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This article examines the strategic customization of OpenBMC firmware to 

support heterogeneous computing environments through PCIe-based 

Management Component Transport Protocol (MCTP) and Platform Level 

Data Model (PLDM). As modern enterprise server infrastructures 

increasingly incorporate diverse processor architectures, traditional 

architecture-specific BMC implementations have created maintenance 

challenges and deployment inefficiencies. It presents a comprehensive 

approach to developing a unified BMC solution capable of supporting both 

PowerPC and x86 host systems simultaneously through abstraction layers, 

standardized protocols, and modular design principles. The article 

demonstrates significant improvements in deployment efficiency, 

communication performance, and cross-architecture compatibility. By 

creating modular firmware components with clearly defined interfaces, the 

customized OpenBMC stack enables faster development cycles while reducing 

engineering overhead associated with maintaining separate codebases for 

each platform type. The article details the technical implementation, 

performance analysis, and strategic implications of this approach, 

establishing a foundation for future innovations in enterprise firmware 

development for heterogeneous environments. 
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1. The History of BMC Requirements in Multivendor Environments 

OpenBMC has become the de facto open-source firmware solution for BMCs, with acceptance by 

hyperscalers, OEMs, and enterprise vendors on a large scale. The success of the project is due to its 

robust feature set, with remote management features, standardized interfaces, and a strong security 

foundation. OpenBMC's modular design supports multiple server platforms, considerably shortening 

the development cycles when compared to proprietary solutions. As Zhang describes in his 

examination of telecommunications deployments, this modularity allows "scalable deployment across 

heterogeneous hardware platforms while maintaining consistent management interfaces," an 

important benefit in contemporary computer environments [1]. 

In the past, BMCs have traditionally been closely integrated with host architectures, requiring 

separate firmware builds per platform type. Companies with heterogeneous architectures spend 

significantly more engineering effort on firmware maintenance than companies with homogeneous 

deployments. This inefficiency comes in the form of prolonged development cycles and technical debt 

as teams have duplicate codebases, test frameworks, and deployment pipelines. This pattern parallels 

issues seen in enterprise architecture studies, where disconnected methodologies lead to "fragmented 

development processes and mounting maintenance costs that build up over system lifecycles" [2]. 
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The ubiquity of hybrid infrastructure environments—where PowerPC-based servers coexist with x86 

platforms—requires consistent BMC implementations that can communicate effectively across various 

host architectures. This article describes OpenBMC firmware customized to provide this 

interoperability, along with PCIe-based transport protocols (MCTP/PLDM), while minimizing 

deployment cycles. PCIe-based MCTP implementations provide greater bandwidth and lower latency 

than legacy LPC interfaces, providing responsive management across disparate platforms. These 

enhancements are consistent with studies that indicate "integration layers using standardized 

protocols always lead to better throughput, reliability, and maintenance efficiency across multiple 

system environments" [2]. 

 

2. Technical Foundations and Challenges 

2.1 Core Technologies 

The deployment is based on a solid foundation of standardized management technologies that allow 

for cross-platform compatibility. OpenBMC is used as the main firmware framework, providing a full 

Linux distribution tailored especially for BMC deployments. This project at the Linux Foundation has 

come a long way, now supporting thousands of packages and dozens of hardware platforms. 

OpenBMC is designed with a service-oriented architecture, where D-Bus offers inter-process 

communication between modular components that serve particular functions such as sensor 

monitoring, event logging, and firmware updates. 

The Management Component Transport Protocol (MCTP) offers the essential communication layer 

between host firmware and management controllers. According to the DMTF specification DSP0236, 

MCTP establishes "a common communication model for intelligent hardware components" that is 

independent of the physical medium used. The protocol allows many transport bindings such as PCIe, 

SMBus, and USB, with loose integration across a wide range of system architectures. The specification 

defines exact message formatting specifications, such as an 8-bit message type field that differentiates 

between vendor-defined and DMTF-standard messages that allow for standard implementation in 

heterogeneous environments [3]. 

