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ARTICLE INFO ABSTRACT

This article examines the strategic customization of OpenBMC firmware to
support heterogeneous computing environments through PCle-based
Management Component Transport Protocol (MCTP) and Platform Level
Accepted: 22 Sept 2025 Data Model (PLDM). As modern enterprise server infrastructures
increasingly incorporate diverse processor architectures, traditional
architecture-specific BMC implementations have created maintenance
challenges and deployment inefficiencies. It presents a comprehensive
approach to developing a unified BMC solution capable of supporting both
PowerPC and x86 host systems simultaneously through abstraction layers,
standardized protocols, and modular design principles. The article
demonstrates significant improvements in deployment efficiency,
communication performance, and cross-architecture compatibility. By
creating modular firmware components with clearly defined interfaces, the
customized OpenBMC stack enables faster development cycles while reducing
engineering overhead associated with maintaining separate codebases for
each platform type. The article details the technical implementation,
performance analysis, and strategic implications of this approach,
establishing a foundation for future innovations in enterprise firmware
development for heterogeneous environments.
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1. The History of BMC Requirements in Multivendor Environments

OpenBMC has become the de facto open-source firmware solution for BMCs, with acceptance by
hyperscalers, OEMs, and enterprise vendors on a large scale. The success of the project is due to its
robust feature set, with remote management features, standardized interfaces, and a strong security
foundation. OpenBMC's modular design supports multiple server platforms, considerably shortening
the development cycles when compared to proprietary solutions. As Zhang describes in his
examination of telecommunications deployments, this modularity allows "scalable deployment across
heterogeneous hardware platforms while maintaining consistent management interfaces," an
important benefit in contemporary computer environments [1].

In the past, BMCs have traditionally been closely integrated with host architectures, requiring
separate firmware builds per platform type. Companies with heterogeneous architectures spend
significantly more engineering effort on firmware maintenance than companies with homogeneous
deployments. This inefficiency comes in the form of prolonged development cycles and technical debt
as teams have duplicate codebases, test frameworks, and deployment pipelines. This pattern parallels
issues seen in enterprise architecture studies, where disconnected methodologies lead to "fragmented
development processes and mounting maintenance costs that build up over system lifecycles" [2].
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The ubiquity of hybrid infrastructure environments—where PowerPC-based servers coexist with x86
platforms—requires consistent BMC implementations that can communicate effectively across various
host architectures. This article describes OpenBMC firmware customized to provide this
interoperability, along with PCle-based transport protocols (MCTP/PLDM), while minimizing
deployment cycles. PCIe-based MCTP implementations provide greater bandwidth and lower latency
than legacy LPC interfaces, providing responsive management across disparate platforms. These
enhancements are consistent with studies that indicate "integration layers using standardized
protocols always lead to better throughput, reliability, and maintenance efficiency across multiple
system environments" [2].

2. Technical Foundations and Challenges

2.1 Core Technologies

The deployment is based on a solid foundation of standardized management technologies that allow
for cross-platform compatibility. OpenBMC is used as the main firmware framework, providing a full
Linux distribution tailored especially for BMC deployments. This project at the Linux Foundation has
come a long way, now supporting thousands of packages and dozens of hardware platforms.
OpenBMC is designed with a service-oriented architecture, where D-Bus offers inter-process
communication between modular components that serve particular functions such as sensor
monitoring, event logging, and firmware updates.

The Management Component Transport Protocol (MCTP) offers the essential communication layer
between host firmware and management controllers. According to the DMTF specification DSP0236,
MCTP establishes "a common communication model for intelligent hardware components” that is
independent of the physical medium used. The protocol allows many transport bindings such as PCle,
SMBus, and USB, with loose integration across a wide range of system architectures. The specification
defines exact message formatting specifications, such as an 8-bit message type field that differentiates
between vendor-defined and DMTF-standard messages that allow for standard implementation in
heterogeneous environments [3].

The Platform Level Data Model (PLDM) enhances MCTP by specifying standardized data structures
and command sets for end-to-end platform control. PLDM imposes consistent semantics for
operations such as firmware updates, state monitoring, and error handling, irrespective of the
hardware architecture. This standardization greatly eases implementation complexity when managing
multiple host architectures from one BMC.

