Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Implementing Infrastructure as Code (IaC) with Terraform for
Scalable Cloud Deployments

Naveen Kumar Kasarla
Independent Researcher, USA

ARTICLE INFO ABSTRACT

Cloud infrastructure management through manual processes creates significant
operational bottlenecks for engineering teams attempting to deliver software
Revised: 19 Sept 2025 efficiently. Traditional provisioning requires submitting requests through
Accepted: 26 Sept 2025 ticketing systems and waiting extended periods while operations staff manually
configure resources through cloud provider interfaces. Configuration
inconsistencies emerge when different team members provision similar
environments using varying procedures and timing. Manual setup practices
produce configuration drift where development, staging, and production
environments diverge from their intended specifications over time. Teams
encounter deployment failures caused by subtle environmental differences that
consume substantial debugging effort rather than productive feature
development activities. Infrastructure as Code solves these operational problems
by allowing teams to specify cloud resources through configuration files that
describe what infrastructure should exist rather than how to build it. Terraform
offers unified provisioning across different cloud platforms while integrating
with version control systems that maintain historical records of infrastructure
changes. This declarative framework removes dependencies on complex scripts
that fail when cloud providers modify their programming interfaces. Version-
controlled infrastructure definitions enable code review processes that identify
configuration errors before deployment while providing audit trails for system
modifications. Teams can implement rollback procedures for problematic
changes using standard version control workflows. Organizations implementing
Infrastructure as Code report improved deployment consistency and reduced
provisioning times across multiple cloud environments while eliminating manual
configuration errors that typically cause production incidents.

Received: 12 Aug 2025

Keywords: Infrastructure As Code, Terraform Implementation, Cloud
Automation, Scalable Deployments, DevOps Integration

1. Introduction

Setting up cloud infrastructure manually drives everyone crazy because teams waste months clicking
through web interfaces instead of building products that customers actually want to buy. Engineers
submit requests for new environments and wait three weeks while operations staff manually configure
servers through tedious point-and-click procedures. Meanwhile, project deadlines slip and competitors
ship features faster [1].

Every organization follows the same broken process. Developers need testing environments, so they
create tickets and wait. Operations teams eventually get around to provisioning resources, but by then,

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 986
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

requirements have changed and everything needs rebuilding. Environments end up configured differently
because different people handled setup at different times using slightly different procedures.
Microservices make this chaos exponentially worse. Applications now depend on dozens of
interconnected services that need complex networking, service discovery, and load balancing
configurations. Manually coordinating these dependencies across multiple cloud regions becomes
impossible when dealing with hundreds of moving pieces that constantly change.

Configuration drift happens naturally when engineers make quick fixes directly in production without
updating documentation. Development works fine, staging behaves strangely, and production breaks in
mysterious ways because each environment diverged from its intended configuration over months of ad-
hoc modifications.

Infrastructure as Code fixes these coordination problems by letting teams define what they want in simple
configuration files instead of figuring out complicated provisioning steps. Terraform provides consistent
interfaces across Amazon, Microsoft, and Google clouds while tracking changes through version control
just like application code [3].

The shift from clicking interfaces to writing code eliminates the tribal knowledge problem, where only
certain people know how to provision specific resources. Teams can review infrastructure changes before
deployment while maintaining complete histories of what changed when things go wrong. Self-service
environment creation becomes possible without waiting for operations tickets or manual coordination
between different teams.

Challenge Impact
Manual Configuration Extended provisioning times and human error introduction
Environmental inconsistencies are causing deployment

Configuration Drift failures

Ticket-Based Workflows | Development bottlenecks and delayed feature delivery

Lack of Version Control | Inability to track changes or implement rollbacks

Provider-Specific Scripts | Vendor lock-in and maintenance overhead

Knowledge Silos Operational dependencies on individual expertise
Table 1: Infrastructure Provisioning Challenges [1,3]

1.1 Terraform Architecture Components

Terraform breaks infrastructure management into separate pieces that handle different parts of cloud
deployment without creating a monolithic system that becomes impossible to debug. Configuration files
use HashiCorp's domain-specific language that reads almost like English rather than requiring complex
programming knowledge. Teams describe what infrastructure they want instead of writing scripts that
specify step-by-step provisioning procedures [2].

