir-MPC [33] | 3+ v X Shamir-SS CNN Simulation Inference
ASS DNN Training
FLASH [37] 4 X GOD RSS BNN MNIST Inference
ASS MNIST Training
SWIFT[38] | 3+ X GOD RSS CNN CIFAR-10 Inference

C- PPDL based on Secure Enclaves

Chiron, [39] provides a black-box system for PPDL. It uses SGX enclaves and the Ryoan sandbox. Chiron uses a
secure enclave environment where model parameters are exchanged via the server. It runs the untrusted code to
update the model and implements protection using sandboxes so that the code does not leak data outside the enclave.

TABLE 5. COMPARISON OF DIFFERENT PPDL SE-BASED WORKS

Work Tech Network Dataset Phase
SGX
CHIRON [39] DNN CIFAR Training
SandBox Ryoan ImageNet
SGX
SLALOM [40] DNN ImageNet Inference
TEE

SLALOM, [40] uses Trusted Execution Environments (TEE), which isolate the computational process from
untrusted software. The DNN computation is divided into trusted and untrusted parts. SLALOM runs DNN in the
Intel SGX enclave which delegates the computational process to an untrusted GPU. The weakness of this approach is
that it limits the operation of the CPU since the TEE does not allow access to the GPU. A vulnerability through a side
channel attack can occur, as shown by [41].

D- PPDL based on Differential Privacy
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This section presents recent research based on DP to protect user privacy in DL. We classify this section according
to the level at which DP can be applied, as shown in Figure 4 below.

Model Parameters Perturbation

1. Add Noise to the objective function.
2. Add Noise to the Gradient.

Input Perturbation Output Perturbation
Add Noise to the data owners Add Noise to the ML models which
private data @ is the result of ML Algorithm.

DLALGORITHM

~ =
ﬂ\—’@ © &

The owner of private dala INPUT ouTPUT The User of ML models

FIGURE 4. THE DESIGN PRINCIPLES OF DIFFERENTIAL PRIVATE MACHINE LEARNING

1. Input Perturbation
These approaches add noise to the original dataset to produce a new privacy-preserving (PP) dataset.

Researchers [42] proposed ACIES, a differential privacy-preserving classification system for edge computing,
utilizing models such as Support Vector Machines (SVM), k-Nearest Neighbors (kNN), and Sparse Representation
Classification (SRC). Unlike native approaches that add noise to raw data, ACIES injects Laplace noise during feature
extraction to indirectly control information leakage from training data, with these feature vectors used for training
and evaluation. Performance evaluation on diverse datasets including YaleB, CSI, MNIST, and HAR demonstrates
resilience against reconstruction attacks, with a maximum accuracy impact of 5%.

2. Perturbation of Model Parameters

This subsection presents recent research addressing confidentiality in DL by applying DP during training to produce
privacy-preserving models.

1. Perturbation of the objective:

The perturbation of the objective function is explored for machine learning tasks with convex objective functions. To
identify the intensity of the added noise; calculating the sensitivity of the objective function is crucial due to the non-
convexity of typical DL objective functions. A solution proposed by [43] involves replacing the non-convex function
with an approximate convex polynomial function, followed by objective function perturbation. However, this
approximation limits the power and applicability of traditional DNNs.

The Adaptive Laplace Mechanism (AdLM) [43] combines DP with relevance-guided noise placement. Layer-wise
Relevance Propagation (LRP) is used only to estimate feature relevance (utility signal); it is not a privacy mechanism.
First, the average relevance scores are privatized by adding Laplace noise to obtain DP relevance estimates. Then,
AdLM injects adaptive Laplace noise into each layer’s affine transformation, assigning larger noise to less-relevant
features. A normalization layer is inserted before non-linearities to control sensitivity, and the output layer is
privatized via a polynomial loss approximation with noisy coefficients. Under comparable privacy budgets, AdLM
reports better utility than [43] on MNIST and CIFAR-10. The privacy guarantee in AALM comes exclusively from the
calibrated Laplace mechanisms; LRP serves to steer the noise, not to provide privacy by itself.

[45] adopted similar techniques to [43], enhancing accuracy by integrating DP with LRP. They perturb the target
value at each batch via the loss function, ensuring each data access point is protected to yield a reliable privacy-
preserving model. The loss function is approximated using the Maclaurin series instead of the Taylor series used by
[43]. Performance evaluations on the WDBC dataset, with dense noise addition, achieved accuracy close to the
unprotected version.
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2. Gradient Perturbation: Gradient perturbation is a widely adopted approach for private learning
in deep learning.

