
Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 986 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

 Implementing Infrastructure as Code (IaC) with Terraform for

Scalable Cloud Deployments

Naveen Kumar Kasarla

Independent Researcher, USA

ARTICLE INFO ABSTRACT

Received: 12 Aug 2025

Revised: 19 Sept 2025

Accepted: 26 Sept 2025

Cloud infrastructure management through manual processes creates significant

operational bottlenecks for engineering teams attempting to deliver software

efficiently. Traditional provisioning requires submitting requests through

ticketing systems and waiting extended periods while operations staff manually

configure resources through cloud provider interfaces. Configuration

inconsistencies emerge when different team members provision similar

environments using varying procedures and timing. Manual setup practices

produce configuration drift where development, staging, and production

environments diverge from their intended specifications over time. Teams

encounter deployment failures caused by subtle environmental differences that

consume substantial debugging effort rather than productive feature

development activities. Infrastructure as Code solves these operational problems

by allowing teams to specify cloud resources through configuration files that

describe what infrastructure should exist rather than how to build it. Terraform

offers unified provisioning across different cloud platforms while integrating

with version control systems that maintain historical records of infrastructure

changes. This declarative framework removes dependencies on complex scripts

that fail when cloud providers modify their programming interfaces. Version-

controlled infrastructure definitions enable code review processes that identify

configuration errors before deployment while providing audit trails for system

modifications. Teams can implement rollback procedures for problematic

changes using standard version control workflows. Organizations implementing

Infrastructure as Code report improved deployment consistency and reduced

provisioning times across multiple cloud environments while eliminating manual

configuration errors that typically cause production incidents.

Keywords: Infrastructure As Code, Terraform Implementation, Cloud

Automation, Scalable Deployments, DevOps Integration

1. Introduction

Setting up cloud infrastructure manually drives everyone crazy because teams waste months clicking

through web interfaces instead of building products that customers actually want to buy. Engineers

submit requests for new environments and wait three weeks while operations staff manually configure

servers through tedious point-and-click procedures. Meanwhile, project deadlines slip and competitors

ship features faster [1].

Every organization follows the same broken process. Developers need testing environments, so they

create tickets and wait. Operations teams eventually get around to provisioning resources, but by then,

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 987 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

requirements have changed and everything needs rebuilding. Environments end up configured differently

because different people handled setup at different times using slightly different procedures.

Microservices make this chaos exponentially worse. Applications now depend on dozens of

interconnected services that need complex networking, service discovery, and load balancing

configurations. Manually coordinating these dependencies across multiple cloud regions becomes

impossible when dealing with hundreds of moving pieces that constantly change.

Configuration drift happens naturally when engineers make quick fixes directly in production without

updating documentation. Development works fine, staging behaves strangely, and production breaks in

mysterious ways because each environment diverged from its intended configuration over months of ad-

hoc modifications.

Infrastructure as Code fixes these coordination problems by letting teams define what they want in simple

configuration files instead of figuring out complicated provisioning steps. Terraform provides consistent

interfaces across Amazon, Microsoft, and Google clouds while tracking changes through version control

just like application code [3].

The shift from clicking interfaces to writing code eliminates the tribal knowledge problem, where only

certain people know how to provision specific resources. Teams can review infrastructure changes before

deployment while maintaining complete histories of what changed when things go wrong. Self-service

environment creation becomes possible without waiting for operations tickets or manual coordination

between different teams.

Challenge Impact

Manual Configuration Extended provisioning times and human error introduction

Configuration Drift
Environmental inconsistencies are causing deployment

failures

Ticket-Based Workflows Development bottlenecks and delayed feature delivery

Lack of Version Control Inability to track changes or implement rollbacks

Provider-Specific Scripts Vendor lock-in and maintenance overhead

Knowledge Silos Operational dependencies on individual expertise

Table 1: Infrastructure Provisioning Challenges [1,3]

1.1 Terraform Architecture Components

Terraform breaks infrastructure management into separate pieces that handle different parts of cloud

deployment without creating a monolithic system that becomes impossible to debug. Configuration files

use HashiCorp's domain-specific language that reads almost like English rather than requiring complex

programming knowledge. Teams describe what infrastructure they want instead of writing scripts that

specify step-by-step provisioning procedures [2].