State files track what actually exists in cloud accounts versus what configuration files say should exist.
This comparison enables Terraform to figure out what changes are needed without accidentally destroying
existing resources or creating duplicates. Remote state storage prevents the classic problem where
multiple engineers step on each other's changes when working on shared infrastructure simultaneously.
Provider plugins translate Terraform's generic syntax into cloud-specific API calls that actually create
resources. Identical configuration syntax works across Amazon, Microsoft, and Google platforms because
provider plugins translate generic Terraform code into platform-specific API calls automatically. This
flexibility prevents vendor dependency while enabling cost-effective workload distribution across multiple
cloud providers for better pricing and redundancy planning.

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 987
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Resource blocks define individual infrastructure components like servers, databases, and networking
equipment using consistent syntax regardless of which cloud provider hosts them. Dependencies get
resolved automatically through Terraform's internal graph system that figures out creation order without
requiring manual sequencing [7].

Variables enable reusable configurations that adapt to different environments without copying and
pasting code everywhere. Teams create modules that accept parameters for customizing infrastructure
characteristics while maintaining architectural consistency across multiple deployments and
environments.

Output values expose information about created resources for consumption by other Terraform
configurations or external systems. This modularity enables different teams to manage separate
infrastructure components that integrate through well-defined interfaces rather than requiring
centralized management of everything.

Component Function

Configuration Files | Define desired infrastructure state declaratively

Track resource relationships and current deployment
State Management p ploy

status
Provider Plugins Interface with cloud platforms and services
Resource Blocks Specify individual infrastructure components

Variable Definitions | Enable parameterized and reusable configurations

Output Values Expose resource information for external consumption

Table 2: Terraform Core Components [2,7]

1.2 Multi-Cloud Provisioning Strategies

Microservices architectures create networking nightmares that nobody talks about until deployment day
arrives. Suddenly, teams discover their containerized applications need service meshes, load balancers,
and discovery mechanisms spread across different cloud providers. Manual coordination breaks down
completely when dealing with hundreds of services that change constantly based on business
requirements and scaling demands [4]. Each cloud provider handles networking differently, so teams end
up learning Amazon's VPC quirks, Azure's virtual network limitations, and Google Cloud's firewall
peculiarities. Engineers waste months figuring out how to make identical applications work across
different platforms while maintaining security policies that satisfy compliance auditors.

Strategy Application
Provider Abstraction Unified configuration syntax across different clouds
Resource Standardization | Consistent naming and tagging conventions
Environment Isolation Separate state files for different deployment stages
Geographic Distribution | Regional deployments for latency optimization
Disaster Recovery Cross-cloud backup and failover capabilities
Cost Optimization Dynamic resource allocation based on pricing

Table 3: Multi-Cloud Deployment Strategies [4,8]

Geographic distribution becomes essential when customers complain about slow response times from
distant data centers. Teams need identical infrastructure deployed across multiple continents without
spending years configuring each region manually. Terraform modules enable this replication while

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 088
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

accounting for regional differences in available instance types and regulatory requirements. Environment
separation prevents the classic problem where someone accidentally destroys production while testing
configuration changes in development. Different state files and workspace isolation ensure that
experimental modifications stay contained within appropriate boundaries. Teams can experiment freely
without risking business-critical infrastructure during normal development cycles [8]. Cost management
gets interesting when teams can shift workloads between providers based on current pricing and resource
availability. Some applications run cheaper on AWS while others benefit from Azure's specialized services.
Terraform configurations enable dynamic provider selection based on cost models and performance
requirements rather than vendor lock-in decisions.

Disaster recovery planning becomes realistic when infrastructure exists across multiple cloud providers
automatically. Regional outages happen regularly, so having standby infrastructure ready for immediate
activation prevents those embarrassing downtime incidents that make headlines. Terraform automation
coordinates failover procedures faster than manual emergency response protocols.