[44] proposed a Differential Private Stochastic Gradient Descent (DP-SGD). During training, at each SGD step,
gradients of a random subset of examples are computed, with the L2 norm of each gradient clipped. These gradients
are averaged, and Gaussian noise is added. The model is then output, and the overall privacy loss is tracked using a
Moments Accountant (MA), which accumulates costs for each training data access and determines the optimal &
leakage parameter for a given privacy budget. Performance evaluation on MNIST and CIFAR-10 for image
classification shows accuracies of 97% on MNIST (1.3% below the non-private baseline) and a larger 7% gap on
CIFAR-10.

In [46], researchers introduced f-DP, a recent privacy definition, for training private DL models using SGD or ADAM.
They proposed Differential Gaussian Privacy (GDP), analyzing privacy budget depletion in DNN training with the
Adam optimizer without relying on the Moments Accountant in the (¢, §)-DP framework. Performance results across
MNIST (image classification), IMDDb (text classification), and MovieLens (recommender systems) indicate that
trained networks are private under f-DP (e.g., 1.13-GDP) but not under (¢, §)-DP due to conservative privacy bounds.

To address the high noise costs of traditional DP-SGD, [47] introduce Spectral-DP, a novel framework that
performs gradient perturbation in the spectral (frequency) domain. Instead of directly adding Gaussian noise to raw
gradients, Spectral-DP applies a spectral transformation and filtering process that suppresses high-variance
components before perturbation, thereby reducing sensitivity and minimizing the amount of noise required to
achieve rigorous (¢, §)-DP guarantees. This design naturally aligns with convolutional operations in CNNs and further
leverages block-circulant compression to enable efficient spectral processing in fully connected layers. Empirical
evaluations on benchmark datasets such as CIFAR-10 and ImageNet demonstrate that Spectral-DP consistently
achieves superior privacy—utility trade-offs compared to standard DP-SGD, yielding accuracy improvements of 3—
5% in both training from scratch and transfer learning scenarios.

[48] propose a layer-level adaptive gradient perturbation mechanism to enhance the privacy-utility balance
in differentially private deep learning. The method dynamically allocates privacy budgets across layers during
training: starting with equal budgets and progressively adjusting them based on iteration progress, assigning less
noise (increased budget) to input-proximal layers and more noise to output-proximal layers to counter membership
inference attacks. By perturbing only selected hidden layers and leveraging DP's post-processing immunity, it
maintains strong privacy guarantees. Experiments on five well-known datasets reveal higher accuracy and greater
resilience against attacks compared to uniform noise baselines at equivalent privacy levels.

3. Output Perturbation

Output perturbation involves running a non-private learning algorithm and adding noise to the result. This approach
can degrade the model’s utility, particularly in deep learning, where high-dimensional outputs are sensitive to noise.
To mitigate this, techniques like noisy aggregation of predictions are employed. One prominent example is the Private
Aggregation of Teacher Ensembles PATE framework, introduced by [49], which leverages a teacher-student
paradigm to preserve privacy. In PATE, multiple teacher models are trained on private data and aggregate their
predictions into a single output, with Laplace noise added to the vote counts to ensure (€, §)-DP. The student model,
trained on publicly labeled data annotated by these noisy teacher outputs using a differential privacy method (e.g.,
noisy voting in a GAN), cannot access the original data or teacher parameters, thus preventing adversaries from
extracting confidential information. Performance evaluations on MNIST and SVHN datasets indicate reduced
accuracy for complex or diverse data, attributed to the added noise, though it remains effective for simpler tasks.

Building on PATE, [50] proposes a solution for information retrieval (IR) applications, such as document re-
classification, achieving acceptable performance with low privacy risk. This teacher-student approach also addresses
the challenge of limited large datasets in IR by leveraging unlabelled public data, highlighting mimic learning’s
broader utility in privacy-preserving deep learning. Table 6 summarizes these methods alongside earlier DP-based
approaches.
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TABLE 6. COMPARISON OF DIFFERENT PPDL DP-BASED WORKS