State files track what actually exists in cloud accounts versus what configuration files say should exist.

This comparison enables Terraform to figure out what changes are needed without accidentally destroying

existing resources or creating duplicates. Remote state storage prevents the classic problem where

multiple engineers step on each other's changes when working on shared infrastructure simultaneously.

Provider plugins translate Terraform's generic syntax into cloud-specific API calls that actually create

resources. Identical configuration syntax works across Amazon, Microsoft, and Google platforms because

provider plugins translate generic Terraform code into platform-specific API calls automatically. This

flexibility prevents vendor dependency while enabling cost-effective workload distribution across multiple

cloud providers for better pricing and redundancy planning.

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 988 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Resource blocks define individual infrastructure components like servers, databases, and networking

equipment using consistent syntax regardless of which cloud provider hosts them. Dependencies get

resolved automatically through Terraform's internal graph system that figures out creation order without

requiring manual sequencing [7].

Variables enable reusable configurations that adapt to different environments without copying and

pasting code everywhere. Teams create modules that accept parameters for customizing infrastructure

characteristics while maintaining architectural consistency across multiple deployments and

environments.

Output values expose information about created resources for consumption by other Terraform

configurations or external systems. This modularity enables different teams to manage separate

infrastructure components that integrate through well-defined interfaces rather than requiring

centralized management of everything.

Component Function

Configuration Files Define desired infrastructure state declaratively

State Management
Track resource relationships and current deployment

status

Provider Plugins Interface with cloud platforms and services

Resource Blocks Specify individual infrastructure components

Variable Definitions Enable parameterized and reusable configurations

Output Values Expose resource information for external consumption

Table 2: Terraform Core Components [2,7]

1.2 Multi-Cloud Provisioning Strategies

Microservices architectures create networking nightmares that nobody talks about until deployment day

arrives. Suddenly, teams discover their containerized applications need service meshes, load balancers,

and discovery mechanisms spread across different cloud providers. Manual coordination breaks down

completely when dealing with hundreds of services that change constantly based on business

requirements and scaling demands [4]. Each cloud provider handles networking differently, so teams end

up learning Amazon's VPC quirks, Azure's virtual network limitations, and Google Cloud's firewall

peculiarities. Engineers waste months figuring out how to make identical applications work across

different platforms while maintaining security policies that satisfy compliance auditors.

Strategy Application

Provider Abstraction Unified configuration syntax across different clouds

Resource Standardization Consistent naming and tagging conventions

Environment Isolation Separate state files for different deployment stages

Geographic Distribution Regional deployments for latency optimization

Disaster Recovery Cross-cloud backup and failover capabilities

Cost Optimization Dynamic resource allocation based on pricing

Table 3: Multi-Cloud Deployment Strategies [4,8]

Geographic distribution becomes essential when customers complain about slow response times from

distant data centers. Teams need identical infrastructure deployed across multiple continents without

spending years configuring each region manually. Terraform modules enable this replication while

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 989 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

accounting for regional differences in available instance types and regulatory requirements. Environment

separation prevents the classic problem where someone accidentally destroys production while testing

configuration changes in development. Different state files and workspace isolation ensure that

experimental modifications stay contained within appropriate boundaries. Teams can experiment freely

without risking business-critical infrastructure during normal development cycles [8]. Cost management

gets interesting when teams can shift workloads between providers based on current pricing and resource

availability. Some applications run cheaper on AWS while others benefit from Azure's specialized services.

Terraform configurations enable dynamic provider selection based on cost models and performance

requirements rather than vendor lock-in decisions.

Disaster recovery planning becomes realistic when infrastructure exists across multiple cloud providers

automatically. Regional outages happen regularly, so having standby infrastructure ready for immediate

activation prevents those embarrassing downtime incidents that make headlines. Terraform automation

coordinates failover procedures faster than manual emergency response protocols.