The Platform Level Data Model (PLDM) enhances MCTP by specifying standardized data structures 

and command sets for end-to-end platform control. PLDM imposes consistent semantics for 

operations such as firmware updates, state monitoring, and error handling, irrespective of the 

hardware architecture. This standardization greatly eases implementation complexity when managing 

multiple host architectures from one BMC. 

2.2 Principal Challenges 

Legacy BMC firmware development is faced with a number of technical hurdles that hinder effective 

deployment in mixed environments. Architecture-specific performance optimizations have previously 

meant that it has been necessary to keep different firmware builds for various host platforms, leading 

to duplication of code and extra maintenance overhead. As Themistocleous points out in his 

discussion of enterprise integration issues, such "fragmented systems lead to significant maintenance 

overhead and complicate information flow through the organization" [4]. 

Deployment and validation procedures are substantially delayed by this architectural fragmentation. 

Separate qualification cycles need to be performed for each firmware variant, causing time-to-

production and testing resources that would otherwise be applied toward feature development. The 

trend is mirrored in wider enterprise integration issues where "verification complexity increases 

exponentially with the number of interconnected systems" [4]. 

Update complexities compound in heterogeneous architecture deployment environments, where every 

firmware variant can have unique release cadences and regression test needs. Integration 

inefficiencies arise when working with heterogeneous BMC codebases, especially with security patches 

and feature additions that need to percolate through multiple implementations. 
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Simulation 

Platform 

Current 

Interface 

Method 

Performance 

Bottleneck 

Shared Memory 

Integration 

Approach 

Projected 

Latency 

Reduction 

WR Simics Socket/CLI 

Command 

transmission 

overhead 

Direct 

implementation 

10.4× 

(measured) 

QEMU Monitor sockets 
Hypervisor control 

path 

Monitor subsystem 

modification 
85-92% 

Gem5/SystemC Socket/File-based 
External control 

synchronization 

Command abstraction 

adaptation 

Similar to 

Simics 

Hybrid 

Environments 
Multiple interfaces 

Cross-simulator 

communication 

Unified 

communication layer 

Dependent 

on specific 

integration 

Table 1: BMC Protocol Comparison and Implementation Challenges in Heterogeneous Environments 

[3, 4] 

 

3. Architectural Design and Implementation Strategy 

The team developed and implemented a tailored OpenBMC stack that solved inherent issues across 

heterogeneous computing environments. Their solution leveraged sophisticated firmware engineering 

methodologies to devise a single management solution that could span multiple host architectures 

while accelerating deployment cycles. 

Deployment acceleration was a key design goal, aimed at minimizing BMC firmware deployment time 

horizons via thorough modularization of firmware elements. The group followed a layered 

architecture that isolated platform-specific functionality from core management services, allowing for 

parallel development paradigms and incremental testing practices. This architectural style adheres to 

well-established principles by which modular decomposition "allows designers to give more freedom 

to implementers in achieving goals independently," as discussed in research on software architecture 

as an emerging discipline [5]. The deployment used PCIe as the main transport layer for 

communication between the BMC and host systems, offering much greater bandwidth compared to 

traditional LPC interfaces. 

Multi-architecture compatibility was the second key goal, allowing for a single BMC solution utilizing 

the ASPEED AST2600/AST2700 controllers to communicate transparently with both IBM PowerPC 

hosts (Power10/Power12) and x86 hosts without needing architecture-specific firmware branches. 

The strategy involved developing abstraction layers that separated platform-specific interactions from 

consistent interfaces for higher-level management services. The implementation used dynamic 

discovery mechanisms that identified host architecture at initialization and loaded the correct 

protocol handlers without the need for manual setup. 