2, State Management and Collaboration

State files create the biggest headache in team Terraform deployments because everyone needs access to
the current infrastructure status without stepping on each other's changes. Local state files work fine for
individual experimentation, but become disasters when multiple engineers try to modify shared
infrastructure simultaneously. Someone inevitably overwrites critical state information or creates
resource conflicts that require manual intervention [1].

Remote state backends solve collaboration problems by storing state files in shared locations like Amazon
S3 buckets or Terraform Cloud workspaces. Teams can configure automatic state locking that prevents
concurrent modifications while ensuring everyone works with the current infrastructure status. This
centralized approach eliminates the classic problem where engineers accidentally destroy resources
because they were working with outdated state information.

State file corruption represents a serious operational risk because losing the state means losing track of
existing infrastructure entirely. Remote backends provide versioning and backup capabilities that enable
recovery when state files get corrupted or accidentally deleted. Teams can roll back to previous state
versions when deployments go wrong or infrastructure modifications create unexpected problems.
Workspace isolation enables different teams to manage separate environments through distinct state
boundaries while sharing common Terraform configurations. Development, staging, and production
environments maintain independent state files that prevent accidental cross-environment modifications.
This separation allows autonomous team management while preserving architectural consistency through
shared modules and standardized deployment procedures.

State inspection capabilities help troubleshoot deployment problems by providing detailed visibility into
resource relationships and metadata. Teams can examine the current state without making modifications
while understanding how Terraform tracks dependencies between different infrastructure components
during planning and application phases.

2.1 CI/CD Pipeline Integration

Automated pipeline integration transforms Terraform deployments from manual procedures into
systematic workflows that include testing, validation, and approval gates before infrastructure
modifications reach production environments. Jenkins, GitLab, and GitHub Actions provide pipeline
frameworks that execute Terraform commands automatically while capturing detailed logs of all
deployment activities [5].

Pipeline stages typically include initialization, validation, planning, and application phases that mirror
manual Terraform workflows while adding automated testing and approval controls. Teams can configure

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 989
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Terraform plan outputs as pipeline artifacts that show proposed changes before human reviewers approve
actual infrastructure modifications.

Pipeline previews eliminate unexpected infrastructure changes by showing exactly what modifications will
occur before human reviewers approve deployment execution. Configuration validation through TFLint
and Terratest identifies syntax problems, policy violations, and architectural inconsistencies during build
phases rather than after resources reach production environments. These automated checks enforce
naming conventions, tagging requirements, and security standards consistently across all deployments
without manual review overhead.

Secret management becomes critical when pipelines need access to cloud provider credentials and
sensitive configuration values. HashiCorp Vault, AWS Secrets Manager, and similar tools provide secure
credential storage that prevents hardcoding sensitive information in Terraform configurations or pipeline
definitions [6].

Deployment approvals enable human oversight for critical infrastructure changes while allowing
automatic deployment of routine modifications like scaling adjustments or configuration updates. Teams
can configure approval requirements based on change scope, environment criticality, and business impact
while maintaining deployment velocity for non-critical modifications.

Pattern Implementation
Pipeline Automation Automated Terraform plan and apply stages
Change Approval Human review gates for production deployments
Testing Integration Validation checks before infrastructure changes
Rollback Mechanisms Automated reversion for failed deployments
Environ.ment Progressive deployment across staging environments
Promotion
Secret Management Secure handling of credentials and sensitive data

Table 4: CI/CD Integration Patterns [5,6]

2.2 Security and Compliance Frameworks

Automated infrastructure deployment creates security blind spots where traditional approval workflows
used to catch policy violations before resources reach production environments. Teams need
programmatic validation through policy-as-code tools that enforce organizational security standards
without slowing down deployment velocity [4].

Permission management becomes complex when balancing developer self-service needs against security
boundaries that prevent unauthorized access to critical infrastructure components. Identity systems must
enable appropriate autonomy while maintaining oversight capabilities that satisfy security requirements
across different operational environments. Industry compliance demands continuous monitoring because
infrastructure modifications can introduce regulatory violations that remain undetected until formal audit
periods. Automated configuration analysis identifies non-compliant resources while generating
documentation that regulatory frameworks require for ongoing compliance verification.