2. State Management and Collaboration

State files create the biggest headache in team Terraform deployments because everyone needs access to

the current infrastructure status without stepping on each other's changes. Local state files work fine for

individual experimentation, but become disasters when multiple engineers try to modify shared

infrastructure simultaneously. Someone inevitably overwrites critical state information or creates

resource conflicts that require manual intervention [1].

Remote state backends solve collaboration problems by storing state files in shared locations like Amazon

S3 buckets or Terraform Cloud workspaces. Teams can configure automatic state locking that prevents

concurrent modifications while ensuring everyone works with the current infrastructure status. This

centralized approach eliminates the classic problem where engineers accidentally destroy resources

because they were working with outdated state information.

State file corruption represents a serious operational risk because losing the state means losing track of

existing infrastructure entirely. Remote backends provide versioning and backup capabilities that enable

recovery when state files get corrupted or accidentally deleted. Teams can roll back to previous state

versions when deployments go wrong or infrastructure modifications create unexpected problems.

Workspace isolation enables different teams to manage separate environments through distinct state

boundaries while sharing common Terraform configurations. Development, staging, and production

environments maintain independent state files that prevent accidental cross-environment modifications.

This separation allows autonomous team management while preserving architectural consistency through

shared modules and standardized deployment procedures.

State inspection capabilities help troubleshoot deployment problems by providing detailed visibility into

resource relationships and metadata. Teams can examine the current state without making modifications

while understanding how Terraform tracks dependencies between different infrastructure components

during planning and application phases.

2.1 CI/CD Pipeline Integration

Automated pipeline integration transforms Terraform deployments from manual procedures into

systematic workflows that include testing, validation, and approval gates before infrastructure

modifications reach production environments. Jenkins, GitLab, and GitHub Actions provide pipeline

frameworks that execute Terraform commands automatically while capturing detailed logs of all

deployment activities [5].

Pipeline stages typically include initialization, validation, planning, and application phases that mirror

manual Terraform workflows while adding automated testing and approval controls. Teams can configure

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 990 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Terraform plan outputs as pipeline artifacts that show proposed changes before human reviewers approve

actual infrastructure modifications.

Pipeline previews eliminate unexpected infrastructure changes by showing exactly what modifications will

occur before human reviewers approve deployment execution. Configuration validation through TFLint

and Terratest identifies syntax problems, policy violations, and architectural inconsistencies during build

phases rather than after resources reach production environments. These automated checks enforce

naming conventions, tagging requirements, and security standards consistently across all deployments

without manual review overhead.

Secret management becomes critical when pipelines need access to cloud provider credentials and

sensitive configuration values. HashiCorp Vault, AWS Secrets Manager, and similar tools provide secure

credential storage that prevents hardcoding sensitive information in Terraform configurations or pipeline

definitions [6].

Deployment approvals enable human oversight for critical infrastructure changes while allowing

automatic deployment of routine modifications like scaling adjustments or configuration updates. Teams

can configure approval requirements based on change scope, environment criticality, and business impact

while maintaining deployment velocity for non-critical modifications.

Pattern Implementation

Pipeline Automation Automated Terraform plan and apply stages

Change Approval Human review gates for production deployments

Testing Integration Validation checks before infrastructure changes

Rollback Mechanisms Automated reversion for failed deployments

Environment

Promotion
Progressive deployment across staging environments

Secret Management Secure handling of credentials and sensitive data

Table 4: CI/CD Integration Patterns [5,6]

2.2 Security and Compliance Frameworks

Automated infrastructure deployment creates security blind spots where traditional approval workflows

used to catch policy violations before resources reach production environments. Teams need

programmatic validation through policy-as-code tools that enforce organizational security standards

without slowing down deployment velocity [4].

Permission management becomes complex when balancing developer self-service needs against security

boundaries that prevent unauthorized access to critical infrastructure components. Identity systems must

enable appropriate autonomy while maintaining oversight capabilities that satisfy security requirements

across different operational environments. Industry compliance demands continuous monitoring because

infrastructure modifications can introduce regulatory violations that remain undetected until formal audit

periods. Automated configuration analysis identifies non-compliant resources while generating

documentation that regulatory frameworks require for ongoing compliance verification.

