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This research presents a comprehensive framework for optimizing artificial Deep 

neural networks to predict MS5002B gas turbine efficiency using advanced multi-

objective metaheuristic optimization techniques. The study systematically compares 

three nature-inspired algorithms to determine the optimal Deep neural architecture 

that balances predictive accuracy against computational efficiency. The Secretary Bird 

Optimization Algorithm (SBOA), inspired by the unique hunting behavior of secretary 

birds, which combines strategic walking patterns with precise strikes, demonstrated 

exceptional performance in navigating the complex search space of Deep neural 

architectures. Through rigorous experimentation, SBOA yielded an optimal network 

configuration of layers with a learning rate of 0.1, achieving near-perfect prediction 

accuracy (R² = 0.999998) while maintaining the fastest training time of 4.475 

seconds among all evaluated algorithms. The research incorporates critical physical 

constraints, particularly the zero-power-to-zero-efficiency relationship, to ensure 

thermodynamic validity in all model predictions. The resulting optimized Deep neural 

network provides a powerful tool for real-time performance monitoring, operational 

optimization, and predictive maintenance in gas turbine power generation systems. 
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INTRODUCTION 

Industrial gas turbines (GTs) are valuable assets in global energy infrastructure and provide propulsion, 

mechanical drive, and power generation [1]. Effective estimation of gas turbine efficiency is critical to enhance 

energy conversion, reduce fuel economy, and ensure system reliability [2]. However, their functioning is in constant 

jeopardy due to deterioration of their performance and the effects of continuously variable changing ambient 

conditions. For instance, a case study for the M3142R/GE MS 3002 turbine indicated that efficiency drops from 

26.78% to 25.03% when the inlet temperature of the compressor is raised from 15 to 47 °C and with a power loss of 

over 2.3 MW [3]. This loss of efficiency is often the consequence of physical faults such as compressor fouling and 

turbine erosion that gradually degrade component health parameters such as flow capacity and isentropic efficiency 

[4, 5]. 

Environmental consequences of this inefficiency are significant because gas turbine power plants are major 

contributors to carbon dioxide (CO₂) emissions, one of the principal greenhouse gases [6, 7]. Recurring 

experiments have demonstrated time and again that levels of CO₂ emissions are intrinsically linked with the 

efficiency of operation; increased thermal efficiency translates directly into lower emissions per unit of power 
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generated [8, 9]. Illustrative of this, Egware and Kwasi-Effah [10] developed a model predicting that CO₂ emission 

is increased by an increase in ambient air temperature and reduced by an increase in net thermal efficiency. 

Classical methods of performance analysis rely essentially on fidelity-high thermodynamic modeling [3, 1]. 

The physics-based models constructed in tools like Matlab [3] or dedicated software like GasTurb 13 [1] are 

invaluable for simulating the Brayton cycle and examining the effects of interventions like evaporative cooling [3] 

or specific fault implantation [1]. But they are usually computation-intensive and solve complex, non-linear energy 

balance equations [3, 11], requiring complete component maps and engine-specific data [1, 12]. This renders them 

computationally costly and less accessible to the rapid, continuous nature of real-time performance prediction and 

control. 

Data-driven paradigms of artificial intelligence (AI) offer a very appealing substitute. Artificial Deep neural 

Networks (DNNs), with their renowned ability to map complex, non-linear systems without an explicit physical 

equation, are highly suited for this task [13]. While previous work has employed statistical and regression models to 

forecast emissions [10, 14] and predict performance parameters [15], and while DNNs have been applied to fault 

diagnosis [16], their application to forecasting the global efficiency of some gas turbine models, while being 

optimally designed for the underlying trade-off between predictive accuracy and computational effort, is a presently 

underdeveloped area. 

To bridge this gap, this study proposes a novel smart framework based on an DNN model to predict the 

global performance efficiency of an MS5002B gas turbine. The novelty lies beneath in addressing the inherent 

challenge of DNN design—selecting the optimal architecture—using an innovative multi-objective optimization 

approach. This approach integrates three state-of-the-art population-based algorithms to simultaneously minimize 

computational cost and maximize prediction accuracy. By yielding a Pareto front of optimal designs, this 

methodology goes beyond single-point solution to offer a principled framework for obtaining efficient, lightweight, 

and highly accurate models for real-time gas turbine performance prediction and control. 