Data protection requires systematic encryption enforcement across all infrastructure components because
inconsistent manual implementation creates vulnerability gaps. Standardized security policies can be
embedded automatically into Terraform configurations without requiring specialized security knowledge
from development teams. Forensic capabilities depend on comprehensive change tracking that records
infrastructure modification details for security incident response and regulatory investigations. Audit

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 990
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

systems must maintain searchable historical records that identify specific actors, timing, and affected
resources during compliance reviews or security breach analysis [8].

3. Operational Efficiency Metrics

Organizations implementing intelligent operations report substantial improvements in operational
metrics that directly impact business performance and customer satisfaction. Mean time to detection
decreases dramatically when automated pattern recognition identifies developing problems before they
escalate into service disruptions. Teams catch issues during early development phases rather than after
customers experience degraded performance or complete service outages [1]. Resolution times improve
significantly as automated correlation eliminates hours of manual investigation that previously consumed
engineering resources during critical incidents. Engineers spend less time hunting through disparate
monitoring tools and log files while automated systems provide targeted insights about failure origins and
recommended remediation strategies. This efficiency gain allows teams to restore services faster while
reducing the business impact associated with extended outages. False positive reduction transforms
operational workflows by eliminating alert fatigue that overwhelms monitoring teams with irrelevant
notifications. Traditional threshold-based monitoring generates thousands of alerts daily, most
representing normal system variations rather than genuine problems requiring immediate attention.
Intelligent filtering reduces alert volumes by identifying patterns that distinguish routine operational
changes from actual threats requiring investigation. Resource optimization develops naturally when
teams transition from emergency response patterns toward strategic capacity management and
architectural improvement activities. Engineering staff who previously handled constant operational
crises can redirect attention toward system enhancements, performance optimization, and scaling
strategies that address root causes of recurring problems. This forward-thinking orientation creates
cumulative improvements where systems gain resilience and operational efficiency through sustained
development efforts [12]. Operational cost reduction occurs through multiple mechanisms, including
reduced overtime expenses, decreased infrastructure waste, and improved resource allocation efficiency.
Automated incident response eliminates night-shift escalations for routine problems while predictive
analytics enable right-sized infrastructure provisioning that avoids both over-provisioning costs and
under-provisioning performance problems.Team productivity increases as engineers develop expertise in
strategic system design rather than spending careers managing operational crises. Knowledge retention
improves when institutional wisdom gets captured in automated playbooks and correlation rules rather
than remaining trapped in individual experience. This systematization enables more consistent incident
response while reducing dependencies on specific team members during critical operational periods.

Metric Improvement Area

Deployment Speed Reduced provisioning time through automation

Configuration Consistency | Eliminated environmental drift across stages

Change Visibility Enhanced audit trails through version control

Error Reduction Decreased manual configuration mistakes

Improved collaboration through shared
definitions

Increased system stability through
standardization

Table 5: Operational Efficiency Metrics [1,8]

Team Productivity

Infrastructure Reliability

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 991
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Conclusion

Automated provisioning cuts out the manual setup tasks that waste engineering time and slow down
product delivery. Teams stop burning weeks on repetitive infrastructure work and start building features
that customers actually care about using. Team dynamics change fundamentally when infrastructure
stops being mysterious operations, knowledge that only certain people understand. Everyone can read
configuration files and propose changes through normal code review processes. Version control shows
exactly what happened when deployments break, making troubleshooting faster and less stressful.
Success requires mental shifts from clicking cloud provider interfaces to writing declarative specifications.
Teams must build workflows where automation handles predictable provisioning tasks while humans
make judgment calls on security policies and compliance requirements that need business context.
Terraform keeps evolving with new cloud providers and deployment features, but core concepts stay
stable. Infrastructure becomes code that deploys consistently across different environments without
requiring manual configuration each time. Teams that master this gain speed advantages over
competitors who are still doing everything manually.