Data protection requires systematic encryption enforcement across all infrastructure components because

inconsistent manual implementation creates vulnerability gaps. Standardized security policies can be

embedded automatically into Terraform configurations without requiring specialized security knowledge

from development teams. Forensic capabilities depend on comprehensive change tracking that records

infrastructure modification details for security incident response and regulatory investigations. Audit

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 991 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

systems must maintain searchable historical records that identify specific actors, timing, and affected

resources during compliance reviews or security breach analysis [8].

3. Operational Efficiency Metrics

Organizations implementing intelligent operations report substantial improvements in operational

metrics that directly impact business performance and customer satisfaction. Mean time to detection

decreases dramatically when automated pattern recognition identifies developing problems before they

escalate into service disruptions. Teams catch issues during early development phases rather than after

customers experience degraded performance or complete service outages [1]. Resolution times improve

significantly as automated correlation eliminates hours of manual investigation that previously consumed

engineering resources during critical incidents. Engineers spend less time hunting through disparate

monitoring tools and log files while automated systems provide targeted insights about failure origins and

recommended remediation strategies. This efficiency gain allows teams to restore services faster while

reducing the business impact associated with extended outages. False positive reduction transforms

operational workflows by eliminating alert fatigue that overwhelms monitoring teams with irrelevant

notifications. Traditional threshold-based monitoring generates thousands of alerts daily, most

representing normal system variations rather than genuine problems requiring immediate attention.

Intelligent filtering reduces alert volumes by identifying patterns that distinguish routine operational

changes from actual threats requiring investigation. Resource optimization develops naturally when

teams transition from emergency response patterns toward strategic capacity management and

architectural improvement activities. Engineering staff who previously handled constant operational

crises can redirect attention toward system enhancements, performance optimization, and scaling

strategies that address root causes of recurring problems. This forward-thinking orientation creates

cumulative improvements where systems gain resilience and operational efficiency through sustained

development efforts [12]. Operational cost reduction occurs through multiple mechanisms, including

reduced overtime expenses, decreased infrastructure waste, and improved resource allocation efficiency.

Automated incident response eliminates night-shift escalations for routine problems while predictive

analytics enable right-sized infrastructure provisioning that avoids both over-provisioning costs and

under-provisioning performance problems.Team productivity increases as engineers develop expertise in

strategic system design rather than spending careers managing operational crises. Knowledge retention

improves when institutional wisdom gets captured in automated playbooks and correlation rules rather

than remaining trapped in individual experience. This systematization enables more consistent incident

response while reducing dependencies on specific team members during critical operational periods.

Metric Improvement Area

Deployment Speed Reduced provisioning time through automation

Configuration Consistency Eliminated environmental drift across stages

Change Visibility Enhanced audit trails through version control

Error Reduction Decreased manual configuration mistakes

Team Productivity
Improved collaboration through shared
definitions

Infrastructure Reliability
Increased system stability through
standardization

Table 5: Operational Efficiency Metrics [1,8]

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 992 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Conclusion

Automated provisioning cuts out the manual setup tasks that waste engineering time and slow down

product delivery. Teams stop burning weeks on repetitive infrastructure work and start building features

that customers actually care about using. Team dynamics change fundamentally when infrastructure

stops being mysterious operations, knowledge that only certain people understand. Everyone can read

configuration files and propose changes through normal code review processes. Version control shows

exactly what happened when deployments break, making troubleshooting faster and less stressful.

Success requires mental shifts from clicking cloud provider interfaces to writing declarative specifications.

Teams must build workflows where automation handles predictable provisioning tasks while humans

make judgment calls on security policies and compliance requirements that need business context.

Terraform keeps evolving with new cloud providers and deployment features, but core concepts stay

stable. Infrastructure becomes code that deploys consistently across different environments without

requiring manual configuration each time. Teams that master this gain speed advantages over

competitors who are still doing everything manually.