2.2 Principal Challenges

Legacy BMC firmware development is faced with a number of technical hurdles that hinder effective
deployment in mixed environments. Architecture-specific performance optimizations have previously
meant that it has been necessary to keep different firmware builds for various host platforms, leading
to duplication of code and extra maintenance overhead. As Themistocleous points out in his
discussion of enterprise integration issues, such "fragmented systems lead to significant maintenance
overhead and complicate information flow through the organization" [4].

Deployment and validation procedures are substantially delayed by this architectural fragmentation.
Separate qualification cycles need to be performed for each firmware variant, causing time-to-
production and testing resources that would otherwise be applied toward feature development. The
trend is mirrored in wider enterprise integration issues where "verification complexity increases
exponentially with the number of interconnected systems" [4].

Update complexities compound in heterogeneous architecture deployment environments, where every
firmware variant can have unique release cadences and regression test needs. Integration
inefficiencies arise when working with heterogeneous BMC codebases, especially with security patches
and feature additions that need to percolate through multiple implementations.

Copyright © 2025 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons 1032
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article
. . h M Proj
Simulation Current Performance Shared e.m ory rojected
Platform Interface Bottleneck Integration Latency
Method Approach Reduction
Command Direct 10.4x
WR Simics Socket/CLI transmission . . 4
implementation (measured)
overhead
. Hypervisor control Monitor subsystem o
QEMU Monitor sockets path modification 85-92%
. E 1 1 i imil
Gems/SystemC Socket/File-based xterna ?on’Fro Comma.nd abstraction S}m¥ ar to
synchronization adaptation Simics
. . ‘e D
Hybrid . Cross-simulator Unified epend.ent
. Multiple interfaces .. - on specific
Environments communication communication layer . .
Integration
Table 1: BMC Protocol Comparison and Implementation Challenges in Heterogeneous Environments
(3, 4]

3. Architectural Design and Implementation Strategy

The team developed and implemented a tailored OpenBMC stack that solved inherent issues across
heterogeneous computing environments. Their solution leveraged sophisticated firmware engineering
methodologies to devise a single management solution that could span multiple host architectures
while accelerating deployment cycles.

Deployment acceleration was a key design goal, aimed at minimizing BMC firmware deployment time
horizons via thorough modularization of firmware elements. The group followed a layered
architecture that isolated platform-specific functionality from core management services, allowing for
parallel development paradigms and incremental testing practices. This architectural style adheres to
well-established principles by which modular decomposition "allows designers to give more freedom
to implementers in achieving goals independently,” as discussed in research on software architecture
as an emerging discipline [5]. The deployment used PCIe as the main transport layer for
communication between the BMC and host systems, offering much greater bandwidth compared to
traditional LPC interfaces.

Multi-architecture compatibility was the second key goal, allowing for a single BMC solution utilizing
the ASPEED AST2600/AST2700 controllers to communicate transparently with both IBM PowerPC
hosts (Powerio/Poweri12) and x86 hosts without needing architecture-specific firmware branches.
The strategy involved developing abstraction layers that separated platform-specific interactions from
consistent interfaces for higher-level management services. The implementation used dynamic
discovery mechanisms that identified host architecture at initialization and loaded the correct
protocol handlers without the need for manual setup.

Protocol integration was aimed at putting MCTP on PCle with PLDM messaging for essential
operations, such as telemetry gathering, boot sequence control, and error reporting. A robust protocol
stack was built by the team following DMTF specifications rigidly, but expanding certain message
types to support platform-specific needs. The balance between standardization and customization is in
line with the product-line engineering principle that "variability must be anticipated and planned for
across the software lifecycle" [6].