Literature Review 

Careful component matching is necessary for more complex engine architectures. Salilew et al. [1] 

emphasized the importance of accurate off-design simulation by using commercial software like GasTurb 13, which 

involves the use of scaling factors for compressor and turbine maps [12] and the Newton-Raphson iterative scheme 

to accomplish work compatibility and mass flow [17, 18]. Realistic complexities like VIGV scheduling and secondary 

air systems for turbine cooling, required in practical simulation, were also incorporated in their work [1, 19]. 

Time degradation is a typical problem induced primarily by the harsh operation conditions of gas turbines. 

Diakunchak [5] provided a simple categorization of degradation into recoverable (e.g., through compressor 

washing) and irrecoverable losses. Common physical faults include compressor fouling, erosion, and corrosion. 

Fouling, accounting for over 70% of performance degradation, typically decreases compressor flow capacity and 

isentropic efficiency [1, 20]. Erosion decreases efficiency but can paradoxically increase flow capacity in turbines 

due to higher blade tip clearances [1, 21]. 

Salilew et al. [1] gave a complete analysis by introducing these faults into a validated model and 

demonstrating that their severity causes nearly linear departures in measurement parameters. Their monitoring is 

critical in condition monitoring because they give information on the sensitivity of specific parameters; for 

example, spool speed at low pressure (N1) and exit compressor pressure (P24) are sensitive to LPC fouling, while 

fuel flow (FF) and exit turbine pressures are most significant indicators for erosion on the power turbine [1, 22]. 

The exchange with other deteriorated components is significant too; failure in one component, say the low-pressure 

compressor, can have direct considerable impacts on the operation and performance of downstream components 

like the power turbine, a fact well illustrated through component isentropic efficiency deviation [1, 23]. 

As more world attention is placed on reducing carbon footprints, modeling and restricting power station 

emissions precisely is now a leading research agenda. The largest of the greenhouses gases emitted by natural gas-

fired gas turbines is carbon dioxide [7, 10]. Body groups like the Intergovernmental Panel on Climate Change 



Journal of Information Systems Engineering and Management 
2025, 10(4) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 2542 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 

(IPCC) and the International Energy Agency (IEA) have for decades emphasized the significance of exact emission 

accounting [10, 24]. 

To move ahead from simple emission factors, there have been sophisticated empirical models created. 

Egware and Kwasi-Effah [10] proposed a novel empirical model with a very high coefficient of determination (R² = 

0.998), correlating CO₂ mass flow rate with operational parameters like the ratio of the turbine inlet temperature to 

ambient temperature, ambient relative humidity, compressor pressure ratio, and exhaust gas mass flow rate. Their 

finding that CO₂ emissions increase with ambient temperature but decrease with rising pressure ratio and relative 

humidity provides operational guidance to plant operation [10, 25]. Certain work has used combustion equations 

based on fuel composition [10, 26] and regression analysis to estimate the relation between cycle parameters and 

emissions, forming the basis of the interdependence of thermal efficiency and environmental performance [8, 9]. 

In order to overcome the limitations of complex physical models, the field has shifted towards machine 

learning and data-driven approaches. DNNs are effective tools for uncovering complex, non-linear relationships in 

operational data. They are increasingly being applied in the gas turbine community. For instance, Qader et al. [13] 

utilized Deep neural networks for time-series forecasting of CO₂ emissions, while Tahan et al. [16] developed a 

multi-nets DNN model for automatic real-time fault diagnosis. Ibrahim et al. [15] used statistical analysis and 

regression to model gas turbine performance to an R² of 0.985 to prove that operational data can be utilized in 

order to develop prediction models that are very precise. 

Besides, model-based diagnostic techniques like Gas Path Analysis (GPA) employ thermodynamic models to 

link measurable quantities with the state of non-measurable elements [1, 27]. Salilew et al.'s [1] and others' [17, 28] 

research is a suitable example, where a model is calibrated to develop fault signatures that are used to diagnose 

faults in real engines. 

Research Gap and Novel Contribution 

The present literature provides details of gas turbine thermodynamics [3, 1], mechanisms of degradation [5, 

1], and environmental impact [8, 10], as well as the changing role of data-driven models [13, 15, 16]. It is still 

possible to identify a definite research gap area: 

While DNNs and regression models have been employed for fault diagnosis [16] and emission prediction [10, 

13], no special work is documented on the application of systematically optimized DNNs for the direct prediction of 

global efficiency. In addition, the engineering design priority of model precision versus computational 

effectiveness—crucial for real-time application—is usually overlooked. 