References

[1] Venkat Marella, "Implementing Infrastructure as Code (IaC) for Scalable DevOps Automation in

Hybrid Cloud," Journal of Sustainable Solutions, ResearchGate, Dec. 2024.

https://www.researchgate.net/publication/387058455_Implementing_Infrastructure_as_Code_IaC_for

_Scalable_DevOps_Automation_in_Hybrid_Cloud

[2] Naga Murali Krishna Koneru, "Infrastructure as Code (IaC) for Enterprise Applications: A

Comparative Study of Terraform and CloudFormation," American Journal of Technology, ResearchGate,

May 2025.

https://www.researchgate.net/publication/391714883_Infrastructure_as_Code_IaC_for_Enterprise_Ap

plications_A_Comparative_Study_of_Terraform_and_CloudFormation

[3] Sachin Sudhir Shinde, "Implementing infrastructure as code with Terraform for cloud-based services,"

World Journal of Advanced Engineering Technology and Sciences, Jun. 2025.

https://journalwjaets.com/sites/default/files/fulltext_pdf/WJAETS-2025-1161.pdf

[4] Perumalsamy Ravindran, "Automating Multi-Cloud Infrastructure: Leveraging Terraform and IaC for

Scalable, Secure, and Efficient Cloud Management," IJSRCSEIT, Mar. 2025.

https://ijsrcseit.com/index.php/home/article/view/CSEIT25112704

[5] Taiwo Joseph Akinbolaji et al., "Automation in Cloud-Based DevOps: A Guide to CI/CD Pipelines and

Infrastructure as Code (IaC) with Terraform and Jenkins," WJAETS, Nov. 2024.

https://wjaets.com/sites/default/files/WJAETS-2024-0542.pdf

[6] "Continuous Integration and Continuous Deployment Pipeline Automation Using AWS, Jenkins,

Ansible, Terraform, Docker, Grafana, Prometheus," International Journal of Research Publication and

Reviews, Feb. 2024.

https://ijrpr.com/uploads/V5ISSUE2/IJRPR22767.pdf

[6] "Continuous Integration and Continuous Deployment Pipeline Automation Using AWS, Jenkins,

Ansible, Terraform, Docker, Grafana, Prometheus," International Journal of Core Engineering &

Management, 2021.

https://ijcem.in/wp-content/uploads/2024/08/INFRASTRUCTURE-AS-CODE-IAC-BEST-PRACTICES-

USING-TERRAFORM-OR-AWS-CLOUDFORMATION-FOR-MACHINE-LEARNING-1.pdf

[7] Zoe Vasileiou et al., "A knowledge-based approach for guided development of Infrastructure as Code,"

Springer Nature Link, Jun. 2025.

https://www.researchgate.net/publication/387058455_Implementing_Infrastructure_as_Code_IaC_for_Scalable_DevOps_Automation_in_Hybrid_Cloud
https://www.researchgate.net/publication/387058455_Implementing_Infrastructure_as_Code_IaC_for_Scalable_DevOps_Automation_in_Hybrid_Cloud
https://www.researchgate.net/publication/391714883_Infrastructure_as_Code_IaC_for_Enterprise_Applications_A_Comparative_Study_of_Terraform_and_CloudFormation
https://www.researchgate.net/publication/391714883_Infrastructure_as_Code_IaC_for_Enterprise_Applications_A_Comparative_Study_of_Terraform_and_CloudFormation
https://journalwjaets.com/sites/default/files/fulltext_pdf/WJAETS-2025-1161.pdf
https://ijsrcseit.com/index.php/home/article/view/CSEIT25112704
https://wjaets.com/sites/default/files/WJAETS-2024-0542.pdf
https://ijrpr.com/uploads/V5ISSUE2/IJRPR22767.pdf
https://ijcem.in/wp-content/uploads/2024/08/INFRASTRUCTURE-AS-CODE-IAC-BEST-PRACTICES-USING-TERRAFORM-OR-AWS-CLOUDFORMATION-FOR-MACHINE-LEARNING-1.pdf
https://ijcem.in/wp-content/uploads/2024/08/INFRASTRUCTURE-AS-CODE-IAC-BEST-PRACTICES-USING-TERRAFORM-OR-AWS-CLOUDFORMATION-FOR-MACHINE-LEARNING-1.pdf