Protocol integration was aimed at putting MCTP on PCIe with PLDM messaging for essential 

operations, such as telemetry gathering, boot sequence control, and error reporting. A robust protocol 

stack was built by the team following DMTF specifications rigidly, but expanding certain message 

types to support platform-specific needs. The balance between standardization and customization is in 

line with the product-line engineering principle that "variability must be anticipated and planned for 

across the software lifecycle" [6]. 

Full validation was the last strategic goal, with the team creating test infrastructures using both 

simulation environments (Wind River Simics) and physical lab setups to ensure cross-architecture 

compatibility. Validation methodology included automated test suites that tested all protocol layers 

and management functions on supported platforms. This method supports software product line 

engineering practices, stressing that "systematic testing strategies must address both commonality 

and variability aspects of the system architecture" [6]. The validation framework supported regression 



Journal of Information Systems Engineering and Management 
2025, 10(60s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1034 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

testing following firmware changes, so that improvements for one architecture would not affect 

functionality in other supported platforms. 

 

Design 

Component 
Primary Objective 

Implementation 

Approach 
Key Benefit 

Deployment 

Acceleration 

Reduce firmware 

rollout time 

Layered architecture 

with modularized 

components 

Parallel development 

workflows, faster iteration 

cycles 

Multi-Architecture 

Compatibility 

Support diverse host 

systems 

Abstraction layers with 

dynamic discovery 

mechanisms 

Single BMC image for both 

PowerPC and x86 hosts 

Protocol Integration 
Standardize 

communications 

MCTP over PCIe with 

PLDM messaging 

Higher bandwidth, 

standardized commands 

across platforms 

Validation 

Framework 

Ensure cross-platform 

functionality 

Simulation and 

physical lab testing 

environments 

Comprehensive verification 

across architectures 

PCIe Transport 

Layer 

Improve 

communication 

performance 

Replacement of 

traditional LPC 

interfaces 

Higher bandwidth for 

management operations 

Dynamic Discovery 
Eliminate manual 

configuration 

Runtime detection of 

host architecture 

Automatic loading of 

appropriate protocol 

handlers 

Table 2: Architectural Components for OpenBMC Cross-Platform Integration [5, 6] 

4. Technical Implementation 

The implementation consisted of several integrated components working in concert to enable cross-

architecture BMC functionality. Each component addressed specific technical challenges while 

maintaining cohesion with the overall system architecture. 

4.1 BMC Abstraction Layer 

The team developed a sophisticated abstraction layer within critical OpenBMC services to handle 

architecture-specific variations through polymorphic interfaces rather than code duplication. This 

approach applied the adapter design pattern to services, including BMCWeb (the RESTful API 

service), Phosphor-Logging (the error management framework), and Peltool (the platform event 

management utility). The abstraction architecture employed a registration mechanism where 

platform-specific handlers registered with core services during initialization, allowing dynamic 

adaptation to the connected host system. According to research on distributed embedded control 

systems, this pattern enables "decoupling of subsystem interfaces from their implementations, 

supporting modular design and verification while facilitating system evolution" [7]. The 

implementation organized these abstractions into three hierarchical layers: a core layer providing 

common functionality, a platform abstraction layer defining interfaces, and implementation modules 

for specific architectures. This organization facilitated code reuse while isolating changes required for 

new platform support. 

4.2 Protocol Bridge Implementation 

The solution integrated MCTP over PCIe to provide low-latency transport between the BMC and host 

systems, with PLDM serving as the standardized command and data model layer above the transport. 

The protocol bridge implemented message routing, packetization, and error recovery mechanisms 

compliant with DMTF specifications while optimizing for the performance characteristics of PCIe. 

Research on energy-efficient processing indicates that "optimized communication protocols can 

significantly reduce system latency and power consumption in multi-core environments through 
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appropriate partitioning of processing and communication tasks" [8]. The implementation included 

configurable buffer pools sized according to message traffic patterns, reducing memory consumption 

while maintaining responsiveness under load conditions. 