 

OBJECTIVES 

This paper particularly closes the aforementioned gap through explicit direct application of an DNN model to global 

efficiency prediction and through a strict multi-objective optimization approach to automatically designing the 

DNN structure, explicitly trading off prediction performance (R²) against computational cost (training time). 

 

METHODS 

This section offers a comprehensive explanation for the development of highly efficient lightweight deep neural 

networks (DNNs) for edge-based monitoring of gas turbine efficiency. The approach leverages multi-objective 

optimization methods in conjunction with neural architecture search to yield high prediction accuracy with less 

computational requirements for edge deployment. Figure 1 illustrates the whole process that consists of five distinct 

phases: data preparation, optimization setup, Deep neural Architecture design, model development, and evaluation 

& deployment. 
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Figure 1: Proposed methodology for lightweight DNN optimization for edge-based gas turbine efficiency 

monitoring 

 

DATA COLLECTION AND DESCRIPTION 

The experimental data utilized in this study were collected from an MS5002B heavy-duty gas turbine 

operating in a combined cycle power plant. The dataset encompasses twelve months of continuous operation, 

representing a complete anual cycle that captures seasonal variations in ambient conditions and their impact on 

turbine performance. Monthly averaged values were calculated from high-frequency operational data to ensure 

statistical reliability while maintaining computational tractability for model development, reffere to Table 1 for 

more information.  

The key parameters selected for this analysis include ambient temperature, generated electrical power, and 

global efficiency, as these factors fundamentally govern gas turbine performance charac- teristics. Ambient 

temperature significantly affects air density and thus compressor performance, while generated power reflects the 

operational load point. Global efficiency serves as the primary performance indicator, representing the overall 

energy conversion effectiveness of the turbine sys-tem. 

Table 1: MS5002B Gas Turbine Operational Data Description 

Parameter Symbol Unit Range Description 

Ambient Temperature 𝑇𝑚𝑜𝑦  K 282.65–307.15 Monthly average ambient temperature 

Generated Power 𝑃 kW 18991–19590 Net electrical power output 

Global Efficiency 𝜂 % 24.88–25.67 Overall thermal efficiency 

Month Index 𝑀 – 1–12 Temporal sequencing indicator 
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To ensure the developed artificial Deep Deep neural network (DNN) models adhere to fundamental 
thermodynamic principles, physical constraints were explicitly incorporated into the training framework. The most 
critical constraint implemented was the zero-power-to-zero-efficiency relationship, which reflects the fundamental 
thermodynamic reality that no useful work output implies zero efficiency. 

This constraint was mathematically formulated as:  

∀(𝑇,𝑀) ∈ ℝ2, 𝑃 = 0 ⇒ 𝜂 = 0       (1) 

To implement this constraint, supplementary data points were generated covering the operational 
temperature range (270--320 K) and all monthly indices with zero power input, forcing the Deep Deep neural 
network to learn this essential physical behavior. This approach ensures that model predictions remain physically 
plausible even when extrapolating beyond the original dataset range. 

 

DEEP NEURAL NETWORK ARCHITECTURE AND DEVELOPMENT 

A feedforward artificial Deep Deep neural network architecture was employed to model the complex 

nonlinear relationship between operational parameters and turbine efficiency. The network structure can be 

mathematically represented as: 

𝜂̂ = 𝑓𝜃(𝑇𝑚𝑜𝑦 , 𝑃,𝑀)        (2) 

where f  denotes the Deep Deep neural network function parameterized by weights and biases , moyT  represents 

ambient temperature, P indicates generated power, and M is the month index accounting for seasonal effects. The 
network employs the Rectified Linear Unit (ReLU) activation function in hidden layers due to its advantages in 
mitigating vanishing gradient problems and computational efficiency. The output layer utilizes a linear activation 
function appropriate for regression tasks. The mean squared error (MSE) was selected as the loss function to 
penalize large prediction errors, which is particularly important for efficiency prediction in energy systems. 

 

MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK 

Problem formulation and objectives 

The Deep Deep neural Architecture design was formulated as a multi-objective optimization problem to 
simultaneously address two competing objectives: predictive accuracy and computational efficiency. This approach 
recognizes the practical trade-off between model complexity and deployment feasibility in industrial applications. 