Work Tech Network Dataset Phase
¢-DP, SVD YaleB Inference,
) } HAR Feature
Acies [42] Laplace mechanism / MNIST extraction
kNN, SVM, SRC CSI perturbation
e-DP, LRP
’ . Model
AdLM [43] Laplace mechz}nlsm DNN MNIST parameters
Taylor expansion CIFAR-10 .
. perturbation
Polynomial app.
e-DP, LRP
Laplace mechanism Label
Adesu. [45] Maclaurin series DRN WDBC perturbation
Polynomial app.
(e, 6)-DP Training,
SGD MNIST Model
DPSGD [44] Gaussian noise DNN CIFAR-10 parameters
Moment account. perturbation
f-DP DNN MNIST gsg:lng’
GDP [46] SGD/Adam LSTM IMDb
. . . parameters
Gaussian noise RNN Movie-Lens .
perturbation
(¢, §)-DP Training,
S-DP [47] Spectral perturbation CNN Benchmark Model
47 p . P .u 10 DNN parameters
Gaussian noise .
perturbation
Training,
(e, 8)-DP
L . MNIST Model
Layer. [48] Adapt%ve gra.dlent DNN CIFAR-100 parameters
Gaussian noise .
perturbation
(e, 8)-DP Training
Laplace mechanism DNN MNIST ’
PATE [49] SSL GAN SVHN Label/ Ou.tput
perturbation
Moment Account.
DP Training,
Dahgh. [50] . DNN IR Label /Output
Laplace mechanism .
perturbation

E- PPDL via Federated Learning

Federated Learning (FL) enables decentralized training across multiple data holders (clients) without
centralizing raw data. In its canonical cross-device variant, a coordinator broadcasts the global model parameters 0;
at round t; each client k performs local updates on its private dataset Dy starting from 0,, obtaining an updated local

model Gtﬂ(k). The server then aggregates these updates typically via FedAvg rule:

k
k
9t+wg TeOl, =D ()

k=1
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FL reduces raw-data exposure but does not guarantee privacy by itself: model updates and gradients may leak
information about local records and even enable reconstruction or membership inference (see Section II).

1.

Threat Model in FL

We consider three adversarial settings: (i) an “honest-but-curious server” attempting to infer client data from
per-round updates, (ii) “malicious clients” performing poisoning/backdoor attacks (which can also amplify privacy
leakage of benign clients), and (iii) “system-level adversaries” exploiting side-channels, traffic-analysis, or TEE
leakages when hardware protection is used.

Compared to centralized training, FL exposes additional surfaces: update/gradient inversion, property inference,
round-wise membership inference, client deanonymization, and colluding-client attacks.

2.

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

Core Privacy Techniques for FL
a) Secure Aggregation (SA). Cryptographic SA lets the server learn only the sum of client updates (hiding

each Gt(k), typically through pairwise masks or additive secret sharing [51]. SA is orthogonal to DP and
reduces the server’s visibility, but does not by itself bound leakage from the aggregate.

b) Differential Privacy for FL. Two deployment styles are prevalent.
Central DP-FL clips each client update to £, — norm C and adds Gaussian noise at the server after
aggregation:

K
Je = %Z clip(g®,C)+N(0,02CI). (2)
k=1

with privacy accounting over rounds (e.g., RDP/GDP accountants) [46, 52, 53].
Local DP-FL adds noise client-side before SA, strengthening per-client protection against a curious
server at the cost of larger utility degradation [54]. “DP-FedLoRA" Recent work adapts [55].

¢) Hybrid FL with HE/MPC/TEE. Hybrid FL frameworks increasingly combine advanced cryptographic
techniques to enhance privacy and efficiency. Multi-key homomorphic encryption (HE) allows each
participant to encrypt updates with their own key, enabling secure aggregation without exposing
individual data, as demonstrated in recent efficient federated learning schemes [56-58].
Complementarily, [59] introduce a pure MPC-based framework using secret sharing techniques (e.g.,
Sharemind) to achieve secure aggregation, enhancing robustness against inference attacks in distributed
settings. Trusted Execution Environments (TEEs) are also used to offload sensitive operations, improving
computational efficiency while maintaining strong security guarantees [56]. Additionally, Jin et al. [60]
present an efficient HE-based FL system (FedML-HE) that reduces computational overhead for deep
networks, achieving up to a 10-fold reduction in latency for ResNet-50 training by optimizing HE schemes
such as CKKS, making it scalable for cross-silo FL deployments with minimal accuracy loss (e.g., 94.1%
on ImageNet). Similarly, Kalapaaking et al. [61] propose a blockchain-enhanced TEE framework for
secure aggregation in IoT contexts, leveraging Intel SGX to execute tamper-proof updates and
Hyperledger Fabric for decentralized auditability, which mitigates model poisoning attacks with a
reported 98% success rate in detecting malicious updates across distributed IoT nodes.