References

[1] Venkat Marella, "Implementing Infrastructure as Code (IaC) for Scalable DevOps Automation in
Hybrid Cloud," Journal of Sustainable Solutions, ResearchGate, Dec. 2024.
https://www.researchgate.net/publication/387058455_Implementing_ Infrastructure_as_Code_IaC_for
_Scalable_DevOps_Automation_in_Hybrid_ Cloud

[2] Naga Murali Krishna Koneru, "Infrastructure as Code (IaC) for Enterprise Applications: A
Comparative Study of Terraform and CloudFormation," American Journal of Technology, ResearchGate,
May 2025.
https://www.researchgate.net/publication/391714883_Infrastructure_as_Code_IaC_for_Enterprise_Ap
plications_A_ Comparative_Study_of Terraform_and_CloudFormation

[3] Sachin Sudhir Shinde, "Implementing infrastructure as code with Terraform for cloud-based services,"
World Journal of Advanced Engineering Technology and Sciences, Jun. 2025.
https://journalwjaets.com/sites/default/files/fulltext_pdf/WJAETS-2025-1161.pdf

[4] Perumalsamy Ravindran, "Automating Multi-Cloud Infrastructure: Leveraging Terraform and IaC for
Scalable, Secure, and Efficient Cloud Management," IJSRCSEIT, Mar. 2025.
https://ijsrcseit.com/index.php/home/article/view/CSEIT25112704

[5] Taiwo Joseph Akinbolaji et al., "Automation in Cloud-Based DevOps: A Guide to CI/CD Pipelines and
Infrastructure as Code (IaC) with Terraform and Jenkins," WJAETS, Nov. 2024.
https://wjaets.com/sites/default/files/WIJAETS-2024-0542.pdf

[6] "Continuous Integration and Continuous Deployment Pipeline Automation Using AWS, Jenkins,
Ansible, Terraform, Docker, Grafana, Prometheus," International Journal of Research Publication and
Reviews, Feb. 2024.

https://ijrpr.com/uploads/V5ISSUE2/IJRPR22767.pdf

[6] "Continuous Integration and Continuous Deployment Pipeline Automation Using AWS, Jenkins,
Ansible, Terraform, Docker, Grafana, Prometheus,” International Journal of Core Engineering &
Management, 2021.
https://ijcem.in/wp-content/uploads/2024/08/INFRASTRUCTURE-AS-CODE-IAC-BEST-PRACTICES-
USING-TERRAFORM-OR-AWS-CLOUDFORMATION-FOR-MACHINE-LEARNING-1.pdf

[7] Zoe Vasileiou et al., "A knowledge-based approach for guided development of Infrastructure as Code,"
Springer Nature Link, Jun. 2025.

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 992
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

https://www.researchgate.net/publication/387058455_Implementing_Infrastructure_as_Code_IaC_for_Scalable_DevOps_Automation_in_Hybrid_Cloud
https://www.researchgate.net/publication/387058455_Implementing_Infrastructure_as_Code_IaC_for_Scalable_DevOps_Automation_in_Hybrid_Cloud
https://www.researchgate.net/publication/391714883_Infrastructure_as_Code_IaC_for_Enterprise_Applications_A_Comparative_Study_of_Terraform_and_CloudFormation
https://www.researchgate.net/publication/391714883_Infrastructure_as_Code_IaC_for_Enterprise_Applications_A_Comparative_Study_of_Terraform_and_CloudFormation
https://journalwjaets.com/sites/default/files/fulltext_pdf/WJAETS-2025-1161.pdf
https://ijsrcseit.com/index.php/home/article/view/CSEIT25112704
https://wjaets.com/sites/default/files/WJAETS-2024-0542.pdf
https://ijrpr.com/uploads/V5ISSUE2/IJRPR22767.pdf
https://ijcem.in/wp-content/uploads/2024/08/INFRASTRUCTURE-AS-CODE-IAC-BEST-PRACTICES-USING-TERRAFORM-OR-AWS-CLOUDFORMATION-FOR-MACHINE-LEARNING-1.pdf
https://ijcem.in/wp-content/uploads/2024/08/INFRASTRUCTURE-AS-CODE-IAC-BEST-PRACTICES-USING-TERRAFORM-OR-AWS-CLOUDFORMATION-FOR-MACHINE-LEARNING-1.pdf