The optimization objectives were formally defined as: 

{
Maximize 𝑅2(𝜂̂, 𝜂) = 1 −

∑ (𝑛
𝑖=1 𝜂𝑖−𝜂̂𝑖)

2

∑ (𝑛
𝑖=1 𝜂𝑖−𝜂‾ )2

Minimize 𝑡𝑡𝑟𝑎𝑖𝑛 = computational time for model training
   (3) 

where 𝑅2 quantifies the proportion of variance explained by the model, and 𝑡𝑡𝑟𝑎𝑖𝑛 represents the practical 
computational cost, a crucial consideration for real-time applications and model retraining scenarios. 

Optimization Algorithms 

Three state-of-the-art metaheuristic algorithms were selected for comparative analysis based on 
their distinct search characteristics and proven performance in complex optimization landscapes: 

• Multi-Objective Grey Wolf Optimizer (MOGWO):  

This algorithm simulates the social hierarchy and hunting behavior of grey wolf packs. The population is 
divided into alpha, beta, delta, and omega wolves, with the first three guiding the search direction [33, 34]. 
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MOGWO maintains an external archive of non-dominated solutions and employs a leader selection 
mechanism to preserve diversity along the Pareto front. 

  Mathematical Model: The social hierarchy is mathematically modeled where the alpha (𝛼), beta (𝛽), and 
delta (𝛿) wolves represent the best solutions. The position update is governed by: 

𝐷⃗⃗ = |𝐶 ⋅ 𝑋 𝑝(𝑡) − 𝑋 (𝑡)|

𝑋 (𝑡 + 1) = 𝑋 𝑝(𝑡) − 𝐴 ⋅ 𝐷⃗⃗ 
     (4)  

  where 𝐴  and 𝐶  are coefficient vectors calculated as: 

  
𝐴 = 2𝑎 ⋅ 𝑟 1 − 𝑎 

𝐶 = 2 ⋅ 𝑟 2
       (5) 

  with 𝑎  decreasing linearly from 2 to 0 over iterations, and 𝑟 1, 𝑟 2 being random vectors in [0,1]. The multi-
objective adaptation incorporates Pareto dominance and archive maintenance mechanisms. 

• Secretary Bird Optimization Algorithm (SBOA): 

 Inspired by the foraging behavior of secretary birds, SBOA mimics their spiral movement patterns and 
food-searching strategies [35]. The algorithm features a unique three-stage hunting strategy with adaptive 
parameter tuning. 

  Mathematical Model: The algorithm operates in three distinct phases: 

  Phase 1 - Search Prey (Exploration): 

𝑋1 = 𝑋(𝑖) + (𝑋𝑟𝑎𝑛𝑑1 − 𝑋𝑟𝑎𝑛𝑑2) ⋅ 𝑅1    (6) 

  where 𝑅1 is a random vector and 𝑋𝑟𝑎𝑛𝑑1, 𝑋𝑟𝑎𝑛𝑑2 are randomly selected population members. 

  Phase 2 - Approach Prey (Transition): 

  𝑋1 = 𝐵𝑒𝑠𝑡𝑃 + exp ((
𝑡

𝑇
)
4

) ⋅ (𝑅𝐵 − 0.5) ⋅ (𝐵𝑒𝑠𝑡𝑃 − 𝑋(𝑖))  (7) 

  where 𝑅𝐵 is a random Brownian motion vector and the exponential term provides adaptive scaling. 

  Phase 3 - Attack Prey (Exploitation): 

  𝑋1 = 𝐵𝑒𝑠𝑡𝑃 + 𝐶𝐹 ⋅ 𝑋(𝑖) ⋅ 𝐿𝑒𝑣𝑦(𝑑𝑖𝑚)    (8) 

  with convergence factor: 

  𝐶𝐹 = (1 −
𝑡

𝑇
)
2𝑡/𝑇

      (9) 

  and Lévy flight distribution for enhanced local search: 

𝐿𝑒𝑣𝑦(𝛽) =
𝑢

|𝑣|1/𝛽 , 𝑢 ∼ 𝑁(0, 𝜎𝑢
2), 𝑣 ∼ 𝑁(0, 𝜎𝑣

2)   (10)  

  Escape Strategy: The algorithm incorporates predator avoidance mechanisms: 

𝑋2 = 𝐵𝑒𝑠𝑡𝑃 + (1 −
𝑡

𝑇
)2 ⋅ (2𝑅 − 1) ⋅ 𝑋(𝑖) (Hiding)

𝑋2 = 𝑋(𝑖) + 𝑅 ⋅ (𝑋𝑟𝑎𝑛𝑑𝑜𝑚 − 𝐾 ⋅ 𝑋(𝑖)) (Fleeing)
   (11) 

• Spotted Hyena Optimizer (SHO):  

Based on the hunting behavior of spotted hyenas, SHO employs a social hierarchy and collaborative 
hunting strategy [36, 37, 38]. The algorithm is particularly effective in avoiding local optima through its 
encirclement mechanism. 