4.3 Cross-Architecture Testing Framework 

The team developed comprehensive testing procedures that verified functionality across diverse host 

architectures. For PowerPC systems, testing validated hostboot handshake sequences, error reporting 

mechanisms, and telemetry collection pathways. These tests exercised the interfaces between the BMC 

and the PowerPC-specific initialization routines, ensuring compatibility with IBM's POWER 

architecture semantics. For x86 environments, testing confirmed BIOS initialization sequences, PCIe 

enumeration processes, and RAS event logging capabilities. The framework employed both automated 

test suites and manual validation procedures, with particular focus on boundary conditions and error 

recovery scenarios. 

4.4 Deployment Optimization 

The implementation leveraged containerized build processes and meta-layer customization 

techniques from the Yocto Project ecosystem to enable rapid redeployment in heterogeneous test 

environments. This approach significantly reduced iteration cycles by isolating dependencies and 

providing consistent build environments across development systems. The containerization strategy 

aligned with distributed embedded control principles, where "abstraction of build environments 

enhances portability across development platforms while maintaining traceability between 

components" [7]. 

 

Implementation 

Component 
Key Technologies 

Architectural 

Pattern 
Primary Function 

BMC Abstraction 

Layer 

Polymorphic interfaces, 

adapter design pattern 

Three-tier hierarchy 

(core, platform 

abstraction, 

implementation) 

Handle architecture-specific 

variations without code 

duplication 

Protocol Bridge 
MCTP over PCIe, PLDM 

messaging 
Layered protocol stack 

Provide standardized 

communication between 

BMC and diverse hosts 

Testing Framework 
Automated test suites, 

manual validation 

Platform-specific test 

scenarios 

Verify functionality across 

PowerPC and x86 

architectures 

Deployment 

Pipeline 

Containerized builds, 

Yocto Project meta-

layers 

Dependency isolation 

Enable rapid redeployment 

in heterogeneous 

environments 

Core OpenBMC 

Services 

bmcweb, phosphor-

logging, peltool 

Registration 

mechanism 

Support dynamic adaptation 

to connected host systems 

Buffer Management 
Configurable buffer 

pools 

Traffic-optimized 

sizing 

Maintain responsiveness 

under varied load conditions 

Architecture 

Detection 

Dynamic discovery 

mechanisms 
Runtime initialization 

Load appropriate protocol 

handlers automatically 

Table 3: Technical Components of OpenBMC Cross-Architecture Implementation [7, 8] 

 

5. Performance Analysis and Results 

The customized OpenBMC implementation underwent rigorous evaluation to quantify its 

effectiveness across key performance dimensions. Comprehensive testing revealed substantial 

improvements in deployment efficiency, communication performance, and cross-architecture 

compatibility. 
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In deployment efficiency metrics, the customized OpenBMC builds demonstrated remarkable gains 

compared to traditional architecture-specific implementations. Development cycle timeframes 

decreased significantly, with the integrated approach reducing the overall firmware deployment 

process by approximately 30% when compared to separate builds for each architecture. This efficiency 

gain stemmed from the elimination of redundant code paths, streamlined testing procedures, and 

consolidated release management processes. The improvement aligns with foundational software 

engineering principles that emphasize how "modularization reduces system complexity and enables 

intellectual control over large systems through information hiding" [9]. Time-to-production 

measurements revealed that new feature implementation required an average of 14.2 days in the 

unified approach versus 20.8 days using traditional methods across equivalent functionality sets. 

Communication performance measurements focused on transaction latency between the BMC and 

host systems under various operational conditions. The PCIe MCTP implementation demonstrated 

substantial advantages over legacy LPC transport mechanisms, with average transaction latency 

reductions ranging from 25% for simple status queries to 40% for complex operations involving 

multiple message exchanges. These performance gains enabled more responsive management 

operations and improved overall system monitoring capabilities. As noted in research on real-time 

communication protocols, "the careful selection of communication mechanisms is crucial for 

achieving deterministic behavior in multi-processor systems, particularly when supporting diverse 

hardware architectures" [10]. Benchmark testing showed that telemetry data collection operations 

completed in 68ms using PCIe transport compared to 112ms with traditional LPC interfaces under 

equivalent system loads. 