Journal of Information Systems Engineering and Management

2025, 10(60s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

https://link.springer.com/article/10.1007/510270-025-01294-1

[8] Rajkumar Kyadasu et al., "Exploring Infrastructure as Code Using Terraform in Multi-Cloud

Deployments," Journal of Quantum Science and Technology (JQST), Dec. 2024.

https://www.jqst.org/index.php/j/article/view/94

Appendices

Appendix A: Terraform VPC Module

hel

O # modules/vpc/main.tf

resource "aws_vpc" "main" {
cidr_block = var.vpc_cidr
enable_dns_hostnames = true
enable_dns_support = true

tags = {
Name = var.vpc_name
Environment = var.environment

"none

resource "aws_internet_gateway" "igw" {
vpe_id = aws_vpc.main.id

tags = {
Name = "${var.vpc_name}-igw"
¥
b
resource "aws_subnet" "public"” {
count = length(var.public_subnets)
vpe_id = aws_vpc.main.id
cidr_block = var.public_subnets[count.index]

availability_zone = var.availability_zones[count.index]

map_public_ip_on_launch = true

tags = {
Name = "${var.vpc_name}-public-${count.index + 1}"
Type = "Public"
¥
b

modules/vpc/variables.tf
variable "vpc_cidr" {
description = "CIDR block for VPC"
type = string

Copyright © 2025 by Author/s and Licensed by J[ISEM. This is an open access article distributed under the Creative Commons

Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

993

https://link.springer.com/article/10.1007/s10270-025-01294-1
https://www.jqst.org/index.php/j/article/view/94

Journal of Information Systems Engineering and Management

2025, 10(60s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/

default ="10.0.0.0/16"

}

variable "vpc_name" {
description = "Name of the VPC"
type = string

b

variable "environment" {
description = "Environment name"
type = string

variable "public_subnets" {
description = "Public subnet CIDR blocks"
type = list(string)

¥

variable "availability_zones"
description = "Availability zones"
type = list(string)

¥

OAppendix B: EC2 Instance Module

hel

O# modules/ec2/main.tf

resource "aws_ instance" "instance" {
ami =var.ami_id
instance_type = var.instance_type
subnet_id = var.subnet_id

vpc_security_group_ ids = var.security_group_ids

key_name = var.key_name
user_data = var.user_data

root_block_device {
volume_type = var.root_volume_ type
volume_ size = var.root_volume_ size
encrypted =true

b

tags = merge(
var.tags,

{

Name = var.instance_name

}

Copyright © 2025 by Author/s and Licensed by J[ISEM. This is an open access article distributed under the Creative Commons

Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Research Article

994

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

"o

resource "aws_eip" "instance_eip" {
count =var.associate_public_ip?1:0
instance = aws_ instance.instance.id
domain ="vpc"

tags = {
Name = "${var.instance_name}-eip"
¥
b

modules/ec2/variables.tf

variable "ami_id" {
description = "AMI ID for the instance"
type = string

b

variable "instance_type" {
description = "Instance type"
type = string
default = "t3.micro"

)

variable "subnet_id" {
description = "Subnet ID where instance will be launched"
type = string

¥

variable "security_group_ids" {
description = "List of security group IDs"
type = list(string)

¥

variable "key_name" {
description = "Key pair name"
type = string

¥

variable "instance name" {
description = "Name tag for the instance"
type = string

¥

variable "associate_public_ip" {

Copyright © 2025 by Author/s and Licensed by J[ISEM. This is an open access article distributed under the Creative Commons

Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

995

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

description = "Associate public IP with instance"
type = bool
default =false

b

variable "user data" {
description = "User data script"
type = string
default =""

}

variable "root_volume_ type" {
description = "Root volume type"
type = string
default ="gp3"

b

variable "root_volume_size" {
description = "Root volume size in GB"
type = number
default =20

b

variable "tags" {

description = "Tags to apply to resources”

type = map(string)

default ={}
¥
OAppendix C: Jenkins Pipeline Configuration
groovy
Opipeline {

agent any

parameters {
choice(
name: 'ACTION',
choices: ['plan’, 'apply’, 'destroy'],
description: 'Select Terraform action'
)
string(
name: 'WORKSPACE',
defaultValue: 'dev’,
description: 'Terraform workspace'
)
¥