  Mathematical Model: The hunting behavior is modeled through three main operations: 

  Encircling Prey: 
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𝐷⃗⃗ ℎ = |𝐵⃗ ⋅ 𝑃⃗ 𝑝 − 𝑃⃗ (𝑡)|

𝑃⃗ (𝑡 + 1) = 𝑃⃗ 𝑝(𝑡) − 𝐸⃗ ⋅ 𝐷⃗⃗ ℎ
     (12) 

  where 𝑃⃗ 𝑝 is the prey position, and 𝐵⃗ , 𝐸⃗  are coefficient vectors. 

  Hunting Mechanism: The best search agent location is determined, and other agents update their 
positions: 

𝐷⃗⃗ ℎ = |𝐵⃗ ⋅ 𝑃⃗ ℎ − 𝑃⃗ 𝑘|

𝑃⃗ 𝑘 = 𝑃⃗ ℎ − 𝐸⃗ ⋅ 𝐷⃗⃗ ℎ

𝐶 ℎ = 𝑃⃗ 𝑘 + 𝑃⃗ 𝑘+1 + ⋯+ 𝑃⃗ 𝑘+𝑁

     (13) 

  where 𝑁 represents the number of spotted hyenas calculated as: 

𝑁 = count𝑛𝑜𝑠(𝑃⃗ ℎ, 𝑃⃗ ℎ+1, 𝑃⃗ ℎ+2, … , (𝑃⃗ ℎ + 𝑀⃗⃗ ))    (14) 

  with 𝑀⃗⃗  being a random vector in [0.5,1]. 

  Attacking Prey (Exploitation): The attack process is modeled as: 

𝑃⃗ (𝑡 + 1) =
𝐶 ℎ

𝑁
       (15) 

  where 𝐶 ℎ represents the cluster of all best solutions. 

  Search for Prey (Exploration): The 𝐸⃗  vector controls exploration with random values greater than 1 or 
less than -1 to force agents to move away from reference points. 

  Parameter Adaptation: 

ℎ⃗ = 5 − (𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ×
5

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
)    (16) 

  The coefficient vectors are updated as: 

𝐸⃗ = 2 ⋅ ℎ⃗ ⋅ 𝑟 1 − ℎ⃗ 

𝐵⃗ = 2 ⋅ 𝑟 2
       (17) 

  where ℎ⃗  decreases linearly from 5 to 0, and 𝑟 1, 𝑟 2 are random vectors in [0,1]. 

All three algorithms employ sophisticated Pareto archive mechanisms to maintain diverse non-dominated 
solutions throughout the optimization process. The archive maintenance includes density estimation using grid-
based approaches and niching techniques to ensure uniform distribution along the Pareto front. The selection 
pressure is balanced through tournament selection based on Pareto dominance and crowding distance metrics. 

Implementation and Parameter Configuration 

Each optimization algorithm was implemented with careful parameter tuning to ensure fair comparison and 
optimal performance. As presented in Table 2, the population-based approaches were configured with 10 
individuals to maintain diversity while ensuring computational feasibility. The maximum iteration count was set to 
10 generations, allowing sufficient convergence time while preventing excessive computation. 

To ensure statistical reliability and account for the stochastic nature of metaheuristic algorithms, 5 
independent runs were performed for each method, with results analyzed for consistency and significance. 

Table 2: Optimization Algorithms Configuration Parameters 

Parameter MOGWO SHO SBOA 

Population Size 10 10 10 

Maximum Iterations 10 10 10 

Independent Runs 5 5 5 

Search Space Bounds 

Hidden Layers 3 
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Parameter MOGWO SHO SBOA 

Neurons per Layer 1–128 

Learning Rate 0.001–0.1 

A comprehensive evaluation framework was established to assess both the predictive accuracy and 

computational efficiency of the developed models. The coefficient of determination R2 was employed as the primary 
accuracy metric, providing insight into the proportion of variance explained by the model. The root mean square 
error (RMSE) complemented this analysis by quantifying the absolute prediction error in efficiency percentage 
units. 