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 993 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

https://link.springer.com/article/10.1007/s10270-025-01294-1

[8] Rajkumar Kyadasu et al., "Exploring Infrastructure as Code Using Terraform in Multi-Cloud

Deployments," Journal of Quantum Science and Technology (JQST), Dec. 2024.

https://www.jqst.org/index.php/j/article/view/94

Appendices

Appendix A: Terraform VPC Module

hcl

 # modules/vpc/main.tf

resource "aws_vpc" "main" {

 cidr_block = var.vpc_cidr

 enable_dns_hostnames = true

 enable_dns_support = true

 tags = {

 Name = var.vpc_name

 Environment = var.environment

 }

}

resource "aws_internet_gateway" "igw" {

 vpc_id = aws_vpc.main.id

 tags = {

 Name = "${var.vpc_name}-igw"

 }

}

resource "aws_subnet" "public" {

 count = length(var.public_subnets)

 vpc_id = aws_vpc.main.id

 cidr_block = var.public_subnets[count.index]

 availability_zone = var.availability_zones[count.index]

 map_public_ip_on_launch = true

 tags = {

 Name = "${var.vpc_name}-public-${count.index + 1}"

 Type = "Public"

 }

}

modules/vpc/variables.tf

variable "vpc_cidr" {

 description = "CIDR block for VPC"

 type = string

https://link.springer.com/article/10.1007/s10270-025-01294-1
https://www.jqst.org/index.php/j/article/view/94

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 994 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

 default = "10.0.0.0/16"

}

variable "vpc_name" {

 description = "Name of the VPC"

 type = string

}

variable "environment" {

 description = "Environment name"

 type = string

}

variable "public_subnets" {

 description = "Public subnet CIDR blocks"

 type = list(string)

}

variable "availability_zones" {

 description = "Availability zones"

 type = list(string)

}

 Appendix B: EC2 Instance Module

hcl

 # modules/ec2/main.tf

resource "aws_instance" "instance" {

 ami = var.ami_id

 instance_type = var.instance_type

 subnet_id = var.subnet_id

 vpc_security_group_ids = var.security_group_ids

 key_name = var.key_name

 user_data = var.user_data

 root_block_device {

 volume_type = var.root_volume_type

 volume_size = var.root_volume_size

 encrypted = true

 }

 tags = merge(

 var.tags,

 {

 Name = var.instance_name

 }

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 995 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

)

}

resource "aws_eip" "instance_eip" {

 count = var.associate_public_ip ? 1 : 0

 instance = aws_instance.instance.id

 domain = "vpc"

 tags = {

 Name = "${var.instance_name}-eip"

 }

}

modules/ec2/variables.tf

variable "ami_id" {

 description = "AMI ID for the instance"

 type = string

}

variable "instance_type" {

 description = "Instance type"

 type = string

 default = "t3.micro"

}

variable "subnet_id" {

 description = "Subnet ID where instance will be launched"

 type = string

}

variable "security_group_ids" {

 description = "List of security group IDs"

 type = list(string)

}

variable "key_name" {

 description = "Key pair name"

 type = string

}

variable "instance_name" {

 description = "Name tag for the instance"

 type = string

}

variable "associate_public_ip" {

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 996 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

 description = "Associate public IP with instance"

 type = bool

 default = false

}

variable "user_data" {

 description = "User data script"

 type = string

 default = ""

}

variable "root_volume_type" {

 description = "Root volume type"

 type = string

 default = "gp3"

}

variable "root_volume_size" {

 description = "Root volume size in GB"

 type = number

 default = 20

}

variable "tags" {

 description = "Tags to apply to resources"

 type = map(string)

 default = {}

}

 Appendix C: Jenkins Pipeline Configuration

groovy

 pipeline {

 agent any

 parameters {

 choice(

 name: 'ACTION',

 choices: ['plan', 'apply', 'destroy'],

 description: 'Select Terraform action'