TABLE 7. COMPARISON OF DIFFERENT PPDL VIA FL-BASED WORKS

Work PP(FL) Network Dataset Phase

Mobile Training

DP-FedAvg [52] CDP LSTM
& keyboard data | Aggregation

DP-Fed LoRA [55] LDP Transformer Alpaca-GPT-4 | Training
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LLM/LoRA Fine-tuning
SecureAgg [51] SA/MPC DNN Large scale Aggregation
ResNet-50 Wikitext Training
FedML-HE [60] HE
BERT CIFAR-100 Aggregation
MNIST
CNN
MPC-FL [59] MPC CIFAR-10 Training
LSTM
CASA
Training
HE-Key [58] HE CNN UP-FALL
Aggregation
MNIST Training
TEE-FL [61] TEE CNN
HAR(IoT) Aggregation

3. FL-Specific Attacks and Defenses

Gradient/Update Inversion. Recent studies show that exposing model updates in FL still leaks sensitive
information. [62] analyze the feasibility of gradient inversion attacks under different modes, showing that models
using fixed batch-normalization statistics in inference mode are significantly more vulnerable than during training.
[63] further demonstrate that in FL with text data, discrete optimization over embedding and fully-connected layer
gradients (via their FET method) can recover private text sequences. Defenses include stronger clipping, central DP
noise, avoiding inference-mode normalization, and limiting the number of local steps [64].

Membership/Property Inference. remains a persistent threat in FL. [65] propose “FedMIA”, which leverages
the “all-for-one” principle by combining updates from non-target clients across multiple rounds, substantially
improving attack performance even under defenses. A recent survey by Bai et al. [66] categorizes MIAs and defenses,
highlighting that larger client datasets, higher model complexity, careful privacy accounting, and differential privacy
mechanisms help reduce attack success.

Poisoning/Backdoors. Malicious clients may still steer the global model toward targeted misbehavior. Defenses
include Byzantine-robust aggregation rules such as Krum, Trimmed Mean, and Median [67], anomaly detection on
updates, and combining differential privacy with gradient clipping to bound adversarial influence.

Deanonymization/Traffic Analysis. Side channels such as update timing, size, and client participation patterns
can deanonymize users or link updates to clients. Mitigations include fixed update sizes, randomized batching and
padding, and secure aggregation protocols that hide individual client contributions.

4. Positioning FL in the PPDL Taxonomy

FL is an orchestration paradigm that leverages DP, HE/MPC, TEEs, and robust aggregation rather than replacing
them. In our taxonomy, FL forms a top-level branch with sub-techniques (DP-FL, SA, HE-FL, MPC-FL, TEE-FL),
and cross-references to cryptographic and DP Sections II, III. Practically, combining SA + central DP achieves a
favorable privacy—utility—efficiency trade-off for many cross-device deployments, while HE/MPC/TEE variants
address stronger adversaries or regulatory constraints.

F- Attack-Defense Mapping

The following mapping Table 8 summarizes representative attack classes against ML/DL systems and the principal
defenses evaluated in the literature. For each attack, we list a characteristic attack vector (example papers) and the
defensive families that have been proposed and empirically tested. This compact reference helps practitioners select
targeted countermeasures and highlights gaps where defenses remain immature or impose high system costs.
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Cryptographic approaches and TEEs provide strong guarantees against reconstruction and gradient-inversion
attacks, but impose significant computational and communication overhead. DP remains the most versatile defense
against membership and inversion threats, though at the expense of model utility—particularly in large-scale
architectures where tighter accounting and per-layer perturbation are required. FL—specific vulnerabilities (e.g.,
poisoning, Sybil, free-rider) are most effectively countered through robust aggregation, anomaly detection, and
access control, ideally combined with SA/DP for a balanced trade-off between privacy, robustness, and efficiency.