Training time was measured from initialization to convergence, including both forward and backward 
propagation phases. All timing measurements were conducted on standardized hardware to ensure comparability. 
Cross-validation techniques were employed to mitigate overfitting, with the dataset partitioned to maintain 
temporal consistency in the monthly sequence. 

All computational experiments were conducted using Python 3.8 with TensorFlow 2.6 for Deep Deep neural 
network implementation and scikit-learn for performance metrics calculation. The hardware platform consisted of 
a workstation equipped with an Intel Core i7-1355U (12 CPUs), 1.7 GHz, and 32 GB DDR4 RAM. 

 

RESULTS AND DISCUSSION 

The performance of three multi-objective optimization algorithms, MOGWO, SBOA and SHO, was evaluated 

for the task of Deep Deep neural architecture design, with the dual objectives of maximizing the R2 score and 
minimizing training time. 

The complete Pareto front analysis in Table 3 reveals the full spectrum of solutions discovered by each 
algorithm. MOGWO's diverse solutions span from compact architectures (M4: [16, 8, 5]) to more complex networks 
(M1: [22, 43, 40]), demonstrating its broad exploration of the search space. In contrast, SHO's solutions 
consistently feature larger architectures with 107-128 neurons in the first layer, reflecting its focus on the high-
accuracy region. SBOA converged to a single, efficient bottleneck architecture that represents a specialized solution. 

Table 3: Detailed Pareto Front Solutions Analysis 

Algorithm Solution ID Architecture Learning Rate R2 Score Time (s) 

MOGWO M1 [22, 43, 40] 0.03877 0.999995 4.563 

M2 [50, 47, 12] 0.02564 0.999988 4.531 

M3 [20, 12, 31] 0.02833 0.999955 4.509 

M4 [16, 8, 5] 0.01772 0.999377 4.505 

SHO S1 [128, 36, 22] 0.09706 0.999998 4.721 

S2 [107, 57, 28] 0.05601 0.999975 4.663 

S3 [128, 38, 28] 0.07036 0.999999 4.767 

SBOA B1 [120, 4, 4] 0.10000 0.999998 4.475 

The MOGWO algorithm demonstrated the strongest exploratory capabilities, this diversity is valuable for 
decision-makers who may have additional, unmodeled constraints, such as a preference for simpler architectures. 

However, this diversity comes at a cost: the significant spread in R2 scores (from 0.999377 to 0.999995) indicates 
inconsistent solution quality, and its average training time was not the most efficient. 

The detailed comparison of individual best solutions shows that SHO achieved the highest accuracy with 

architecture [128, 38, 28], while SBOA provided the fastest training time with its compact [120, 4, 4] architecture. 

This highlights the fundamental trade-off between model complexity and computational efficiency in Deep neural 

Architecture design. 

The characteristics and practical recommendations summarized in Table 4 provide guidance for algorithm 

selection based on specific application requirements. MOGWO is ideal when architectural diversity and multiple 
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options are valued, SBOA excels in resource-constrained environments, and SHO is superior for maximum 

accuracy attainment. 

Table 4: Algorithm Characteristics and Trade-off Analysis 

Algorithm Key Strength Recommended Use Case 

MOGWO High solution diversity providing multiple 
architectural choices 

When exploring various model complexities is 
preferred 

SHO Peak predictive accuracy with robust 
architectures 

Research applications where accuracy is the 
primary concern 

SBOA Computational efficiency with consistent high 
performance 

Production systems requiring fast inference and 
good accuracy 

In contrast to the diverse approaches of MOGWO and SHO, the SBOA algorithm converged to a single Pareto 

solution. This suggests a highly exploitative search behavior, focusing computational effort on refining one high-

quality candidate. This candidate proved to be the most balanced solution overall, achieving a near-perfect R2 score 

of 0.999998 with the fastest training time. The architecture [120, 4, 4] discovered by SBOA is particularly notable, 

which could indicate that a model with a large first layer and subsequent bottleneck layers represents an efficient 

structural pattern for this specific problem domain. 