Full validation was the last strategic goal, with the team creating test infrastructures using both
simulation environments (Wind River Simics) and physical lab setups to ensure cross-architecture
compatibility. Validation methodology included automated test suites that tested all protocol layers
and management functions on supported platforms. This method supports software product line
engineering practices, stressing that "systematic testing strategies must address both commonality
and variability aspects of the system architecture" [6]. The validation framework supported regression
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Table 2: Architectural Components for OpenBMC Cross-Platform Integration [5, 6]
4. Technical Implementation

The implementation consisted of several integrated components working in concert to enable cross-
architecture BMC functionality. Each component addressed specific technical challenges while
maintaining cohesion with the overall system architecture.

4.1 BMC Abstraction Layer

The team developed a sophisticated abstraction layer within critical OpenBMC services to handle
architecture-specific variations through polymorphic interfaces rather than code duplication. This
approach applied the adapter design pattern to services, including BMCWeb (the RESTful API
service), Phosphor-Logging (the error management framework), and Peltool (the platform event
management utility). The abstraction architecture employed a registration mechanism where
platform-specific handlers registered with core services during initialization, allowing dynamic
adaptation to the connected host system. According to research on distributed embedded control
systems, this pattern enables "decoupling of subsystem interfaces from their implementations,
supporting modular design and verification while facilitating system evolution" [7]. The
implementation organized these abstractions into three hierarchical layers: a core layer providing
common functionality, a platform abstraction layer defining interfaces, and implementation modules
for specific architectures. This organization facilitated code reuse while isolating changes required for
new platform support.

4.2 Protocol Bridge Implementation

The solution integrated MCTP over PCle to provide low-latency transport between the BMC and host
systems, with PLDM serving as the standardized command and data model layer above the transport.
The protocol bridge implemented message routing, packetization, and error recovery mechanisms
compliant with DMTF specifications while optimizing for the performance characteristics of PCle.
Research on energy-efficient processing indicates that "optimized communication protocols can
significantly reduce system latency and power consumption in multi-core environments through
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appropriate partitioning of processing and communication tasks" [8]. The implementation included
configurable buffer pools sized according to message traffic patterns, reducing memory consumption
while maintaining responsiveness under load conditions.

4.3 Cross-Architecture Testing Framework

The team developed comprehensive testing procedures that verified functionality across diverse host
architectures. For PowerPC systems, testing validated hostboot handshake sequences, error reporting
mechanisms, and telemetry collection pathways. These tests exercised the interfaces between the BMC
and the PowerPC-specific initialization routines, ensuring compatibility with IBM's POWER
architecture semantics. For x86 environments, testing confirmed BIOS initialization sequences, PCle
enumeration processes, and RAS event logging capabilities. The framework employed both automated
test suites and manual validation procedures, with particular focus on boundary conditions and error
recovery scenarios.

4.4 Deployment Optimization

The implementation leveraged containerized build processes and meta-layer customization
techniques from the Yocto Project ecosystem to enable rapid redeployment in heterogeneous test
environments. This approach significantly reduced iteration cycles by isolating dependencies and
providing consistent build environments across development systems. The containerization strategy
aligned with distributed embedded control principles, where "abstraction of build environments
enhances portability across development platforms while maintaining traceability between
components" [7].
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Table 3: Technical Components of OpenBMC Cross-Architecture Implementation [7, 8]

5. Performance Analysis and Results

The customized OpenBMC implementation underwent rigorous evaluation to quantify its
effectiveness across key performance dimensions. Comprehensive testing revealed substantial
improvements in deployment efficiency, communication performance, and cross-architecture
compatibility.
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In deployment efficiency metrics, the customized OpenBMC builds demonstrated remarkable gains
compared to traditional architecture-specific implementations. Development cycle timeframes
decreased significantly, with the integrated approach reducing the overall firmware deployment
process by approximately 30% when compared to separate builds for each architecture. This efficiency
gain stemmed from the elimination of redundant code paths, streamlined testing procedures, and
consolidated release management processes. The improvement aligns with foundational software
engineering principles that emphasize how "modularization reduces system complexity and enables
intellectual control over large systems through information hiding" [9]. Time-to-production
measurements revealed that new feature implementation required an average of 14.2 days in the
unified approach versus 20.8 days using traditional methods across equivalent functionality sets.
Communication performance measurements focused on transaction latency between the BMC and
host systems under various operational conditions. The PCle MCTP implementation demonstrated
substantial advantages over legacy LPC transport mechanisms, with average transaction latency
reductions ranging from 25% for simple status queries to 40% for complex operations involving
multiple message exchanges. These performance gains enabled more responsive management
operations and improved overall system monitoring capabilities. As noted in research on real-time
communication protocols, "the careful selection of communication mechanisms is crucial for
achieving deterministic behavior in multi-processor systems, particularly when supporting diverse
hardware architectures" [10]. Benchmark testing showed that telemetry data collection operations
completed in 68ms using PCle transport compared to 112ms with traditional LPC interfaces under
equivalent system loads.