Copyright © 2025 by Author/s and Licensed by J[ISEM. This is an open access article distributed under the Creative Commons
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

environment {
TF_VAR_environment = "${params. WORKSPACE}"
AWS_DEFAULT_REGION = 'us-west-2'

}

stages {
stage('Checkout") {
steps {
checkout scm
b
¥

stage('Terraform Init') {
steps {
sh'™
terraform init \
-backend-config="bucket=terraform-state-bucket" \
-backend-config="key=${WORKSPACE}/terraform.tfstate" \
-backend-config="region=${AWS_DEFAULT_REGION}"

stage('Terraform Workspace') {
steps {
sh"
terraform workspace select ${WORKSPACE} || terraform workspace new ${WORKSPACE}
b
¥

stage('Terraform Plan') {
steps {
Sh m
terraform plan -out=tfplan-${BUILD_NUMBER} -var-
file="environments/${WORKSPACE}.tfvars"

archiveArtifacts artifacts: 'tfplan-*', fingerprint: true
¥
b

stage('Terraform Apply") {
when {
expression { params.ACTION == "apply' }

¥
steps {

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 997
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Journal of Information Systems Engineering and Management
2025, 10(60s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

input message: 'Apply Terraform changes?’, ok: 'Apply’
Sh "

terraform apply tfplan-${BUILD_NUMBER}

¥
b

stage('Terraform Destroy") {
when {
expression { params.ACTION == 'destroy' }
b
steps {
input message: 'Destroy infrastructure?’, ok: 'Destroy’
sh™

terraform destroy -auto-approve -var-file="environments/${WORKSPACE}.tfvars"

¥
b
¥

post {
always {
cleanWs()
b
failure {
emailext (

subject: "Terraform Pipeline Failed: ${env.JOB_NAME} - ${env.BUILD_NUMBER}",
body: "The Terraform pipeline has failed. Please check the build logs.",
to: "${env.CHANGE_AUTHOR_EMAIL}"
)
b
¥
b

OAppendix D: Terraform State Management Configuration
hel

O # backend.tf
terraform {
required_version = ">=1.0"

required_providers {
aws = {
source = "hashicorp/aws"
version = "~> 5.0"
¥
b

Copyright © 2025 by Author/s and Licensed by J[ISEM. This is an open access article distributed under the Creative Commons

Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

998

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

backend "s3" {

bucket = "terraform-state-bucket"”
key = "infrastructure/terraform.tfstate"
region = "us-west-2"
encrypt = true
dynamodb_table = "terraform-state-lock"
}
b
main.tf

provider "aws"
region = var.aws_region

default_tags {
tags = {
Project = var.project_name
Environment = var.environment
ManagedBy = "Terraform"
¥
b
¥

State bucket and locking table

resource "aws_s3_bucket" "terraform_ state" {
bucket = "terraform-state-bucket"”
force_destroy = false

lifecycle {
prevent_destroy = true
¥
¥

nn

resource "aws_s3_bucket_versioning” "terraform_ state" {
bucket = aws_s3_bucket.terraform_ state.id
versioning_ configuration {
status = "Enabled"
¥
b
resource "aws_s3_bucket_server_side_encryption_configuration" "
bucket = aws_s3_bucket.terraform_ state.id

terraform_ state" {

rule {
apply_server_side_encryption_by_default {
sse_algorithm = "AES256"
b

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 999
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

"nn

resource "aws_dynamodb_ table" "terraform_ state_lock" {
name = "terraform-state-lock"
billing_mode ="PAY_PER_REQUEST"
hash_key = "LockID"

attribute {
name = "LockID"
type — "S"
b
¥

variables.tf

variable "aws_region" {
description = "AWS region"
type = string
default = "us-west-2"

b

variable "project_name" {
description = "Name of the project
type = string

¥

"

variable "environment" {
description = "Environment name"
type = string

O

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

1000