TABLE 8. MAPPING OF PRIVACY ATTACKS IN ML/ DL TO REPRESENTATIVE DEFENSE TECHNIQUES

Attack Type Attack Vector / Example Representative Defenses
Reconstruction Recover raw inputs from feature vectors | HE [20, 21], Secure-MPC protocols (GC, ASS)
Attacks or gradients [14, 16, 17] [30, 31], Hybrid HE+MPC [32, 35], TEE [36, 40]

Model Inversion
Attacks

Infer representative inputs from model
outputs or confidence scores [15, 62, 63]

DP (DP-SGD, AALM) [43, 44], output
perturbation [50], restricting access to
logits/confidences, HE/MPC inference

Membership
Inference Attacks

Decide whether a record was in the
training set [18, 19, 65]

DP mechanisms (DP-SGD, GDP, PATE) [44, 46,
49], federated DP (DP-FedAvg) [52], limiting
model outputs (label-only), robust aggregation
in FL [67]

Gradient Leakage
in FL

Reconstruct client data from shared
updates/gradients [62-64]

SA [51], clipping + central DP noise [52, 53],
local DP-FL [54], HE/MPC-FL [57, 59]

Poisoning /
Backdoor Attacks
in FL

Malicious clients inject corrupted
updates or triggers [68]

Byzantine-robust aggregation (Krum, Trimmed-
Mean, Median) [67], DP clipping, anomaly
detection, TEE-based secure aggregation [61]

Side-channel /

Leakage from TEEs (e.g., SGX, TDX) or

TEE hardening [40, 41], constant-time
protocols, hybrid TEE+MPC for enclave

Hardware Attacks GPU memory [41] robustness [36]

Unmter.ldec.l LLMs regurgitate rare sensitive DP-SGD/GDP .for Fransforme'rs [3, 44, 461,
Memorization sequences verbatim [3] dataset deduplication/redaction [3], secret
(LLMs) q 3 filtering

Extraction / . . .. . A
Prompt Attacks Adversarial prompting to extract DP training [3], retrieval/content sanitization,
(LLMs) training snippets or inject instructions tool-use constraints, policy-tuned decoding

G- Metrics Evaluation

In this subsection, we consolidate all surveyed works and score them against the three global criteria introduced in
Section 4: efficacy, privacy, and efficiency. Rather than re-describing each method, we present a unified
comparison Table 9 that surfaces the dominant trade-offs across approaches. Broadly, HE methods (e.g.,
CryptoNets, Orion) preserve accuracy but incur high computational latency; SMPC and hybrid schemes (e.g., Gazelle,
SecureNN, MPCFL) strengthen privacy at the cost of communication overhead; DP techniques (e.g., DP-SGD,
Spectral-DP) offer tunable privacy—utility trade-offs with noticeable accuracy drops on complex datasets; and
federated-learning variants integrate these primitives at scale to balance accuracy and deployment constraints. No
single paradigm dominates all three axes, which motivates hybrid designs tailored to task, threat model, and system
constraints.
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Legend. “V” =used/reported; “X” =not used/not reported. Privacy columns (Data/Model/ Result) indicate whether
confidentiality is guaranteed by design (not merely assumed). Efficiency subcolumns report whether
compute/communication cost and time metrics were empirically measured.

TABLE 9. METRIC EVALUATION

PPDL METHOD EFFICACY PRIVACY EFFICIENCY
MO H e pp s, Ak Latency Dat g Resul oo SR nference Training
n Cost
CryptoNets[20] v X X X X \% \% \ X v X v X
Chabanne [21] v.oX X X X \% X \ X \% \% X X
FaceMatch[29] v X X X X \% X \ \% \% \ X
Tapas [23] vV.oX X X X % X \ \ \% \ \4 X
FCoptoNets v x  x x x X voox v % % X
[24]
CryptoNNs[25] v X X X X \% X % % X % X %
Orion [26] vV.oX X X X % \% \ \ X \ \
HE-LRM [27] vV.oX X X X \% \% \ \ \% \% X
Activate ME! [28] vV X X X X \% \ \% \ X \% \ X
Chameleon[30] X v X X X \% \ \ X \% \ \4 X
SecureNN [31] X v X X X \% \ \ \ \% \% \4 \4
Flash [37] X v X X X v v v v X v v v
Swift [38] X v X X X \% \% v v X \ \4 v
pent Shamir vV X x x v v v VX v v X
Low-Latency [34] X v X X X \% \ v v v v v v
Gazelle [32] v Vv X X X X \4 \4 \4 \% % \ X
Delphi [35] v v o X X x v v ooV v v v v X
CryptFlow [36] X Vv X Vv X v v v v v v v X
ACIES [42] X X v X X \% \% X v \% \% \% X
AdLM [43] X X v X X \% X X \ \% \% X X
Adesuyi [45] X X Vv X X v X X v v \% X X
DPSGD [44] X X v X X \% X X \ \ \ X X
GDP [46] X X v X X % X \ \ X \% X X
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Spectral-DP[47] X X vV X X v X X v v % X v
Layer-LA [48] X X Vv X X \% X X % \% \% X %
Pate [49] X X v X X % X \ \ % X X
Dahghani [50] X X Vv X X v X v v v X v X
DP-FedAvg[52] Xx x Vv X Vv V¥ X v X X v X X
DP-Fed LoRA X X v X v oV X vV X v X X
[55]
SecureAgg [51] X v X x v ¥ v v X X \ X \
FedML-HE[60] v X X X Vv \ \4 \ \ X % X \4
MPC-FL [59] X v X X Vv \ \ \ X X \% X X
HE-Key [58] vox o X x v Vv v v v X v X X
Chiron [39] X X X v X \% X \ \ \% \% \ v
Slalom [40] X X X Vv X % \ \ \ \ \4
TEE-FL [61] X X X v v ¥ \4 \ \ \4 4 X \4
DISCUSSION