Cross-architecture compatibility testing validated the robustness of the unified approach. A single 

OpenBMC image successfully interfaced with both PowerPC and x86 host systems, passing more than 

95% of test cases without requiring architecture-specific modifications. The remaining 5% of cases 

involved specialized features unique to specific processor architectures that required targeted 

customization. The high compatibility rate demonstrates the effectiveness of the abstraction 

mechanisms and protocol standardization approach. Continuous integration testing spanning 

multiple hardware configurations confirmed that the unified image maintained compatibility 

throughout development iterations, with regression rates comparable to dedicated single-architecture 

implementations. 

The approach establishes a technical foundation for extending support to additional architectures in 

mixed datacenter deployments. Preliminary testing with ARM-based host systems indicates that the 

abstraction framework can accommodate new architectures with minimal modification to the core 

firmware components. This extensibility aligns with infrastructure modernization trends toward 

heterogeneous computing environments. 

 

Performance Metric 
Traditional 

Implementation 
Unified OpenBMC Improvement 

Development Cycle Duration Baseline 30% reduction Significant 

Feature Implementation Time 20.8 days 14.2 days 6.6 days faster 

Transaction Latency (Simple 

Queries) 
Baseline 25% reduction Moderate 

Transaction Latency (Complex 

Operations) 
Baseline 40% reduction Substantial 

Telemetry Data Collection 112ms (LPC) 68ms (PCIe) 44ms faster 

Cross-Architecture Test Case 

Success 

Architecture-

specific 
>95% compatibility Nearly complete 

ARM Platform Support Limited/None Preliminary success New capability 

Table 4: Performance Comparison: Unified vs. Traditional BMC Implementation [9, 10] 
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6. Technical Implications and Considerations 

The research findings illuminate several significant implications for enterprise firmware development 

and heterogeneous infrastructure management. The implementation of customized OpenBMC 

firmware with cross-architecture support represents a substantial advancement in BMC design 

philosophy, shifting from architecture-specific implementations toward unified management 

frameworks. 

Strategic OpenBMC customization delivers multiple quantifiable benefits for enterprise deployment 

scenarios. Accelerated code deployment and validation through modular design and containerization 

techniques reduce time-to-production for critical firmware updates. The modular architecture enables 

parallel development workflows where teams can simultaneously address platform-specific 

requirements and core functionality enhancements without creating divergent codebases. This 

approach aligns with DevOps principles for technical organizations where "creating fast feedback 

loops and implementing continuous delivery practices significantly reduces lead times for changes 

while improving quality and reliability" [11]. Organizations implementing similar approaches have 

reported up to 40% reduction in validation cycles for complex firmware stacks. 

Reduced engineering overhead for heterogeneous environments represents another substantial 

benefit enabled by cross-architecture compatibility. Rather than maintaining separate firmware 

branches for each supported platform, organizations can consolidate development resources around a 

unified codebase with clearly defined extension points. This consolidation reduces knowledge 

fragmentation among engineering teams and promotes consistent implementation of critical features 

like security enhancements and management interfaces. Research on software maintenance strategies 

indicates that "reducing complexity through standardization and careful modularization 

demonstrably lowers maintenance costs and improves staff productivity in enterprise environments" 

[12]. 

Enhanced performance metrics when leveraging PCIe-based management protocols compared to 

traditional LPC or I2C interfaces provide tangible operational advantages. The higher bandwidth and 

lower latency of PCIe enable more responsive management operations, particularly for telemetry 

collection and firmware updates. This performance improvement becomes increasingly important as 

management functions grow more sophisticated and require higher data transfer rates to maintain 

responsiveness. 

Several implementation challenges require careful consideration when deploying cross-architecture 

BMC solutions. Maintaining consistent PLDM data model implementations across diverse host 

architectures demands rigorous interface definitions and comprehensive compatibility testing. 