The SHO algorithm secured the top position for pure predictive accuracy, finding the model with the highest 

R2 score of 0.999999. This confirms its strong capability in exploiting high-performance regions of the search 

space. However, this focus on peak performance resulted in the highest computational overhead, with training 

times consistently above 4.66 seconds across all solutions. The architectural pattern emerging from SHO solutions 

suggests that larger, more complex networks (128, 38, 28) are necessary to achieve the absolute best performance, 

though at significant computational cost. 

These trade-offs are visually confirmed in the Pareto plot shown in Figure 2, which illustrates the objective 

space exploration achieved by each algorithm. The plot validates the quantitative findings, showing MOGWO's 

diverse solution distribution across the Pareto front, SBOA's concentrated high-efficiency solution in the optimal 

region, and SHO's cluster of high-accuracy solutions with longer training times. 

 

Figure 2: Pareto solution of optimization algorithms 

The SBOA-tuned DNN model demonstrated superior predictive performance in the prediction of gas turbine 

efficiency. The optimal network architecture achieved after the SBOA tuning is an input layer with 120 neurons and 

two hidden layers with four neurons each ([120, 4, 4]). This light-weight architecture exhibited a fantastic trade-off 

between model complexity and prediction performance. The optimal learning rate was 0.1, thus enabling very quick 

convergence without oscillation or divergence. 
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Statistical outcome of the best tuned model is presented in Table5. The achieved coefficient of determination 

R2 of 0.999896 indicates the model explains nearly 100% of the variability in gas turbine efficiency, and Root Mean 

Square Error (RMSE) value of 0.002771 confirms the negligible difference between actual and predicted values. 

The value of R2 acquired is close to the optimal acquired value during the optimization process (0.999998), which 

confirms the reliability and precision of the SBOA in parameter tuning. The smooth overlap of actual and predicted 

tendencies is apparent from Figure 3, where two lines almost overlap, revealing a virtually complete degree of 

correlation. 

Table 5: Optimal SBOA-DNN model results for gas turbine efficiency prediction. 

Month Actual Efficiency Predicted Efficiency Error 

Jan 25.670 25.670 0.000 

Feb 25.650 25.653 -0.003 

Mar 25.510 25.507 0.003 

Apr 25.360 25.363 -0.003 

May 25.220 25.219 0.001 

Jun 25.030 25.027 0.003 

Jul 24.880 24.882 -0.002 

Aug 24.950 24.946 0.004 

Sep 25.120 25.123 -0.003 

Oct 25.330 25.331 -0.001 

Nov 25.540 25.539 0.001 

Dec 25.640 25.635 0.005 

 

 

Figure 3: Actual vs. predicted gas turbine efficiency 

Other than that, the training and validation loss curves provided in Figure 4 confirm the good generalization 

capability of the model. The two losses drop steeply in the initial epochs and come to a plateau nearly zero, showing 

successful learning and the absence of overfitting. The almost identical pattern of the training and validation losses 

confirms that the trained DNN not only fits the training data perfectly but also responds consistently to new 

instances. 
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In general, the SBOA-optimized DNN exhibited almost perfect performance at low network complexity. 

Model stability and reliability ensure that it is extremely well-suited for real-time application in gas turbine 

monitoring and gas turbine operation optimizing. The results validate the effectiveness of the Secretary Bird 

Optimization Algorithm as a metaheuristic algorithm for deep learning model fine-tuning in energy efficiency 

prediction applications. 

 

 

Figure 4: Training and validation loss curves for the SBOA-optimized DNN model 

 

CONCLUSION  

The study efficiently demonstrated the application of multi-objective optimization algorithms within Deep 
Deep neural Architecture design in MS5002B gas turbine efficiency prediction. Comparison revealed varied 
optimization characteristics within MOGWO, SBOA, and SHO algorithms. The SBOA algorithm was found to be the 
most practical option, with a perfect balance between predictive accuracy (R2 = 0.999998) and computational 
tractability (training time = 4.475 seconds). Its novel Pareto solution with the [120, 4, 4] architecture demonstrated 
that a bottleneck Deep Deep neural network architecture that is well optimized can represent complex 
thermodynamic relationships and remains computationally feasible. 

The inclusion of physical limits ensured predictions made by the model to fall within physically realizable 
range, enhancing practical utility for industrial applications. The approach developed here provides a valid 
foundation for smart performance monitoring and optimization of gas turbine systems towards improved power 
generation energy efficiency. 
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