To consolidate the findings of this survey, we revisit the research questions posed in Section 4 and provide evidence-
based answers.

RQ.1: What attacks can compromise the privacy of private data in machine/deep learning?

Our review shows that privacy in ML/DL can be compromised through a wide spectrum of attacks. “Reconstruction”
and “gradient inversion” attacks allow adversaries to recover raw input features from gradients or intermediate
representations. “Model inversion” exploits output confidence scores to infer representative inputs, while
“membership inference” identifies whether a specific record was used in training. In federated learning, “gradient
leakage” and “poisoning/backdoor” attacks represent particularly severe risks, as client updates can be exploited or
manipulated. Additionally, “side-channel exploits” in trusted hardware and “unintended memorization” in large
generative models expand the attack surface beyond traditional learning paradigms. These findings, summarized in
Table 8, confirm that vulnerabilities exist across all phases of the learning pipeline.

RQ.2: Can we quantify and control the rate of data leakage?

Differential privacy provides the most rigorous framework for quantifying privacy leakage through formal (e, 8)-
bounds. Advanced variants such as Rényi DP and Gaussian DP improve accounting under iterative optimization,
making them suitable for deep learning. However, empirical evidence indicates that utility degrades as stricter
privacy guarantees are enforced, particularly in large-scale or high-dimensional tasks. Recent refinements, such as
spectral perturbation (Spectral-DP) and adaptive noise allocation at the layer level, show that leakage can be
“controlled” more efficiently without incurring prohibitive accuracy loss. While complete elimination of leakage
remains infeasible, these approaches demonstrate that privacy budgets can be tuned to balance protection with
performance.

RQ.3: What is the most promising method to make DL models and data less vulnerable to attack?
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While some works such as Delphi and Low-Latency MPC achieve excellent scores across efficacy, privacy, and
efficiency, their strengths remain bounded by specific assumptions (e.g., inference-only setting, semi-honest
adversaries). Similarly, systems like HE-LRM, CrypTFlow, and TEE-FL approach near-complete coverage but still
leave certain attack vectors unaddressed. This confirms that no single method universally dominates across all
contexts. Instead, the trajectory of PPDL research points toward hybrid approaches—integrating DP, cryptographic
protocols, and system-level safeguards—as the most promising way to achieve both robustness and practicality across
diverse deployment scenarios.

RQ.4: How have PPDL techniques evolved for generative models and distributed networks?

The evolution of PPDL reflects a shift from protecting classical supervised learning to addressing vulnerabilities in
“generative models” (GANs, transformers, LLMs) and “distributed training frameworks” (federated learning). For
LLMs, privacy risks include unintended memorization and adversarial extraction. Defenses now integrate DP-SGD
for transformers, dataset deduplication, and secret filtering at inference. Federated learning has matured from DP-
FedAvg to advanced designs such as local DP-FL, DP-FedLoRA for LLM fine-tuning, and hybrid aggregation
frameworks leveraging HE, MPC, and TEEs. These developments highlight a trend toward “application-aware
PPDL”, where techniques are tailored to the practical threat surfaces of emerging architectures.