Ensuring robust operation requires extensive validation in large-scale datacenter environments that 

accurately reflect production deployment scenarios. Managing integration complexity when 

interfacing with legacy systems dependent on LPC-based communication paths necessitates 

thoughtful transition strategies and potentially hybrid implementations during migration periods. 

 

7. Future Directions 

Customized OpenBMC firmware utilizing PCIe MCTP/PLDM protocols represents a significant 

advancement in enterprise management infrastructure, enabling more efficient deployment, broader 

compatibility, and reduced maintenance requirements. The research findings outlined in this article 

establish a foundation for future innovations in heterogeneous computing environments, particularly 

as organizations increasingly adopt hybrid architectural approaches. 

The ability to support multiple host architectures with a single BMC image fundamentally transforms 

the firmware development landscape for enterprise systems. This unification reduces system 

fragmentation by eliminating parallel development tracks and consolidating engineering expertise 

around a cohesive codebase. Research on technology infrastructure management indicates that 

"standardized control systems across heterogeneous computing environments create operational 
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efficiencies that translate directly to reduced maintenance costs and accelerated innovation adoption" 

[13]. Organizations implementing cross-architecture management solutions report significant 

improvements in firmware consistency, security posture, and feature deployment velocity. 

Several promising research directions emerge from this work. Integration with advanced telemetry 

frameworks represents an immediate opportunity, enabling consistent monitoring and analytics 

across diverse computing platforms through standardized data collection interfaces. Security 

enhancement through unified authentication and attestation mechanisms offers another productive 

avenue, leveraging the consistent firmware base to implement robust security practices across 

heterogeneous environments. As noted in foundational security literature, "effective security 

management in complex systems requires a unified strategic approach rather than disconnected 

tactical solutions across individual subsystems" [14]. 

Additional research opportunities include extending support to emerging accelerator architectures, 

including GPUs, FPGAs, and specialized AI processors that increasingly populate enterprise 

environments. The modular abstraction approach demonstrated in this implementation provides a 

technical foundation for incorporating these diverse computational units under unified management 

control. Performance optimization through advanced protocol extensions represents another 

promising direction, potentially further reducing latency and increasing bandwidth for management 

operations through protocol enhancements and transport optimizations. 

As enterprise computing environments continue to embrace hybrid architectural approaches 

combining x86, PowerPC, ARM, and specialized accelerators, this customization strategy positions 

OpenBMC as a unifying management firmware solution across diverse computing platforms. The 

demonstrated performance improvements, reduced development overhead, and enhanced 

compatibility establish a compelling case for the adoption of unified BMC implementations in 

enterprise environments. Future work will focus on extending these benefits across an even broader 

range of platforms while maintaining the security, reliability, and performance advantages 

demonstrated in the current implementation. 

 

Conclusion 

Personalized OpenBMC-based firmware based on PCIe-based MCTP/PLDM protocols is a 

groundbreaking way of building management infrastructure in enterprises, as it allows a single 

control point to be used across a heterogeneous computing infrastructure. This solution overcomes 

the perennial issues of efficiency in firmware deployment, maintenance overhead, and cross-platform 

interoperability with the modular design principles and cross-platform communication interfaces. The 

shown capability to support various host architectures using a single BMC image completely changes 

the firmware development environment, minimizing system fragmentation and speeding up 

innovation cycles. With the continued diversification of enterprise computing environments in terms 

of architecture, this customization strategy makes OpenBMC a management firmware platform that 

cuts across many different platforms. The article lays out a number of promising avenues to further 

work, such as integration with better telemetry frameworks, security improvements via single-pass 

authentication tools, and support of emerging accelerator frameworks. The improvement in 

performance, decrease in development overhead, and the increased compatibility give a strong reason 

to adopt unified BMC implementations with enterprise settings, and continued research is aimed at 

augmenting such benefits to a wider and wider computing ecosystem. 
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