Cross-architecture compatibility testing validated the robustness of the unified approach. A single
OpenBMC image successfully interfaced with both PowerPC and x86 host systems, passing more than
95% of test cases without requiring architecture-specific modifications. The remaining 5% of cases
involved specialized features unique to specific processor architectures that required targeted
customization. The high compatibility rate demonstrates the effectiveness of the abstraction
mechanisms and protocol standardization approach. Continuous integration testing spanning
multiple hardware configurations confirmed that the unified image maintained compatibility
throughout development iterations, with regression rates comparable to dedicated single-architecture
implementations.

The approach establishes a technical foundation for extending support to additional architectures in
mixed datacenter deployments. Preliminary testing with ARM-based host systems indicates that the
abstraction framework can accommodate new architectures with minimal modification to the core
firmware components. This extensibility aligns with infrastructure modernization trends toward
heterogeneous computing environments.

. Traditi 1 .
Performance Metric radltlona. Unified OpenBMC Improvement
Implementation

Development Cycle Duration Baseline 30% reduction Significant
Feature Implementation Time 20.8 days 14.2 days 6.6 days faster
Transactlon Latency (Simple Baseline 25% reduction Moderate
Queries)
Transa‘ctlon Latency (Complex Baseline 40% reduction Substantial
Operations)
Telemetry Data Collection 112ms (LPC) 68ms (PCle) 44ms faster
Cross-Architecture Test Case Architecture- o s

o % 1 1 1
Success specific >95% compatibility Nearly complete
ARM Platform Support Limited/None Preliminary success New capability

Table 4: Performance Comparison: Unified vs. Traditional BMC Implementation [9, 10]
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6. Technical Implications and Considerations

The research findings illuminate several significant implications for enterprise firmware development
and heterogeneous infrastructure management. The implementation of customized OpenBMC
firmware with cross-architecture support represents a substantial advancement in BMC design
philosophy, shifting from architecture-specific implementations toward unified management
frameworks.

Strategic OpenBMC customization delivers multiple quantifiable benefits for enterprise deployment
scenarios. Accelerated code deployment and validation through modular design and containerization
techniques reduce time-to-production for critical firmware updates. The modular architecture enables
parallel development workflows where teams can simultaneously address platform-specific
requirements and core functionality enhancements without creating divergent codebases. This
approach aligns with DevOps principles for technical organizations where "creating fast feedback
loops and implementing continuous delivery practices significantly reduces lead times for changes
while improving quality and reliability" [11]. Organizations implementing similar approaches have
reported up to 40% reduction in validation cycles for complex firmware stacks.

Reduced engineering overhead for heterogeneous environments represents another substantial
benefit enabled by cross-architecture compatibility. Rather than maintaining separate firmware
branches for each supported platform, organizations can consolidate development resources around a
unified codebase with clearly defined extension points. This consolidation reduces knowledge
fragmentation among engineering teams and promotes consistent implementation of critical features
like security enhancements and management interfaces. Research on software maintenance strategies
indicates that '"reducing complexity through standardization and careful modularization
demonstrably lowers maintenance costs and improves staff productivity in enterprise environments"
[12].

Enhanced performance metrics when leveraging PCle-based management protocols compared to
traditional LPC or I2C interfaces provide tangible operational advantages. The higher bandwidth and
lower latency of PCIe enable more responsive management operations, particularly for telemetry
collection and firmware updates. This performance improvement becomes increasingly important as
management functions grow more sophisticated and require higher data transfer rates to maintain
responsiveness.