General Synthesis and Outlook

The survey reveals three overarching insights. First, privacy—utility—efficiency trade-offs remain central: stronger
privacy mechanisms often entail computational or accuracy costs that must be carefully managed. Second, effective
protection requires “layered defenses” combining DP, cryptography, and system-level measures (e.g., robust
aggregation, anomaly detection). Third, future research must address the scalability of defenses to large models and
decentralized infrastructures, particularly where regulatory or resource constraints limit the applicability of heavy
cryptographic schemes. Hybrid PPDL designs, adaptive DP accounting, and privacy-aware system optimizations offer
promising avenues for bridging the gap between theoretical guarantees and practical deployment.

CONCLUSION

This survey provided a comprehensive review of privacy-preserving deep learning (PPDL) methods, spanning
homomorphic encryption (HE), secure multi-party computation (SMPC), differential privacy (DP), secure enclaves
(SE/TEEs), and federated learning (FL) as an orchestration paradigm. We systematically analyzed how these
approaches address reconstruction, inversion, membership inference, poisoning, and hardware-level attacks, while
evaluating them under unified criteria of efficacy, privacy, and efficiency.

Our findings demonstrate that no single paradigm offers a complete solution: HE and MPC deliver strong
confidentiality but at high computational and communication cost; DP achieves formal guarantees but reduces
accuracy; SE/TEEs provide hardware-backed isolation but are vulnerable to side-channel leakage; and FL reduces
raw-data exposure yet introduces novel vulnerabilities. Hybrid methods—integrating secure aggregation, differential
privacy, and lightweight cryptographic or hardware-assisted protocols—emerge as the most promising path toward
practical deployment.

Looking ahead, three challenges remain critical. First, scaling defenses to large generative models and decentralized
infrastructures without prohibitive overhead. Second, tailoring privacy mechanisms to diverse application domains
such as healthcare, finance, and IoT. Third, bridging the gap between theoretical guarantees and real-world
robustness against adaptive adversaries.

Overall, the evolution of PPDL reflects a shift from isolated techniques toward holistic, layered strategies. By uniting
formal privacy guarantees, efficient cryptographic protocols, TEE-backed isolation, and robust system designs, future
research can enable deep learning systems that are both trustworthy and practical for sensitive, large-scale
applications.
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[30] 2018 B. Homomorphic Encryption arXiv:1805.00577
Tapas [24] AdriaG. Tapas: Tricks to Accelerate (Encrypted) CoRR, Computer Science,
2018 et al. Prediction as a Service arXiv:1806.03461
Faster Edward Faster Cryptonets: Leveraging Sparsity for Computer Science Cryptography and
Crypto. C.etal. Real-world Encrypted Inference Security, arXiv:1811.09953
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CryptoNN  J.Joshiet CryptoNN: Training Neural Networks 39th International Conference on
[26] 2019 al. over Encrypted Data Distributed Computing Systems
He-Key J. Ma et Privacy-preserving federated learning International Journal of Intelligent
[59] 2022 al. based on multi-key homomorphic Systems, doi :10.1002/int.22818
FedML-HE W.Jinet FedML-HE: An efficient homomorphic- CoRR, Computer Science,
[61] 2023 al. encryption-based privacy-preserving arXiv:2303.10837

federated learning system
Orion [27] Austin E.  Orion: A Fully Homomorphic Encryption  Proceedings of the 3oth ACM
2025 et al. Framework for Deep Learning International Conference on ASPLOS
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Activate Nges B. et Activate Me!: Designing Efficient Conference Paper on Progress in
Me! [29] al. Activation Functions for Privacy- Cryptology - AFRICACRYPT 2025
2025 Preserving Machine Learning with Fully

Secure-MPC
SecureAgg K Practical Secure Aggregation for Privacy-  Proceedings of the 2017 ACM SIGSAC
[52] 2017 Bonawitz  Preserving Machine Learning Conference on Computer and
et al. Communications Security
Chameleon O. Chameleon: A Hybrid Secure Proceedings in ACM Asia Conference on
[31] 2018 Tkachenk Computation Framework for Machine Information, Computer and
o et al. Learning Applications Communications Security

SecureNN  Sameer SecureNN: 3-Party Secure Computation Proceedings on Privacy Enhancing
[32] 2019 W. et al. for Neural Network Training Technologies
Flash [38] ArpitaP.  FLASH: Fast and Robust Framework for Privacy Enhancing Technologies
2020 et al. Privacy-preserving Machine Learning Symposium (PETS)
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