)

 string(

 name: 'WORKSPACE',

 defaultValue: 'dev',

 description: 'Terraform workspace'

)

 }

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 997 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

 environment {

 TF_VAR_environment = "${params.WORKSPACE}"

 AWS_DEFAULT_REGION = 'us-west-2'

 }

 stages {

 stage('Checkout') {

 steps {

 checkout scm

 }

 }

 stage('Terraform Init') {

 steps {

 sh '''

 terraform init \

 -backend-config="bucket=terraform-state-bucket" \

 -backend-config="key=${WORKSPACE}/terraform.tfstate" \

 -backend-config="region=${AWS_DEFAULT_REGION}"

 '''

 }

 }

 stage('Terraform Workspace') {

 steps {

 sh '''

 terraform workspace select ${WORKSPACE} || terraform workspace new ${WORKSPACE}

 '''

 }

 }

 stage('Terraform Plan') {

 steps {

 sh '''

 terraform plan -out=tfplan-${BUILD_NUMBER} -var-

file="environments/${WORKSPACE}.tfvars"

 '''

 archiveArtifacts artifacts: 'tfplan-*', fingerprint: true

 }

 }

 stage('Terraform Apply') {

 when {

 expression { params.ACTION == 'apply' }

 }

 steps {

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 998 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

 input message: 'Apply Terraform changes?', ok: 'Apply'

 sh '''

 terraform apply tfplan-${BUILD_NUMBER}

 '''

 }

 }

 stage('Terraform Destroy') {

 when {

 expression { params.ACTION == 'destroy' }

 }

 steps {

 input message: 'Destroy infrastructure?', ok: 'Destroy'

 sh '''

 terraform destroy -auto-approve -var-file="environments/${WORKSPACE}.tfvars"

 '''

 }

 }

 }

 post {

 always {

 cleanWs()

 }

 failure {

 emailext (

 subject: "Terraform Pipeline Failed: ${env.JOB_NAME} - ${env.BUILD_NUMBER}",

 body: "The Terraform pipeline has failed. Please check the build logs.",

 to: "${env.CHANGE_AUTHOR_EMAIL}"

)

 }

 }

}

 Appendix D: Terraform State Management Configuration

hcl

 # backend.tf

terraform {

 required_version = ">= 1.0"

 required_providers {

 aws = {

 source = "hashicorp/aws"

 version = "~> 5.0"

 }

 }

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 999 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

 backend "s3" {

 bucket = "terraform-state-bucket"

 key = "infrastructure/terraform.tfstate"

 region = "us-west-2"

 encrypt = true

 dynamodb_table = "terraform-state-lock"

 }

}

main.tf

provider "aws" {

 region = var.aws_region

 default_tags {

 tags = {

 Project = var.project_name

 Environment = var.environment

 ManagedBy = "Terraform"

 }

 }

}

State bucket and locking table

resource "aws_s3_bucket" "terraform_state" {

 bucket = "terraform-state-bucket"

 force_destroy = false

 lifecycle {

 prevent_destroy = true

 }

}

resource "aws_s3_bucket_versioning" "terraform_state" {

 bucket = aws_s3_bucket.terraform_state.id

 versioning_configuration {

 status = "Enabled"

 }

}

resource "aws_s3_bucket_server_side_encryption_configuration" "terraform_state" {

 bucket = aws_s3_bucket.terraform_state.id

 rule {

 apply_server_side_encryption_by_default {

 sse_algorithm = "AES256"

 }

Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1000 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

 }

}

resource "aws_dynamodb_table" "terraform_state_lock" {

 name = "terraform-state-lock"

 billing_mode = "PAY_PER_REQUEST"

 hash_key = "LockID"

 attribute {

 name = "LockID"

 type = "S"

 }

}

variables.tf

variable "aws_region" {

 description = "AWS region"

 type = string

 default = "us-west-2"

}

variable "project_name" {

 description = "Name of the project"

 type = string

}

variable "environment" {

 description = "Environment name"

 type = string

}