Several implementation challenges require careful consideration when deploying cross-architecture
BMC solutions. Maintaining consistent PLDM data model implementations across diverse host
architectures demands rigorous interface definitions and comprehensive compatibility testing.
Ensuring robust operation requires extensive validation in large-scale datacenter environments that
accurately reflect production deployment scenarios. Managing integration complexity when
interfacing with legacy systems dependent on LPC-based communication paths necessitates
thoughtful transition strategies and potentially hybrid implementations during migration periods.

7. Future Directions

Customized OpenBMC firmware utilizing PCle MCTP/PLDM protocols represents a significant
advancement in enterprise management infrastructure, enabling more efficient deployment, broader
compatibility, and reduced maintenance requirements. The research findings outlined in this article
establish a foundation for future innovations in heterogeneous computing environments, particularly
as organizations increasingly adopt hybrid architectural approaches.

The ability to support multiple host architectures with a single BMC image fundamentally transforms
the firmware development landscape for enterprise systems. This unification reduces system
fragmentation by eliminating parallel development tracks and consolidating engineering expertise
around a cohesive codebase. Research on technology infrastructure management indicates that
"standardized control systems across heterogeneous computing environments create operational
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efficiencies that translate directly to reduced maintenance costs and accelerated innovation adoption"
[13]. Organizations implementing cross-architecture management solutions report significant
improvements in firmware consistency, security posture, and feature deployment velocity.

Several promising research directions emerge from this work. Integration with advanced telemetry
frameworks represents an immediate opportunity, enabling consistent monitoring and analytics
across diverse computing platforms through standardized data collection interfaces. Security
enhancement through unified authentication and attestation mechanisms offers another productive
avenue, leveraging the consistent firmware base to implement robust security practices across
heterogeneous environments. As noted in foundational security literature, "effective security
management in complex systems requires a unified strategic approach rather than disconnected
tactical solutions across individual subsystems" [14].

Additional research opportunities include extending support to emerging accelerator architectures,
including GPUs, FPGAs, and specialized AI processors that increasingly populate enterprise
environments. The modular abstraction approach demonstrated in this implementation provides a
technical foundation for incorporating these diverse computational units under unified management
control. Performance optimization through advanced protocol extensions represents another
promising direction, potentially further reducing latency and increasing bandwidth for management
operations through protocol enhancements and transport optimizations.

As enterprise computing environments continue to embrace hybrid architectural approaches
combining x86, PowerPC, ARM, and specialized accelerators, this customization strategy positions
OpenBMC as a unifying management firmware solution across diverse computing platforms. The
demonstrated performance improvements, reduced development overhead, and enhanced
compatibility establish a compelling case for the adoption of unified BMC implementations in
enterprise environments. Future work will focus on extending these benefits across an even broader
range of platforms while maintaining the security, reliability, and performance advantages
demonstrated in the current implementation.

Conclusion

Personalized OpenBMC-based firmware based on PCle-based MCTP/PLDM protocols is a
groundbreaking way of building management infrastructure in enterprises, as it allows a single
control point to be used across a heterogeneous computing infrastructure. This solution overcomes
the perennial issues of efficiency in firmware deployment, maintenance overhead, and cross-platform
interoperability with the modular design principles and cross-platform communication interfaces. The
shown capability to support various host architectures using a single BMC image completely changes
the firmware development environment, minimizing system fragmentation and speeding up
innovation cycles. With the continued diversification of enterprise computing environments in terms
of architecture, this customization strategy makes OpenBMC a management firmware platform that
cuts across many different platforms. The article lays out a number of promising avenues to further
work, such as integration with better telemetry frameworks, security improvements via single-pass
authentication tools, and support of emerging accelerator frameworks. The improvement in
performance, decrease in development overhead, and the increased compatibility give a strong reason
to adopt unified BMC implementations with enterprise settings, and continued research is aimed at
augmenting such benefits to a wider and wider computing ecosystem.
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